How to Write About Coronavirus in a College Essay

Students can share how they navigated life during the coronavirus pandemic in a full-length essay or an optional supplement.

Writing About COVID-19 in College Essays

Serious disabled woman concentrating on her work she sitting at her workplace and working on computer at office

Getty Images

Experts say students should be honest and not limit themselves to merely their experiences with the pandemic.

The global impact of COVID-19, the disease caused by the novel coronavirus, means colleges and prospective students alike are in for an admissions cycle like no other. Both face unprecedented challenges and questions as they grapple with their respective futures amid the ongoing fallout of the pandemic.

Colleges must examine applicants without the aid of standardized test scores for many – a factor that prompted many schools to go test-optional for now . Even grades, a significant component of a college application, may be hard to interpret with some high schools adopting pass-fail classes last spring due to the pandemic. Major college admissions factors are suddenly skewed.

"I can't help but think other (admissions) factors are going to matter more," says Ethan Sawyer, founder of the College Essay Guy, a website that offers free and paid essay-writing resources.

College essays and letters of recommendation , Sawyer says, are likely to carry more weight than ever in this admissions cycle. And many essays will likely focus on how the pandemic shaped students' lives throughout an often tumultuous 2020.

But before writing a college essay focused on the coronavirus, students should explore whether it's the best topic for them.

Writing About COVID-19 for a College Application

Much of daily life has been colored by the coronavirus. Virtual learning is the norm at many colleges and high schools, many extracurriculars have vanished and social lives have stalled for students complying with measures to stop the spread of COVID-19.

"For some young people, the pandemic took away what they envisioned as their senior year," says Robert Alexander, dean of admissions, financial aid and enrollment management at the University of Rochester in New York. "Maybe that's a spot on a varsity athletic team or the lead role in the fall play. And it's OK for them to mourn what should have been and what they feel like they lost, but more important is how are they making the most of the opportunities they do have?"

That question, Alexander says, is what colleges want answered if students choose to address COVID-19 in their college essay.

But the question of whether a student should write about the coronavirus is tricky. The answer depends largely on the student.

"In general, I don't think students should write about COVID-19 in their main personal statement for their application," Robin Miller, master college admissions counselor at IvyWise, a college counseling company, wrote in an email.

"Certainly, there may be exceptions to this based on a student's individual experience, but since the personal essay is the main place in the application where the student can really allow their voice to be heard and share insight into who they are as an individual, there are likely many other topics they can choose to write about that are more distinctive and unique than COVID-19," Miller says.

Opinions among admissions experts vary on whether to write about the likely popular topic of the pandemic.

"If your essay communicates something positive, unique, and compelling about you in an interesting and eloquent way, go for it," Carolyn Pippen, principal college admissions counselor at IvyWise, wrote in an email. She adds that students shouldn't be dissuaded from writing about a topic merely because it's common, noting that "topics are bound to repeat, no matter how hard we try to avoid it."

Above all, she urges honesty.

"If your experience within the context of the pandemic has been truly unique, then write about that experience, and the standing out will take care of itself," Pippen says. "If your experience has been generally the same as most other students in your context, then trying to find a unique angle can easily cross the line into exploiting a tragedy, or at least appearing as though you have."

But focusing entirely on the pandemic can limit a student to a single story and narrow who they are in an application, Sawyer says. "There are so many wonderful possibilities for what you can say about yourself outside of your experience within the pandemic."

He notes that passions, strengths, career interests and personal identity are among the multitude of essay topic options available to applicants and encourages them to probe their values to help determine the topic that matters most to them – and write about it.

That doesn't mean the pandemic experience has to be ignored if applicants feel the need to write about it.

Writing About Coronavirus in Main and Supplemental Essays

Students can choose to write a full-length college essay on the coronavirus or summarize their experience in a shorter form.

To help students explain how the pandemic affected them, The Common App has added an optional section to address this topic. Applicants have 250 words to describe their pandemic experience and the personal and academic impact of COVID-19.

"That's not a trick question, and there's no right or wrong answer," Alexander says. Colleges want to know, he adds, how students navigated the pandemic, how they prioritized their time, what responsibilities they took on and what they learned along the way.

If students can distill all of the above information into 250 words, there's likely no need to write about it in a full-length college essay, experts say. And applicants whose lives were not heavily altered by the pandemic may even choose to skip the optional COVID-19 question.

"This space is best used to discuss hardship and/or significant challenges that the student and/or the student's family experienced as a result of COVID-19 and how they have responded to those difficulties," Miller notes. Using the section to acknowledge a lack of impact, she adds, "could be perceived as trite and lacking insight, despite the good intentions of the applicant."

To guard against this lack of awareness, Sawyer encourages students to tap someone they trust to review their writing , whether it's the 250-word Common App response or the full-length essay.

Experts tend to agree that the short-form approach to this as an essay topic works better, but there are exceptions. And if a student does have a coronavirus story that he or she feels must be told, Alexander encourages the writer to be authentic in the essay.

"My advice for an essay about COVID-19 is the same as my advice about an essay for any topic – and that is, don't write what you think we want to read or hear," Alexander says. "Write what really changed you and that story that now is yours and yours alone to tell."

Sawyer urges students to ask themselves, "What's the sentence that only I can write?" He also encourages students to remember that the pandemic is only a chapter of their lives and not the whole book.

Miller, who cautions against writing a full-length essay on the coronavirus, says that if students choose to do so they should have a conversation with their high school counselor about whether that's the right move. And if students choose to proceed with COVID-19 as a topic, she says they need to be clear, detailed and insightful about what they learned and how they adapted along the way.

"Approaching the essay in this manner will provide important balance while demonstrating personal growth and vulnerability," Miller says.

Pippen encourages students to remember that they are in an unprecedented time for college admissions.

"It is important to keep in mind with all of these (admission) factors that no colleges have ever had to consider them this way in the selection process, if at all," Pippen says. "They have had very little time to calibrate their evaluations of different application components within their offices, let alone across institutions. This means that colleges will all be handling the admissions process a little bit differently, and their approaches may even evolve over the course of the admissions cycle."

Searching for a college? Get our complete rankings of Best Colleges.

10 Ways to Discover College Essay Ideas

Doing homework

Tags: students , colleges , college admissions , college applications , college search , Coronavirus

2024 Best Colleges

report essay about covid 19

Search for your perfect fit with the U.S. News rankings of colleges and universities.

College Admissions: Get a Step Ahead!

Sign up to receive the latest updates from U.S. News & World Report and our trusted partners and sponsors. By clicking submit, you are agreeing to our Terms and Conditions & Privacy Policy .

Ask an Alum: Making the Most Out of College

You May Also Like

States' responses to fafsa delays.

Sarah Wood May 30, 2024

report essay about covid 19

Nonacademic Factors in College Searches

Sarah Wood May 28, 2024

report essay about covid 19

Takeaways From the NCAA’s Settlement

Laura Mannweiler May 24, 2024

report essay about covid 19

New Best Engineering Rankings June 18

Robert Morse and Eric Brooks May 24, 2024

report essay about covid 19

Premedical Programs: What to Know

Sarah Wood May 21, 2024

report essay about covid 19

How Geography Affects College Admissions

Cole Claybourn May 21, 2024

report essay about covid 19

Q&A: College Alumni Engagement

LaMont Jones, Jr. May 20, 2024

report essay about covid 19

10 Destination West Coast College Towns

Cole Claybourn May 16, 2024

report essay about covid 19

Scholarships for Lesser-Known Sports

Sarah Wood May 15, 2024

report essay about covid 19

Should Students Submit Test Scores?

Sarah Wood May 13, 2024

report essay about covid 19

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 76, Issue 2
  • COVID-19 pandemic and its impact on social relationships and health
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0003-1512-4471 Emily Long 1 ,
  • Susan Patterson 1 ,
  • Karen Maxwell 1 ,
  • Carolyn Blake 1 ,
  • http://orcid.org/0000-0001-7342-4566 Raquel Bosó Pérez 1 ,
  • Ruth Lewis 1 ,
  • Mark McCann 1 ,
  • Julie Riddell 1 ,
  • Kathryn Skivington 1 ,
  • Rachel Wilson-Lowe 1 ,
  • http://orcid.org/0000-0002-4409-6601 Kirstin R Mitchell 2
  • 1 MRC/CSO Social and Public Health Sciences Unit , University of Glasgow , Glasgow , UK
  • 2 MRC/CSO Social and Public Health Sciences Unit, Institute of Health & Wellbeing , University of Glasgow , Glasgow , UK
  • Correspondence to Dr Emily Long, MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow G3 7HR, UK; emily.long{at}glasgow.ac.uk

This essay examines key aspects of social relationships that were disrupted by the COVID-19 pandemic. It focuses explicitly on relational mechanisms of health and brings together theory and emerging evidence on the effects of the COVID-19 pandemic to make recommendations for future public health policy and recovery. We first provide an overview of the pandemic in the UK context, outlining the nature of the public health response. We then introduce four distinct domains of social relationships: social networks, social support, social interaction and intimacy, highlighting the mechanisms through which the pandemic and associated public health response drastically altered social interactions in each domain. Throughout the essay, the lens of health inequalities, and perspective of relationships as interconnecting elements in a broader system, is used to explore the varying impact of these disruptions. The essay concludes by providing recommendations for longer term recovery ensuring that the social relational cost of COVID-19 is adequately considered in efforts to rebuild.

  • inequalities

Data availability statement

Data sharing not applicable as no data sets generated and/or analysed for this study. Data sharing not applicable as no data sets generated or analysed for this essay.

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/ .

https://doi.org/10.1136/jech-2021-216690

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Introduction

Infectious disease pandemics, including SARS and COVID-19, demand intrapersonal behaviour change and present highly complex challenges for public health. 1 A pandemic of an airborne infection, spread easily through social contact, assails human relationships by drastically altering the ways through which humans interact. In this essay, we draw on theories of social relationships to examine specific ways in which relational mechanisms key to health and well-being were disrupted by the COVID-19 pandemic. Relational mechanisms refer to the processes between people that lead to change in health outcomes.

At the time of writing, the future surrounding COVID-19 was uncertain. Vaccine programmes were being rolled out in countries that could afford them, but new and more contagious variants of the virus were also being discovered. The recovery journey looked long, with continued disruption to social relationships. The social cost of COVID-19 was only just beginning to emerge, but the mental health impact was already considerable, 2 3 and the inequality of the health burden stark. 4 Knowledge of the epidemiology of COVID-19 accrued rapidly, but evidence of the most effective policy responses remained uncertain.

The initial response to COVID-19 in the UK was reactive and aimed at reducing mortality, with little time to consider the social implications, including for interpersonal and community relationships. The terminology of ‘social distancing’ quickly became entrenched both in public and policy discourse. This equation of physical distance with social distance was regrettable, since only physical proximity causes viral transmission, whereas many forms of social proximity (eg, conversations while walking outdoors) are minimal risk, and are crucial to maintaining relationships supportive of health and well-being.

The aim of this essay is to explore four key relational mechanisms that were impacted by the pandemic and associated restrictions: social networks, social support, social interaction and intimacy. We use relational theories and emerging research on the effects of the COVID-19 pandemic response to make three key recommendations: one regarding public health responses; and two regarding social recovery. Our understanding of these mechanisms stems from a ‘systems’ perspective which casts social relationships as interdependent elements within a connected whole. 5

Social networks

Social networks characterise the individuals and social connections that compose a system (such as a workplace, community or society). Social relationships range from spouses and partners, to coworkers, friends and acquaintances. They vary across many dimensions, including, for example, frequency of contact and emotional closeness. Social networks can be understood both in terms of the individuals and relationships that compose the network, as well as the overall network structure (eg, how many of your friends know each other).

Social networks show a tendency towards homophily, or a phenomenon of associating with individuals who are similar to self. 6 This is particularly true for ‘core’ network ties (eg, close friends), while more distant, sometimes called ‘weak’ ties tend to show more diversity. During the height of COVID-19 restrictions, face-to-face interactions were often reduced to core network members, such as partners, family members or, potentially, live-in roommates; some ‘weak’ ties were lost, and interactions became more limited to those closest. Given that peripheral, weaker social ties provide a diversity of resources, opinions and support, 7 COVID-19 likely resulted in networks that were smaller and more homogenous.

Such changes were not inevitable nor necessarily enduring, since social networks are also adaptive and responsive to change, in that a disruption to usual ways of interacting can be replaced by new ways of engaging (eg, Zoom). Yet, important inequalities exist, wherein networks and individual relationships within networks are not equally able to adapt to such changes. For example, individuals with a large number of newly established relationships (eg, university students) may have struggled to transfer these relationships online, resulting in lost contacts and a heightened risk of social isolation. This is consistent with research suggesting that young adults were the most likely to report a worsening of relationships during COVID-19, whereas older adults were the least likely to report a change. 8

Lastly, social connections give rise to emergent properties of social systems, 9 where a community-level phenomenon develops that cannot be attributed to any one member or portion of the network. For example, local area-based networks emerged due to geographic restrictions (eg, stay-at-home orders), resulting in increases in neighbourly support and local volunteering. 10 In fact, research suggests that relationships with neighbours displayed the largest net gain in ratings of relationship quality compared with a range of relationship types (eg, partner, colleague, friend). 8 Much of this was built from spontaneous individual interactions within local communities, which together contributed to the ‘community spirit’ that many experienced. 11 COVID-19 restrictions thus impacted the personal social networks and the structure of the larger networks within the society.

Social support

Social support, referring to the psychological and material resources provided through social interaction, is a critical mechanism through which social relationships benefit health. In fact, social support has been shown to be one of the most important resilience factors in the aftermath of stressful events. 12 In the context of COVID-19, the usual ways in which individuals interact and obtain social support have been severely disrupted.

One such disruption has been to opportunities for spontaneous social interactions. For example, conversations with colleagues in a break room offer an opportunity for socialising beyond one’s core social network, and these peripheral conversations can provide a form of social support. 13 14 A chance conversation may lead to advice helpful to coping with situations or seeking formal help. Thus, the absence of these spontaneous interactions may mean the reduction of indirect support-seeking opportunities. While direct support-seeking behaviour is more effective at eliciting support, it also requires significantly more effort and may be perceived as forceful and burdensome. 15 The shift to homeworking and closure of community venues reduced the number of opportunities for these spontaneous interactions to occur, and has, second, focused them locally. Consequently, individuals whose core networks are located elsewhere, or who live in communities where spontaneous interaction is less likely, have less opportunity to benefit from spontaneous in-person supportive interactions.

However, alongside this disruption, new opportunities to interact and obtain social support have arisen. The surge in community social support during the initial lockdown mirrored that often seen in response to adverse events (eg, natural disasters 16 ). COVID-19 restrictions that confined individuals to their local area also compelled them to focus their in-person efforts locally. Commentators on the initial lockdown in the UK remarked on extraordinary acts of generosity between individuals who belonged to the same community but were unknown to each other. However, research on adverse events also tells us that such community support is not necessarily maintained in the longer term. 16

Meanwhile, online forms of social support are not bound by geography, thus enabling interactions and social support to be received from a wider network of people. Formal online social support spaces (eg, support groups) existed well before COVID-19, but have vastly increased since. While online interactions can increase perceived social support, it is unclear whether remote communication technologies provide an effective substitute from in-person interaction during periods of social distancing. 17 18 It makes intuitive sense that the usefulness of online social support will vary by the type of support offered, degree of social interaction and ‘online communication skills’ of those taking part. Youth workers, for instance, have struggled to keep vulnerable youth engaged in online youth clubs, 19 despite others finding a positive association between amount of digital technology used by individuals during lockdown and perceived social support. 20 Other research has found that more frequent face-to-face contact and phone/video contact both related to lower levels of depression during the time period of March to August 2020, but the negative effect of a lack of contact was greater for those with higher levels of usual sociability. 21 Relatedly, important inequalities in social support exist, such that individuals who occupy more socially disadvantaged positions in society (eg, low socioeconomic status, older people) tend to have less access to social support, 22 potentially exacerbated by COVID-19.

Social and interactional norms

Interactional norms are key relational mechanisms which build trust, belonging and identity within and across groups in a system. Individuals in groups and societies apply meaning by ‘approving, arranging and redefining’ symbols of interaction. 23 A handshake, for instance, is a powerful symbol of trust and equality. Depending on context, not shaking hands may symbolise a failure to extend friendship, or a failure to reach agreement. The norms governing these symbols represent shared values and identity; and mutual understanding of these symbols enables individuals to achieve orderly interactions, establish supportive relationship accountability and connect socially. 24 25

Physical distancing measures to contain the spread of COVID-19 radically altered these norms of interaction, particularly those used to convey trust, affinity, empathy and respect (eg, hugging, physical comforting). 26 As epidemic waves rose and fell, the work to negotiate these norms required intense cognitive effort; previously taken-for-granted interactions were re-examined, factoring in current restriction levels, own and (assumed) others’ vulnerability and tolerance of risk. This created awkwardness, and uncertainty, for example, around how to bring closure to an in-person interaction or convey warmth. The instability in scripted ways of interacting created particular strain for individuals who already struggled to encode and decode interactions with others (eg, those who are deaf or have autism spectrum disorder); difficulties often intensified by mask wearing. 27

Large social gatherings—for example, weddings, school assemblies, sporting events—also present key opportunities for affirming and assimilating interactional norms, building cohesion and shared identity and facilitating cooperation across social groups. 28 Online ‘equivalents’ do not easily support ‘social-bonding’ activities such as singing and dancing, and rarely enable chance/spontaneous one-on-one conversations with peripheral/weaker network ties (see the Social networks section) which can help strengthen bonds across a larger network. The loss of large gatherings to celebrate rites of passage (eg, bar mitzvah, weddings) has additional relational costs since these events are performed by and for communities to reinforce belonging, and to assist in transitioning to new phases of life. 29 The loss of interaction with diverse others via community and large group gatherings also reduces intergroup contact, which may then tend towards more prejudiced outgroup attitudes. While online interaction can go some way to mimicking these interaction norms, there are key differences. A sense of anonymity, and lack of in-person emotional cues, tends to support norms of polarisation and aggression in expressing differences of opinion online. And while online platforms have potential to provide intergroup contact, the tendency of much social media to form homogeneous ‘echo chambers’ can serve to further reduce intergroup contact. 30 31

Intimacy relates to the feeling of emotional connection and closeness with other human beings. Emotional connection, through romantic, friendship or familial relationships, fulfils a basic human need 32 and strongly benefits health, including reduced stress levels, improved mental health, lowered blood pressure and reduced risk of heart disease. 32 33 Intimacy can be fostered through familiarity, feeling understood and feeling accepted by close others. 34

Intimacy via companionship and closeness is fundamental to mental well-being. Positively, the COVID-19 pandemic has offered opportunities for individuals to (re)connect and (re)strengthen close relationships within their household via quality time together, following closure of many usual external social activities. Research suggests that the first full UK lockdown period led to a net gain in the quality of steady relationships at a population level, 35 but amplified existing inequalities in relationship quality. 35 36 For some in single-person households, the absence of a companion became more conspicuous, leading to feelings of loneliness and lower mental well-being. 37 38 Additional pandemic-related relational strain 39 40 resulted, for some, in the initiation or intensification of domestic abuse. 41 42

Physical touch is another key aspect of intimacy, a fundamental human need crucial in maintaining and developing intimacy within close relationships. 34 Restrictions on social interactions severely restricted the number and range of people with whom physical affection was possible. The reduction in opportunity to give and receive affectionate physical touch was not experienced equally. Many of those living alone found themselves completely without physical contact for extended periods. The deprivation of physical touch is evidenced to take a heavy emotional toll. 43 Even in future, once physical expressions of affection can resume, new levels of anxiety over germs may introduce hesitancy into previously fluent blending of physical and verbal intimate social connections. 44

The pandemic also led to shifts in practices and norms around sexual relationship building and maintenance, as individuals adapted and sought alternative ways of enacting sexual intimacy. This too is important, given that intimate sexual activity has known benefits for health. 45 46 Given that social restrictions hinged on reducing household mixing, possibilities for partnered sexual activity were primarily guided by living arrangements. While those in cohabiting relationships could potentially continue as before, those who were single or in non-cohabiting relationships generally had restricted opportunities to maintain their sexual relationships. Pornography consumption and digital partners were reported to increase since lockdown. 47 However, online interactions are qualitatively different from in-person interactions and do not provide the same opportunities for physical intimacy.

Recommendations and conclusions

In the sections above we have outlined the ways in which COVID-19 has impacted social relationships, showing how relational mechanisms key to health have been undermined. While some of the damage might well self-repair after the pandemic, there are opportunities inherent in deliberative efforts to build back in ways that facilitate greater resilience in social and community relationships. We conclude by making three recommendations: one regarding public health responses to the pandemic; and two regarding social recovery.

Recommendation 1: explicitly count the relational cost of public health policies to control the pandemic

Effective handling of a pandemic recognises that social, economic and health concerns are intricately interwoven. It is clear that future research and policy attention must focus on the social consequences. As described above, policies which restrict physical mixing across households carry heavy and unequal relational costs. These include for individuals (eg, loss of intimate touch), dyads (eg, loss of warmth, comfort), networks (eg, restricted access to support) and communities (eg, loss of cohesion and identity). Such costs—and their unequal impact—should not be ignored in short-term efforts to control an epidemic. Some public health responses—restrictions on international holiday travel and highly efficient test and trace systems—have relatively small relational costs and should be prioritised. At a national level, an earlier move to proportionate restrictions, and investment in effective test and trace systems, may help prevent escalation of spread to the point where a national lockdown or tight restrictions became an inevitability. Where policies with relational costs are unavoidable, close attention should be paid to the unequal relational impact for those whose personal circumstances differ from normative assumptions of two adult families. This includes consideration of whether expectations are fair (eg, for those who live alone), whether restrictions on social events are equitable across age group, religious/ethnic groupings and social class, and also to ensure that the language promoted by such policies (eg, households; families) is not exclusionary. 48 49 Forethought to unequal impacts on social relationships should thus be integral to the work of epidemic preparedness teams.

Recommendation 2: intelligently balance online and offline ways of relating

A key ingredient for well-being is ‘getting together’ in a physical sense. This is fundamental to a human need for intimate touch, physical comfort, reinforcing interactional norms and providing practical support. Emerging evidence suggests that online ways of relating cannot simply replace physical interactions. But online interaction has many benefits and for some it offers connections that did not exist previously. In particular, online platforms provide new forms of support for those unable to access offline services because of mobility issues (eg, older people) or because they are geographically isolated from their support community (eg, lesbian, gay, bisexual, transgender and queer (LGBTQ) youth). Ultimately, multiple forms of online and offline social interactions are required to meet the needs of varying groups of people (eg, LGBTQ, older people). Future research and practice should aim to establish ways of using offline and online support in complementary and even synergistic ways, rather than veering between them as social restrictions expand and contract. Intelligent balancing of online and offline ways of relating also pertains to future policies on home and flexible working. A decision to switch to wholesale or obligatory homeworking should consider the risk to relational ‘group properties’ of the workplace community and their impact on employees’ well-being, focusing in particular on unequal impacts (eg, new vs established employees). Intelligent blending of online and in-person working is required to achieve flexibility while also nurturing supportive networks at work. Intelligent balance also implies strategies to build digital literacy and minimise digital exclusion, as well as coproducing solutions with intended beneficiaries.

Recommendation 3: build stronger and sustainable localised communities

In balancing offline and online ways of interacting, there is opportunity to capitalise on the potential for more localised, coherent communities due to scaled-down travel, homeworking and local focus that will ideally continue after restrictions end. There are potential economic benefits after the pandemic, such as increased trade as home workers use local resources (eg, coffee shops), but also relational benefits from stronger relationships around the orbit of the home and neighbourhood. Experience from previous crises shows that community volunteer efforts generated early on will wane over time in the absence of deliberate work to maintain them. Adequately funded partnerships between local government, third sector and community groups are required to sustain community assets that began as a direct response to the pandemic. Such partnerships could work to secure green spaces and indoor (non-commercial) meeting spaces that promote community interaction. Green spaces in particular provide a triple benefit in encouraging physical activity and mental health, as well as facilitating social bonding. 50 In building local communities, small community networks—that allow for diversity and break down ingroup/outgroup views—may be more helpful than the concept of ‘support bubbles’, which are exclusionary and less sustainable in the longer term. Rigorously designed intervention and evaluation—taking a systems approach—will be crucial in ensuring scale-up and sustainability.

The dramatic change to social interaction necessitated by efforts to control the spread of COVID-19 created stark challenges but also opportunities. Our essay highlights opportunities for learning, both to ensure the equity and humanity of physical restrictions, and to sustain the salutogenic effects of social relationships going forward. The starting point for capitalising on this learning is recognition of the disruption to relational mechanisms as a key part of the socioeconomic and health impact of the pandemic. In recovery planning, a general rule is that what is good for decreasing health inequalities (such as expanding social protection and public services and pursuing green inclusive growth strategies) 4 will also benefit relationships and safeguard relational mechanisms for future generations. Putting this into action will require political will.

Ethics statements

Patient consent for publication.

Not required.

  • Office for National Statistics (ONS)
  • Ford T , et al
  • Riordan R ,
  • Ford J , et al
  • Glonti K , et al
  • McPherson JM ,
  • Smith-Lovin L
  • Granovetter MS
  • Fancourt D et al
  • Stadtfeld C
  • Office for Civil Society
  • Cook J et al
  • Rodriguez-Llanes JM ,
  • Guha-Sapir D
  • Patulny R et al
  • Granovetter M
  • Winkeler M ,
  • Filipp S-H ,
  • Kaniasty K ,
  • de Terte I ,
  • Guilaran J , et al
  • Wright KB ,
  • Martin J et al
  • Gabbiadini A ,
  • Baldissarri C ,
  • Durante F , et al
  • Sommerlad A ,
  • Marston L ,
  • Huntley J , et al
  • Turner RJ ,
  • Bicchieri C
  • Brennan G et al
  • Watson-Jones RE ,
  • Amichai-Hamburger Y ,
  • McKenna KYA
  • Page-Gould E ,
  • Aron A , et al
  • Pietromonaco PR ,
  • Timmerman GM
  • Bradbury-Jones C ,
  • Mikocka-Walus A ,
  • Klas A , et al
  • Marshall L ,
  • Steptoe A ,
  • Stanley SM ,
  • Campbell AM
  • ↵ (ONS), O.f.N.S., Domestic abuse during the coronavirus (COVID-19) pandemic, England and Wales . Available: https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/articles/domesticabuseduringthecoronaviruscovid19pandemicenglandandwales/november2020
  • Rosenberg M ,
  • Hensel D , et al
  • Banerjee D ,
  • Bruner DW , et al
  • Bavel JJV ,
  • Baicker K ,
  • Boggio PS , et al
  • van Barneveld K ,
  • Quinlan M ,
  • Kriesler P , et al
  • Mitchell R ,
  • de Vries S , et al

Twitter @karenmaxSPHSU, @Mark_McCann, @Rwilsonlowe, @KMitchinGlasgow

Contributors EL and KM led on the manuscript conceptualisation, review and editing. SP, KM, CB, RBP, RL, MM, JR, KS and RW-L contributed to drafting and revising the article. All authors assisted in revising the final draft.

Funding The research reported in this publication was supported by the Medical Research Council (MC_UU_00022/1, MC_UU_00022/3) and the Chief Scientist Office (SPHSU11, SPHSU14). EL is also supported by MRC Skills Development Fellowship Award (MR/S015078/1). KS and MM are also supported by a Medical Research Council Strategic Award (MC_PC_13027).

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Read the full text or download the PDF:

  • Research article
  • Open access
  • Published: 04 June 2021

Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews

  • Israel Júnior Borges do Nascimento 1 , 2 ,
  • Dónal P. O’Mathúna 3 , 4 ,
  • Thilo Caspar von Groote 5 ,
  • Hebatullah Mohamed Abdulazeem 6 ,
  • Ishanka Weerasekara 7 , 8 ,
  • Ana Marusic 9 ,
  • Livia Puljak   ORCID: orcid.org/0000-0002-8467-6061 10 ,
  • Vinicius Tassoni Civile 11 ,
  • Irena Zakarija-Grkovic 9 ,
  • Tina Poklepovic Pericic 9 ,
  • Alvaro Nagib Atallah 11 ,
  • Santino Filoso 12 ,
  • Nicola Luigi Bragazzi 13 &
  • Milena Soriano Marcolino 1

On behalf of the International Network of Coronavirus Disease 2019 (InterNetCOVID-19)

BMC Infectious Diseases volume  21 , Article number:  525 ( 2021 ) Cite this article

16k Accesses

29 Citations

13 Altmetric

Metrics details

Navigating the rapidly growing body of scientific literature on the SARS-CoV-2 pandemic is challenging, and ongoing critical appraisal of this output is essential. We aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic.

Nine databases (Medline, EMBASE, Cochrane Library, CINAHL, Web of Sciences, PDQ-Evidence, WHO’s Global Research, LILACS, and Epistemonikos) were searched from December 1, 2019, to March 24, 2020. Systematic reviews analyzing primary studies of COVID-19 were included. Two authors independently undertook screening, selection, extraction (data on clinical symptoms, prevalence, pharmacological and non-pharmacological interventions, diagnostic test assessment, laboratory, and radiological findings), and quality assessment (AMSTAR 2). A meta-analysis was performed of the prevalence of clinical outcomes.

Eighteen systematic reviews were included; one was empty (did not identify any relevant study). Using AMSTAR 2, confidence in the results of all 18 reviews was rated as “critically low”. Identified symptoms of COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%) and gastrointestinal complaints (5–9%). Severe symptoms were more common in men. Elevated C-reactive protein and lactate dehydrogenase, and slightly elevated aspartate and alanine aminotransferase, were commonly described. Thrombocytopenia and elevated levels of procalcitonin and cardiac troponin I were associated with severe disease. A frequent finding on chest imaging was uni- or bilateral multilobar ground-glass opacity. A single review investigated the impact of medication (chloroquine) but found no verifiable clinical data. All-cause mortality ranged from 0.3 to 13.9%.

Conclusions

In this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic were of questionable usefulness. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards.

Peer Review reports

The spread of the “Severe Acute Respiratory Coronavirus 2” (SARS-CoV-2), the causal agent of COVID-19, was characterized as a pandemic by the World Health Organization (WHO) in March 2020 and has triggered an international public health emergency [ 1 ]. The numbers of confirmed cases and deaths due to COVID-19 are rapidly escalating, counting in millions [ 2 ], causing massive economic strain, and escalating healthcare and public health expenses [ 3 , 4 ].

The research community has responded by publishing an impressive number of scientific reports related to COVID-19. The world was alerted to the new disease at the beginning of 2020 [ 1 ], and by mid-March 2020, more than 2000 articles had been published on COVID-19 in scholarly journals, with 25% of them containing original data [ 5 ]. The living map of COVID-19 evidence, curated by the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre), contained more than 40,000 records by February 2021 [ 6 ]. More than 100,000 records on PubMed were labeled as “SARS-CoV-2 literature, sequence, and clinical content” by February 2021 [ 7 ].

Due to publication speed, the research community has voiced concerns regarding the quality and reproducibility of evidence produced during the COVID-19 pandemic, warning of the potential damaging approach of “publish first, retract later” [ 8 ]. It appears that these concerns are not unfounded, as it has been reported that COVID-19 articles were overrepresented in the pool of retracted articles in 2020 [ 9 ]. These concerns about inadequate evidence are of major importance because they can lead to poor clinical practice and inappropriate policies [ 10 ].

Systematic reviews are a cornerstone of today’s evidence-informed decision-making. By synthesizing all relevant evidence regarding a particular topic, systematic reviews reflect the current scientific knowledge. Systematic reviews are considered to be at the highest level in the hierarchy of evidence and should be used to make informed decisions. However, with high numbers of systematic reviews of different scope and methodological quality being published, overviews of multiple systematic reviews that assess their methodological quality are essential [ 11 , 12 , 13 ]. An overview of systematic reviews helps identify and organize the literature and highlights areas of priority in decision-making.

In this overview of systematic reviews, we aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic.

Methodology

Research question.

This overview’s primary objective was to summarize and critically appraise systematic reviews that assessed any type of primary clinical data from patients infected with SARS-CoV-2. Our research question was purposefully broad because we wanted to analyze as many systematic reviews as possible that were available early following the COVID-19 outbreak.

Study design

We conducted an overview of systematic reviews. The idea for this overview originated in a protocol for a systematic review submitted to PROSPERO (CRD42020170623), which indicated a plan to conduct an overview.

Overviews of systematic reviews use explicit and systematic methods for searching and identifying multiple systematic reviews addressing related research questions in the same field to extract and analyze evidence across important outcomes. Overviews of systematic reviews are in principle similar to systematic reviews of interventions, but the unit of analysis is a systematic review [ 14 , 15 , 16 ].

We used the overview methodology instead of other evidence synthesis methods to allow us to collate and appraise multiple systematic reviews on this topic, and to extract and analyze their results across relevant topics [ 17 ]. The overview and meta-analysis of systematic reviews allowed us to investigate the methodological quality of included studies, summarize results, and identify specific areas of available or limited evidence, thereby strengthening the current understanding of this novel disease and guiding future research [ 13 ].

A reporting guideline for overviews of reviews is currently under development, i.e., Preferred Reporting Items for Overviews of Reviews (PRIOR) [ 18 ]. As the PRIOR checklist is still not published, this study was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 statement [ 19 ]. The methodology used in this review was adapted from the Cochrane Handbook for Systematic Reviews of Interventions and also followed established methodological considerations for analyzing existing systematic reviews [ 14 ].

Approval of a research ethics committee was not necessary as the study analyzed only publicly available articles.

Eligibility criteria

Systematic reviews were included if they analyzed primary data from patients infected with SARS-CoV-2 as confirmed by RT-PCR or another pre-specified diagnostic technique. Eligible reviews covered all topics related to COVID-19 including, but not limited to, those that reported clinical symptoms, diagnostic methods, therapeutic interventions, laboratory findings, or radiological results. Both full manuscripts and abbreviated versions, such as letters, were eligible.

No restrictions were imposed on the design of the primary studies included within the systematic reviews, the last search date, whether the review included meta-analyses or language. Reviews related to SARS-CoV-2 and other coronaviruses were eligible, but from those reviews, we analyzed only data related to SARS-CoV-2.

No consensus definition exists for a systematic review [ 20 ], and debates continue about the defining characteristics of a systematic review [ 21 ]. Cochrane’s guidance for overviews of reviews recommends setting pre-established criteria for making decisions around inclusion [ 14 ]. That is supported by a recent scoping review about guidance for overviews of systematic reviews [ 22 ].

Thus, for this study, we defined a systematic review as a research report which searched for primary research studies on a specific topic using an explicit search strategy, had a detailed description of the methods with explicit inclusion criteria provided, and provided a summary of the included studies either in narrative or quantitative format (such as a meta-analysis). Cochrane and non-Cochrane systematic reviews were considered eligible for inclusion, with or without meta-analysis, and regardless of the study design, language restriction and methodology of the included primary studies. To be eligible for inclusion, reviews had to be clearly analyzing data related to SARS-CoV-2 (associated or not with other viruses). We excluded narrative reviews without those characteristics as these are less likely to be replicable and are more prone to bias.

Scoping reviews and rapid reviews were eligible for inclusion in this overview if they met our pre-defined inclusion criteria noted above. We included reviews that addressed SARS-CoV-2 and other coronaviruses if they reported separate data regarding SARS-CoV-2.

Information sources

Nine databases were searched for eligible records published between December 1, 2019, and March 24, 2020: Cochrane Database of Systematic Reviews via Cochrane Library, PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Web of Sciences, LILACS (Latin American and Caribbean Health Sciences Literature), PDQ-Evidence, WHO’s Global Research on Coronavirus Disease (COVID-19), and Epistemonikos.

The comprehensive search strategy for each database is provided in Additional file 1 and was designed and conducted in collaboration with an information specialist. All retrieved records were primarily processed in EndNote, where duplicates were removed, and records were then imported into the Covidence platform [ 23 ]. In addition to database searches, we screened reference lists of reviews included after screening records retrieved via databases.

Study selection

All searches, screening of titles and abstracts, and record selection, were performed independently by two investigators using the Covidence platform [ 23 ]. Articles deemed potentially eligible were retrieved for full-text screening carried out independently by two investigators. Discrepancies at all stages were resolved by consensus. During the screening, records published in languages other than English were translated by a native/fluent speaker.

Data collection process

We custom designed a data extraction table for this study, which was piloted by two authors independently. Data extraction was performed independently by two authors. Conflicts were resolved by consensus or by consulting a third researcher.

We extracted the following data: article identification data (authors’ name and journal of publication), search period, number of databases searched, population or settings considered, main results and outcomes observed, and number of participants. From Web of Science (Clarivate Analytics, Philadelphia, PA, USA), we extracted journal rank (quartile) and Journal Impact Factor (JIF).

We categorized the following as primary outcomes: all-cause mortality, need for and length of mechanical ventilation, length of hospitalization (in days), admission to intensive care unit (yes/no), and length of stay in the intensive care unit.

The following outcomes were categorized as exploratory: diagnostic methods used for detection of the virus, male to female ratio, clinical symptoms, pharmacological and non-pharmacological interventions, laboratory findings (full blood count, liver enzymes, C-reactive protein, d-dimer, albumin, lipid profile, serum electrolytes, blood vitamin levels, glucose levels, and any other important biomarkers), and radiological findings (using radiography, computed tomography, magnetic resonance imaging or ultrasound).

We also collected data on reporting guidelines and requirements for the publication of systematic reviews and meta-analyses from journal websites where included reviews were published.

Quality assessment in individual reviews

Two researchers independently assessed the reviews’ quality using the “A MeaSurement Tool to Assess Systematic Reviews 2 (AMSTAR 2)”. We acknowledge that the AMSTAR 2 was created as “a critical appraisal tool for systematic reviews that include randomized or non-randomized studies of healthcare interventions, or both” [ 24 ]. However, since AMSTAR 2 was designed for systematic reviews of intervention trials, and we included additional types of systematic reviews, we adjusted some AMSTAR 2 ratings and reported these in Additional file 2 .

Adherence to each item was rated as follows: yes, partial yes, no, or not applicable (such as when a meta-analysis was not conducted). The overall confidence in the results of the review is rated as “critically low”, “low”, “moderate” or “high”, according to the AMSTAR 2 guidance based on seven critical domains, which are items 2, 4, 7, 9, 11, 13, 15 as defined by AMSTAR 2 authors [ 24 ]. We reported our adherence ratings for transparency of our decision with accompanying explanations, for each item, in each included review.

One of the included systematic reviews was conducted by some members of this author team [ 25 ]. This review was initially assessed independently by two authors who were not co-authors of that review to prevent the risk of bias in assessing this study.

Synthesis of results

For data synthesis, we prepared a table summarizing each systematic review. Graphs illustrating the mortality rate and clinical symptoms were created. We then prepared a narrative summary of the methods, findings, study strengths, and limitations.

For analysis of the prevalence of clinical outcomes, we extracted data on the number of events and the total number of patients to perform proportional meta-analysis using RStudio© software, with the “meta” package (version 4.9–6), using the “metaprop” function for reviews that did not perform a meta-analysis, excluding case studies because of the absence of variance. For reviews that did not perform a meta-analysis, we presented pooled results of proportions with their respective confidence intervals (95%) by the inverse variance method with a random-effects model, using the DerSimonian-Laird estimator for τ 2 . We adjusted data using Freeman-Tukey double arcosen transformation. Confidence intervals were calculated using the Clopper-Pearson method for individual studies. We created forest plots using the RStudio© software, with the “metafor” package (version 2.1–0) and “forest” function.

Managing overlapping systematic reviews

Some of the included systematic reviews that address the same or similar research questions may include the same primary studies in overviews. Including such overlapping reviews may introduce bias when outcome data from the same primary study are included in the analyses of an overview multiple times. Thus, in summaries of evidence, multiple-counting of the same outcome data will give data from some primary studies too much influence [ 14 ]. In this overview, we did not exclude overlapping systematic reviews because, according to Cochrane’s guidance, it may be appropriate to include all relevant reviews’ results if the purpose of the overview is to present and describe the current body of evidence on a topic [ 14 ]. To avoid any bias in summary estimates associated with overlapping reviews, we generated forest plots showing data from individual systematic reviews, but the results were not pooled because some primary studies were included in multiple reviews.

Our search retrieved 1063 publications, of which 175 were duplicates. Most publications were excluded after the title and abstract analysis ( n = 860). Among the 28 studies selected for full-text screening, 10 were excluded for the reasons described in Additional file 3 , and 18 were included in the final analysis (Fig. 1 ) [ 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 ]. Reference list screening did not retrieve any additional systematic reviews.

figure 1

PRISMA flow diagram

Characteristics of included reviews

Summary features of 18 systematic reviews are presented in Table 1 . They were published in 14 different journals. Only four of these journals had specific requirements for systematic reviews (with or without meta-analysis): European Journal of Internal Medicine, Journal of Clinical Medicine, Ultrasound in Obstetrics and Gynecology, and Clinical Research in Cardiology . Two journals reported that they published only invited reviews ( Journal of Medical Virology and Clinica Chimica Acta ). Three systematic reviews in our study were published as letters; one was labeled as a scoping review and another as a rapid review (Table 2 ).

All reviews were published in English, in first quartile (Q1) journals, with JIF ranging from 1.692 to 6.062. One review was empty, meaning that its search did not identify any relevant studies; i.e., no primary studies were included [ 36 ]. The remaining 17 reviews included 269 unique studies; the majority ( N = 211; 78%) were included in only a single review included in our study (range: 1 to 12). Primary studies included in the reviews were published between December 2019 and March 18, 2020, and comprised case reports, case series, cohorts, and other observational studies. We found only one review that included randomized clinical trials [ 38 ]. In the included reviews, systematic literature searches were performed from 2019 (entire year) up to March 9, 2020. Ten systematic reviews included meta-analyses. The list of primary studies found in the included systematic reviews is shown in Additional file 4 , as well as the number of reviews in which each primary study was included.

Population and study designs

Most of the reviews analyzed data from patients with COVID-19 who developed pneumonia, acute respiratory distress syndrome (ARDS), or any other correlated complication. One review aimed to evaluate the effectiveness of using surgical masks on preventing transmission of the virus [ 36 ], one review was focused on pediatric patients [ 34 ], and one review investigated COVID-19 in pregnant women [ 37 ]. Most reviews assessed clinical symptoms, laboratory findings, or radiological results.

Systematic review findings

The summary of findings from individual reviews is shown in Table 2 . Overall, all-cause mortality ranged from 0.3 to 13.9% (Fig. 2 ).

figure 2

A meta-analysis of the prevalence of mortality

Clinical symptoms

Seven reviews described the main clinical manifestations of COVID-19 [ 26 , 28 , 29 , 34 , 35 , 39 , 41 ]. Three of them provided only a narrative discussion of symptoms [ 26 , 34 , 35 ]. In the reviews that performed a statistical analysis of the incidence of different clinical symptoms, symptoms in patients with COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%), gastrointestinal disorders, such as diarrhea, nausea or vomiting (5.0–9.0%), and others (including, in one study only: dizziness 12.1%) (Figs. 3 , 4 , 5 , 6 , 7 , 8 and 9 ). Three reviews assessed cough with and without sputum together; only one review assessed sputum production itself (28.5%).

figure 3

A meta-analysis of the prevalence of fever

figure 4

A meta-analysis of the prevalence of cough

figure 5

A meta-analysis of the prevalence of dyspnea

figure 6

A meta-analysis of the prevalence of fatigue or myalgia

figure 7

A meta-analysis of the prevalence of headache

figure 8

A meta-analysis of the prevalence of gastrointestinal disorders

figure 9

A meta-analysis of the prevalence of sore throat

Diagnostic aspects

Three reviews described methodologies, protocols, and tools used for establishing the diagnosis of COVID-19 [ 26 , 34 , 38 ]. The use of respiratory swabs (nasal or pharyngeal) or blood specimens to assess the presence of SARS-CoV-2 nucleic acid using RT-PCR assays was the most commonly used diagnostic method mentioned in the included studies. These diagnostic tests have been widely used, but their precise sensitivity and specificity remain unknown. One review included a Chinese study with clinical diagnosis with no confirmation of SARS-CoV-2 infection (patients were diagnosed with COVID-19 if they presented with at least two symptoms suggestive of COVID-19, together with laboratory and chest radiography abnormalities) [ 34 ].

Therapeutic possibilities

Pharmacological and non-pharmacological interventions (supportive therapies) used in treating patients with COVID-19 were reported in five reviews [ 25 , 27 , 34 , 35 , 38 ]. Antivirals used empirically for COVID-19 treatment were reported in seven reviews [ 25 , 27 , 34 , 35 , 37 , 38 , 41 ]; most commonly used were protease inhibitors (lopinavir, ritonavir, darunavir), nucleoside reverse transcriptase inhibitor (tenofovir), nucleotide analogs (remdesivir, galidesivir, ganciclovir), and neuraminidase inhibitors (oseltamivir). Umifenovir, a membrane fusion inhibitor, was investigated in two studies [ 25 , 35 ]. Possible supportive interventions analyzed were different types of oxygen supplementation and breathing support (invasive or non-invasive ventilation) [ 25 ]. The use of antibiotics, both empirically and to treat secondary pneumonia, was reported in six studies [ 25 , 26 , 27 , 34 , 35 , 38 ]. One review specifically assessed evidence on the efficacy and safety of the anti-malaria drug chloroquine [ 27 ]. It identified 23 ongoing trials investigating the potential of chloroquine as a therapeutic option for COVID-19, but no verifiable clinical outcomes data. The use of mesenchymal stem cells, antifungals, and glucocorticoids were described in four reviews [ 25 , 34 , 35 , 38 ].

Laboratory and radiological findings

Of the 18 reviews included in this overview, eight analyzed laboratory parameters in patients with COVID-19 [ 25 , 29 , 30 , 32 , 33 , 34 , 35 , 39 ]; elevated C-reactive protein levels, associated with lymphocytopenia, elevated lactate dehydrogenase, as well as slightly elevated aspartate and alanine aminotransferase (AST, ALT) were commonly described in those eight reviews. Lippi et al. assessed cardiac troponin I (cTnI) [ 25 ], procalcitonin [ 32 ], and platelet count [ 33 ] in COVID-19 patients. Elevated levels of procalcitonin [ 32 ] and cTnI [ 30 ] were more likely to be associated with a severe disease course (requiring intensive care unit admission and intubation). Furthermore, thrombocytopenia was frequently observed in patients with complicated COVID-19 infections [ 33 ].

Chest imaging (chest radiography and/or computed tomography) features were assessed in six reviews, all of which described a frequent pattern of local or bilateral multilobar ground-glass opacity [ 25 , 34 , 35 , 39 , 40 , 41 ]. Those six reviews showed that septal thickening, bronchiectasis, pleural and cardiac effusions, halo signs, and pneumothorax were observed in patients suffering from COVID-19.

Quality of evidence in individual systematic reviews

Table 3 shows the detailed results of the quality assessment of 18 systematic reviews, including the assessment of individual items and summary assessment. A detailed explanation for each decision in each review is available in Additional file 5 .

Using AMSTAR 2 criteria, confidence in the results of all 18 reviews was rated as “critically low” (Table 3 ). Common methodological drawbacks were: omission of prospective protocol submission or publication; use of inappropriate search strategy: lack of independent and dual literature screening and data-extraction (or methodology unclear); absence of an explanation for heterogeneity among the studies included; lack of reasons for study exclusion (or rationale unclear).

Risk of bias assessment, based on a reported methodological tool, and quality of evidence appraisal, in line with the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method, were reported only in one review [ 25 ]. Five reviews presented a table summarizing bias, using various risk of bias tools [ 25 , 29 , 39 , 40 , 41 ]. One review analyzed “study quality” [ 37 ]. One review mentioned the risk of bias assessment in the methodology but did not provide any related analysis [ 28 ].

This overview of systematic reviews analyzed the first 18 systematic reviews published after the onset of the COVID-19 pandemic, up to March 24, 2020, with primary studies involving more than 60,000 patients. Using AMSTAR-2, we judged that our confidence in all those reviews was “critically low”. Ten reviews included meta-analyses. The reviews presented data on clinical manifestations, laboratory and radiological findings, and interventions. We found no systematic reviews on the utility of diagnostic tests.

Symptoms were reported in seven reviews; most of the patients had a fever, cough, dyspnea, myalgia or muscle fatigue, and gastrointestinal disorders such as diarrhea, nausea, or vomiting. Olfactory dysfunction (anosmia or dysosmia) has been described in patients infected with COVID-19 [ 43 ]; however, this was not reported in any of the reviews included in this overview. During the SARS outbreak in 2002, there were reports of impairment of the sense of smell associated with the disease [ 44 , 45 ].

The reported mortality rates ranged from 0.3 to 14% in the included reviews. Mortality estimates are influenced by the transmissibility rate (basic reproduction number), availability of diagnostic tools, notification policies, asymptomatic presentations of the disease, resources for disease prevention and control, and treatment facilities; variability in the mortality rate fits the pattern of emerging infectious diseases [ 46 ]. Furthermore, the reported cases did not consider asymptomatic cases, mild cases where individuals have not sought medical treatment, and the fact that many countries had limited access to diagnostic tests or have implemented testing policies later than the others. Considering the lack of reviews assessing diagnostic testing (sensitivity, specificity, and predictive values of RT-PCT or immunoglobulin tests), and the preponderance of studies that assessed only symptomatic individuals, considerable imprecision around the calculated mortality rates existed in the early stage of the COVID-19 pandemic.

Few reviews included treatment data. Those reviews described studies considered to be at a very low level of evidence: usually small, retrospective studies with very heterogeneous populations. Seven reviews analyzed laboratory parameters; those reviews could have been useful for clinicians who attend patients suspected of COVID-19 in emergency services worldwide, such as assessing which patients need to be reassessed more frequently.

All systematic reviews scored poorly on the AMSTAR 2 critical appraisal tool for systematic reviews. Most of the original studies included in the reviews were case series and case reports, impacting the quality of evidence. Such evidence has major implications for clinical practice and the use of these reviews in evidence-based practice and policy. Clinicians, patients, and policymakers can only have the highest confidence in systematic review findings if high-quality systematic review methodologies are employed. The urgent need for information during a pandemic does not justify poor quality reporting.

We acknowledge that there are numerous challenges associated with analyzing COVID-19 data during a pandemic [ 47 ]. High-quality evidence syntheses are needed for decision-making, but each type of evidence syntheses is associated with its inherent challenges.

The creation of classic systematic reviews requires considerable time and effort; with massive research output, they quickly become outdated, and preparing updated versions also requires considerable time. A recent study showed that updates of non-Cochrane systematic reviews are published a median of 5 years after the publication of the previous version [ 48 ].

Authors may register a review and then abandon it [ 49 ], but the existence of a public record that is not updated may lead other authors to believe that the review is still ongoing. A quarter of Cochrane review protocols remains unpublished as completed systematic reviews 8 years after protocol publication [ 50 ].

Rapid reviews can be used to summarize the evidence, but they involve methodological sacrifices and simplifications to produce information promptly, with inconsistent methodological approaches [ 51 ]. However, rapid reviews are justified in times of public health emergencies, and even Cochrane has resorted to publishing rapid reviews in response to the COVID-19 crisis [ 52 ]. Rapid reviews were eligible for inclusion in this overview, but only one of the 18 reviews included in this study was labeled as a rapid review.

Ideally, COVID-19 evidence would be continually summarized in a series of high-quality living systematic reviews, types of evidence synthesis defined as “ a systematic review which is continually updated, incorporating relevant new evidence as it becomes available ” [ 53 ]. However, conducting living systematic reviews requires considerable resources, calling into question the sustainability of such evidence synthesis over long periods [ 54 ].

Research reports about COVID-19 will contribute to research waste if they are poorly designed, poorly reported, or simply not necessary. In principle, systematic reviews should help reduce research waste as they usually provide recommendations for further research that is needed or may advise that sufficient evidence exists on a particular topic [ 55 ]. However, systematic reviews can also contribute to growing research waste when they are not needed, or poorly conducted and reported. Our present study clearly shows that most of the systematic reviews that were published early on in the COVID-19 pandemic could be categorized as research waste, as our confidence in their results is critically low.

Our study has some limitations. One is that for AMSTAR 2 assessment we relied on information available in publications; we did not attempt to contact study authors for clarifications or additional data. In three reviews, the methodological quality appraisal was challenging because they were published as letters, or labeled as rapid communications. As a result, various details about their review process were not included, leading to AMSTAR 2 questions being answered as “not reported”, resulting in low confidence scores. Full manuscripts might have provided additional information that could have led to higher confidence in the results. In other words, low scores could reflect incomplete reporting, not necessarily low-quality review methods. To make their review available more rapidly and more concisely, the authors may have omitted methodological details. A general issue during a crisis is that speed and completeness must be balanced. However, maintaining high standards requires proper resourcing and commitment to ensure that the users of systematic reviews can have high confidence in the results.

Furthermore, we used adjusted AMSTAR 2 scoring, as the tool was designed for critical appraisal of reviews of interventions. Some reviews may have received lower scores than actually warranted in spite of these adjustments.

Another limitation of our study may be the inclusion of multiple overlapping reviews, as some included reviews included the same primary studies. According to the Cochrane Handbook, including overlapping reviews may be appropriate when the review’s aim is “ to present and describe the current body of systematic review evidence on a topic ” [ 12 ], which was our aim. To avoid bias with summarizing evidence from overlapping reviews, we presented the forest plots without summary estimates. The forest plots serve to inform readers about the effect sizes for outcomes that were reported in each review.

Several authors from this study have contributed to one of the reviews identified [ 25 ]. To reduce the risk of any bias, two authors who did not co-author the review in question initially assessed its quality and limitations.

Finally, we note that the systematic reviews included in our overview may have had issues that our analysis did not identify because we did not analyze their primary studies to verify the accuracy of the data and information they presented. We give two examples to substantiate this possibility. Lovato et al. wrote a commentary on the review of Sun et al. [ 41 ], in which they criticized the authors’ conclusion that sore throat is rare in COVID-19 patients [ 56 ]. Lovato et al. highlighted that multiple studies included in Sun et al. did not accurately describe participants’ clinical presentations, warning that only three studies clearly reported data on sore throat [ 56 ].

In another example, Leung [ 57 ] warned about the review of Li, L.Q. et al. [ 29 ]: “ it is possible that this statistic was computed using overlapped samples, therefore some patients were double counted ”. Li et al. responded to Leung that it is uncertain whether the data overlapped, as they used data from published articles and did not have access to the original data; they also reported that they requested original data and that they plan to re-do their analyses once they receive them; they also urged readers to treat the data with caution [ 58 ]. This points to the evolving nature of evidence during a crisis.

Our study’s strength is that this overview adds to the current knowledge by providing a comprehensive summary of all the evidence synthesis about COVID-19 available early after the onset of the pandemic. This overview followed strict methodological criteria, including a comprehensive and sensitive search strategy and a standard tool for methodological appraisal of systematic reviews.

In conclusion, in this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all the reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic could be categorized as research waste. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards to provide patients, clinicians, and decision-makers trustworthy evidence.

Availability of data and materials

All data collected and analyzed within this study are available from the corresponding author on reasonable request.

World Health Organization. Timeline - COVID-19: Available at: https://www.who.int/news/item/29-06-2020-covidtimeline . Accessed 1 June 2021.

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available at: https://coronavirus.jhu.edu/map.html . Accessed 1 June 2021.

Anzai A, Kobayashi T, Linton NM, Kinoshita R, Hayashi K, Suzuki A, et al. Assessing the Impact of Reduced Travel on Exportation Dynamics of Novel Coronavirus Infection (COVID-19). J Clin Med. 2020;9(2):601.

Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400. https://doi.org/10.1126/science.aba9757 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Fidahic M, Nujic D, Runjic R, Civljak M, Markotic F, Lovric Makaric Z, et al. Research methodology and characteristics of journal articles with original data, preprint articles and registered clinical trial protocols about COVID-19. BMC Med Res Methodol. 2020;20(1):161. https://doi.org/10.1186/s12874-020-01047-2 .

EPPI Centre . COVID-19: a living systematic map of the evidence. Available at: http://eppi.ioe.ac.uk/cms/Projects/DepartmentofHealthandSocialCare/Publishedreviews/COVID-19Livingsystematicmapoftheevidence/tabid/3765/Default.aspx . Accessed 1 June 2021.

NCBI SARS-CoV-2 Resources. Available at: https://www.ncbi.nlm.nih.gov/sars-cov-2/ . Accessed 1 June 2021.

Gustot T. Quality and reproducibility during the COVID-19 pandemic. JHEP Rep. 2020;2(4):100141. https://doi.org/10.1016/j.jhepr.2020.100141 .

Article   PubMed   PubMed Central   Google Scholar  

Kodvanj, I., et al., Publishing of COVID-19 Preprints in Peer-reviewed Journals, Preprinting Trends, Public Discussion and Quality Issues. Preprint article. bioRxiv 2020.11.23.394577; doi: https://doi.org/10.1101/2020.11.23.394577 .

Dobler CC. Poor quality research and clinical practice during COVID-19. Breathe (Sheff). 2020;16(2):200112. https://doi.org/10.1183/20734735.0112-2020 .

Article   Google Scholar  

Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 2010;7(9):e1000326. https://doi.org/10.1371/journal.pmed.1000326 .

Lunny C, Brennan SE, McDonald S, McKenzie JE. Toward a comprehensive evidence map of overview of systematic review methods: paper 1-purpose, eligibility, search and data extraction. Syst Rev. 2017;6(1):231. https://doi.org/10.1186/s13643-017-0617-1 .

Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane. 2020. Available from www.training.cochrane.org/handbook .

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.1 (updated September 2020). Cochrane. 2020; Available from www.training.cochrane.org/handbook .

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. The impact of different inclusion decisions on the comprehensiveness and complexity of overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):18. https://doi.org/10.1186/s13643-018-0914-3 .

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. A decision tool to help researchers make decisions about including systematic reviews in overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):29. https://doi.org/10.1186/s13643-018-0768-8 .

Hunt H, Pollock A, Campbell P, Estcourt L, Brunton G. An introduction to overviews of reviews: planning a relevant research question and objective for an overview. Syst Rev. 2018;7(1):39. https://doi.org/10.1186/s13643-018-0695-8 .

Pollock M, Fernandes RM, Pieper D, Tricco AC, Gates M, Gates A, et al. Preferred reporting items for overviews of reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):335. https://doi.org/10.1186/s13643-019-1252-9 .

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med. 2009;3(3):e123–30.

Krnic Martinic M, Pieper D, Glatt A, Puljak L. Definition of a systematic review used in overviews of systematic reviews, meta-epidemiological studies and textbooks. BMC Med Res Methodol. 2019;19(1):203. https://doi.org/10.1186/s12874-019-0855-0 .

Puljak L. If there is only one author or only one database was searched, a study should not be called a systematic review. J Clin Epidemiol. 2017;91:4–5. https://doi.org/10.1016/j.jclinepi.2017.08.002 .

Article   PubMed   Google Scholar  

Gates M, Gates A, Guitard S, Pollock M, Hartling L. Guidance for overviews of reviews continues to accumulate, but important challenges remain: a scoping review. Syst Rev. 2020;9(1):254. https://doi.org/10.1186/s13643-020-01509-0 .

Covidence - systematic review software. Available at: https://www.covidence.org/ . Accessed 1 June 2021.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

Borges do Nascimento IJ, et al. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J Clin Med. 2020;9(4):941.

Article   PubMed Central   Google Scholar  

Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. https://doi.org/10.1186/s40249-020-00646-x .

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–83. https://doi.org/10.1016/j.jcrc.2020.03.005 .

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531–8. https://doi.org/10.1007/s00392-020-01626-9 .

Article   CAS   PubMed   Google Scholar  

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–83. https://doi.org/10.1002/jmv.25757 .

Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390–1. https://doi.org/10.1016/j.pcad.2020.03.001 .

Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med. 2020;75:107–8. https://doi.org/10.1016/j.ejim.2020.03.014 .

Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chim Acta. 2020;505:190–1. https://doi.org/10.1016/j.cca.2020.03.004 .

Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022 .

Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088–95. https://doi.org/10.1111/apa.15270 .

Lupia T, Scabini S, Mornese Pinna S, di Perri G, de Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Glob Antimicrob Resist. 2020;21:22–7. https://doi.org/10.1016/j.jgar.2020.02.021 .

Marasinghe, K.M., A systematic review investigating the effectiveness of face mask use in limiting the spread of COVID-19 among medically not diagnosed individuals: shedding light on current recommendations provided to individuals not medically diagnosed with COVID-19. Research Square. Preprint article. doi : https://doi.org/10.21203/rs.3.rs-16701/v1 . 2020 .

Mullins E, Evans D, Viner RM, O’Brien P, Morris E. Coronavirus in pregnancy and delivery: rapid review. Ultrasound Obstet Gynecol. 2020;55(5):586–92. https://doi.org/10.1002/uog.22014 .

Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JIP, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020;9(3):623.

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. https://doi.org/10.1016/j.tmaid.2020.101623 .

Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87–93. https://doi.org/10.2214/AJR.20.23034 .

Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol. 2020;92(6):612–7. https://doi.org/10.1002/jmv.25735 .

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. https://doi.org/10.1016/j.ijid.2020.03.017 .

Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm. Eur J Clin Investig. 2020;50(3):e13209. https://doi.org/10.1111/eci.13209 .

Article   CAS   Google Scholar  

Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwanica. 2006;15(1):26–8.

Google Scholar  

Suzuki M, Saito K, Min WP, Vladau C, Toida K, Itoh H, et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007;117(2):272–7. https://doi.org/10.1097/01.mlg.0000249922.37381.1e .

Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, Quek SC. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776–7. https://doi.org/10.1016/S1473-3099(20)30244-9 .

Wolkewitz M, Puljak L. Methodological challenges of analysing COVID-19 data during the pandemic. BMC Med Res Methodol. 2020;20(1):81. https://doi.org/10.1186/s12874-020-00972-6 .

Rombey T, Lochner V, Puljak L, Könsgen N, Mathes T, Pieper D. Epidemiology and reporting characteristics of non-Cochrane updates of systematic reviews: a cross-sectional study. Res Synth Methods. 2020;11(3):471–83. https://doi.org/10.1002/jrsm.1409 .

Runjic E, Rombey T, Pieper D, Puljak L. Half of systematic reviews about pain registered in PROSPERO were not published and the majority had inaccurate status. J Clin Epidemiol. 2019;116:114–21. https://doi.org/10.1016/j.jclinepi.2019.08.010 .

Runjic E, Behmen D, Pieper D, Mathes T, Tricco AC, Moher D, et al. Following Cochrane review protocols to completion 10 years later: a retrospective cohort study and author survey. J Clin Epidemiol. 2019;111:41–8. https://doi.org/10.1016/j.jclinepi.2019.03.006 .

Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015;13(1):224. https://doi.org/10.1186/s12916-015-0465-6 .

COVID-19 Rapid Reviews: Cochrane’s response so far. Available at: https://training.cochrane.org/resource/covid-19-rapid-reviews-cochrane-response-so-far . Accessed 1 June 2021.

Cochrane. Living systematic reviews. Available at: https://community.cochrane.org/review-production/production-resources/living-systematic-reviews . Accessed 1 June 2021.

Millard T, Synnot A, Elliott J, Green S, McDonald S, Turner T. Feasibility and acceptability of living systematic reviews: results from a mixed-methods evaluation. Syst Rev. 2019;8(1):325. https://doi.org/10.1186/s13643-019-1248-5 .

Babic A, Poklepovic Pericic T, Pieper D, Puljak L. How to decide whether a systematic review is stable and not in need of updating: analysis of Cochrane reviews. Res Synth Methods. 2020;11(6):884–90. https://doi.org/10.1002/jrsm.1451 .

Lovato A, Rossettini G, de Filippis C. Sore throat in COVID-19: comment on “clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis”. J Med Virol. 2020;92(7):714–5. https://doi.org/10.1002/jmv.25815 .

Leung C. Comment on Li et al: COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(9):1431–2. https://doi.org/10.1002/jmv.25912 .

Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. Response to Char’s comment: comment on Li et al: COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(9):1433. https://doi.org/10.1002/jmv.25924 .

Download references

Acknowledgments

We thank Catherine Henderson DPhil from Swanscoe Communications for pro bono medical writing and editing support. We acknowledge support from the Covidence Team, specifically Anneliese Arno. We thank the whole International Network of Coronavirus Disease 2019 (InterNetCOVID-19) for their commitment and involvement. Members of the InterNetCOVID-19 are listed in Additional file 6 . We thank Pavel Cerny and Roger Crosthwaite for guiding the team supervisor (IJBN) on human resources management.

This research received no external funding.

Author information

Authors and affiliations.

University Hospital and School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Israel Júnior Borges do Nascimento & Milena Soriano Marcolino

Medical College of Wisconsin, Milwaukee, WI, USA

Israel Júnior Borges do Nascimento

Helene Fuld Health Trust National Institute for Evidence-based Practice in Nursing and Healthcare, College of Nursing, The Ohio State University, Columbus, OH, USA

Dónal P. O’Mathúna

School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland

Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany

Thilo Caspar von Groote

Department of Sport and Health Science, Technische Universität München, Munich, Germany

Hebatullah Mohamed Abdulazeem

School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia

Ishanka Weerasekara

Department of Physiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka

Cochrane Croatia, University of Split, School of Medicine, Split, Croatia

Ana Marusic, Irena Zakarija-Grkovic & Tina Poklepovic Pericic

Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

Livia Puljak

Cochrane Brazil, Evidence-Based Health Program, Universidade Federal de São Paulo, São Paulo, Brazil

Vinicius Tassoni Civile & Alvaro Nagib Atallah

Yorkville University, Fredericton, New Brunswick, Canada

Santino Filoso

Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada

Nicola Luigi Bragazzi

You can also search for this author in PubMed   Google Scholar

Contributions

IJBN conceived the research idea and worked as a project coordinator. DPOM, TCVG, HMA, IW, AM, LP, VTC, IZG, TPP, ANA, SF, NLB and MSM were involved in data curation, formal analysis, investigation, methodology, and initial draft writing. All authors revised the manuscript critically for the content. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Livia Puljak .

Ethics declarations

Ethics approval and consent to participate.

Not required as data was based on published studies.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix 1..

Search strategies used in the study.

Additional file 2: Appendix 2.

Adjusted scoring of AMSTAR 2 used in this study for systematic reviews of studies that did not analyze interventions.

Additional file 3: Appendix 3.

List of excluded studies, with reasons.

Additional file 4: Appendix 4.

Table of overlapping studies, containing the list of primary studies included, their visual overlap in individual systematic reviews, and the number in how many reviews each primary study was included.

Additional file 5: Appendix 5.

A detailed explanation of AMSTAR scoring for each item in each review.

Additional file 6: Appendix 6.

List of members and affiliates of International Network of Coronavirus Disease 2019 (InterNetCOVID-19).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Borges do Nascimento, I.J., O’Mathúna, D.P., von Groote, T.C. et al. Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews. BMC Infect Dis 21 , 525 (2021). https://doi.org/10.1186/s12879-021-06214-4

Download citation

Received : 12 April 2020

Accepted : 19 May 2021

Published : 04 June 2021

DOI : https://doi.org/10.1186/s12879-021-06214-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Coronavirus
  • Evidence-based medicine
  • Infectious diseases

BMC Infectious Diseases

ISSN: 1471-2334

report essay about covid 19

EDITORIAL article

Editorial: coronavirus disease (covid-19): the impact and role of mass media during the pandemic.

\nPatrícia Arriaga

  • 1 Department of Social and Organizational Psychology, Iscte-University Institute of Lisbon, CIS-IUL, Lisbon, Portugal
  • 2 Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
  • 3 Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany

Editorial on the Research Topic Coronavirus Disease (COVID-19): The Impact and Role of Mass Media During the Pandemic

The outbreak of the coronavirus disease 2019 (COVID-19) has created a global health crisis that had a deep impact on the way we perceive our world and our everyday lives. Not only has the rate of contagion and patterns of transmission threatened our sense of agency, but the safety measures to contain the spread of the virus also required social and physical distancing, preventing us from finding solace in the company of others. Within this context, we launched our Research Topic on March 27th, 2020, and invited researchers to address the Impact and Role of Mass Media During the Pandemic on our lives at individual and social levels.

Despite all the hardships, disruption, and uncertainty brought by the pandemic, we received diverse and insightful manuscript proposals. Frontiers in Psychology published 15 articles, involving 61 authors from 8 countries, which were included in distinct specialized sections, including Health Psychology, Personality and Social Psychology, Emotion Science, and Organizational Psychology. Despite the diversity of this collective endeavor, the contributions fall into four areas of research: (1) the use of media in public health communication; (2) the diffusion of false information; (3) the compliance with the health recommendations; and (4) how media use relates to mental health and well-being.

A first line of research includes contributions examining the use of media in public health communication. Drawing on media messages used in previous health crises, such as Ebola and Zika, Hauer and Sood describe how health organizations use media. They offer a set of recommendations for COVID-19 related media messages, including the importance of message framing, interactive public forums with up-to-date information, and an honest communication about what is known and unknown about the pandemic and the virus. Following a content analysis approach, Parvin et al. studied the representations of COVID-19 in the opinion section of five Asian e-newspapers. The authors identified eight main issues (health and drugs, preparedness and awareness, social welfare and humanity, governance and institutions, the environment and wildlife, politics, innovation and technology, and the economy) and examined how e-newspapers from these countries attributed different weights to these issues and how this relates to the countries' cultural specificity. Raccanello et al. show how the internet can be a platform to disseminate a public campaign devised to inform adults about coping strategies that could help children and teenagers deal with the challenges of the pandemic. The authors examined the dissemination of the program through the analysis of website traffic, showing that in the 40 days following publication, the website reached 6,090 visits.

A second related line of research that drew the concern of researchers was the diffusion of false information about COVID-19 through the media. Lobato et al. examined the role of distinct individual differences (political orientation, social dominance orientation, traditionalism, conspiracy ideation, attitudes about science) on the willingness to share misinformation about COVID-19 over social media. The misinformation topics varied between the severity and spread of COVID-19, treatment and prevention, conspiracy theories, and miscellaneous unverifiable claims. Their results from 296 adult participants (Mage = 36.23; 117 women) suggest two different profiles. One indicating that those reporting more liberal positions and lower social dominance were less willing to share conspiracy misinformation. The other profile indicated that participants scoring high on social dominance and low in traditionalism were more willing to share both conspiracy and other miscellaneous claims, but less willing to share misinformation about the severity and spread of COVID-19. Their findings can have relevant contributions for the identification of specific individual profiles related to the widespread of distinct types of misinformation. Dhanani and Franz examined a sample of 1,141 adults (Mage = 44.66; 46.9% female, 74.7% White ethnic identity) living in the United States in March 2020. The authors examined how media consumption and information source were related to knowledge about COVID-19, the endorsement of misinformation about COVID-19, and prejudice toward Asian Americans. Higher levels of trust in informational sources such as public health organizations (e.g., Center for Disease Control) was associated with greater knowledge, lower endorsement of misinformation, and less prejudice toward Asian Americans. Media source was associated with distinct levels of knowledge, willingness to endorsement misinformation and prejudice toward American Asians, with social media use (e.g., Twitter, Facebook) being related with a lower knowledge about COVID-19, higher endorsement of misinformation, and stronger prejudice toward Asian Americans.

A third line of research addressed the factors that could contribute to compliance with the health recommendations to avoid the spread of the disease. Vai et al. studied early pre-lockdown risk perceptions about COVID-19 and the trust in media sources among 2,223 Italians (Mage = 36.4, 69.2% female). They found that the perceived usefulness of the containment measures (e.g., social distancing) was related to threat perception and efficacy beliefs. Lower threat perception was associated with less perception of utility of the containment measures. Although most participants considered themselves and others capable of taking preventive measures, they saw the measures as generally ineffective. Participants acknowledged using the internet as their main source of information and considered health organizations' websites as the most trustworthy source. Albeit frequently used, social media was in general considered an unreliable source of information. Tomczyk et al. studied knowledge about preventive behaviors, risk perception, stigmatizing attitudes (support for discrimination and blame), and sociodemographic data (e.g., age, gender, country of origin, education level, region, persons per household) as predictors of compliance with the behavioral recommendations among 157 Germans, (age range: 18–77 years, 80% female). Low compliance was associated with male gender, younger age, and lower public stigma. Regarding stigmatizing attitudes, the authors only found a relation between support for discrimination (i.e., support for compulsory measures) and higher intention to comply with recommendations. Mahmood et al. studied the relation between social media use, risk perception, preventive behaviors, and self-efficacy in a sample of 310 Pakistani adults (54.2% female). The authors found social media use to be positively related to self-efficacy and perceived threat, which were both positively related to preventive behaviors (e.g., hand hygiene, social distancing). Information credibility was also related to compliance with health recommendations. Lep et al. examined the relationship between information source perceived credibility and trust, and participants' levels of self-protective behavior among 1,718 Slovenians (age range: 18–81 years, 81.7% female). The authors found that scientists, general practitioners (family doctors), and the National Institute of Public Health were perceived as the more credible source of information, while social media and government officials received the lowest ratings. Perceived information credibility was found to be associated with lower levels of negative emotional responses (e.g., nervousness, helplessness) and a higher level of observance of self-protective measures (e.g., hand washing). Siebenhaar et al. also studied the link between compliance, distress by information, and information avoidance. They examined the online survey responses of 1,059 adults living in Germany (Mage = 39.53, 79.4% female). Their results suggested that distress by information could lead to higher compliance with preventive measures. Distress by information was also associated with higher information avoidance, which in turn is related to less compliance. Gantiva et al. studied the effectiveness of different messages regarding the intentions toward self-care behaviors, perceived efficacy to motivate self-care behaviors in others, perceived risk, and perceived message strength, in a sample of 319 Colombians (age range: 18–60 years, 69.9% female). Their experiment included the manipulation of message framing (gain vs. loss) and message content (economy vs. health). Participants judged gain-frame health related messages to be stronger and more effective in changing self-behavior, whereas loss-framed health messages resulted in increased perceived risk. Rahn et al. offer a comparative view of compliance and risk perception, examining three hazard types: COVID-19 pandemic, violent acts, and severe weather. With a sample of 403 Germans (age range: 18–89 years, 72% female), they studied how age, gender, previous hazard experience and different components of risk appraisal (perceived severity, anticipated negative emotions, anticipatory worry, and risk perception) were related to the intention to comply with behavioral recommendations. They found that higher age predicted compliance with health recommendations to prevent COVID-19, anticipatory worry predicted compliance with warning messages regarding violent acts, and women complied more often with severe weather recommendations than men.

A fourth line of research examined media use, mental health and well-being during the COVID-19 pandemic. Gabbiadini et al. addressed the use of digital technology (e.g., voice/video calls, online games, watching movies in party mode) to stay connected with others during lockdown. Participants, 465 Italians (age range: 18–73 years, 348 female), reported more perceived social support associated with the use of these digital technologies, which in turn was associated with fewer feelings of loneliness, boredom, anger, and higher sense of belongingness. Muñiz-Velázquez et al. compared the media habits of 249 Spanish adults (Mage = 42.06, 53.8% female) before and during confinement. They compared the type of media consumed (e.g., watching TV series, listening to radio, watching news) and found the increased consumption of TV and social networking sites during confinement to be negatively associated with reported level of happiness. People who reported higher levels of well-being also reported watching less TV and less use of social networking sites. Majeed et al. , on the other hand, examined the relation between problematic social media use, fear of COVID-19, depression, and mindfulness. Their study, involving 267 Pakistani adults (90 female), suggested trait mindfulness had a buffer effect, reducing the impact of problematic media use and fear of COVID-19 on depression.

Taken together, these findings highlight how using different frames for mass media gives a more expansive view of its positive and negative roles, but also showcase the major concerns in the context of a pandemic crisis. As limitations we highlight the use of cross-sectional designs in most studies, not allowing to establish true inferences of causal relationships. The outcome of some studies may also be limited by the unbalanced number of female and male participants, by the non-probability sampling method used, and by the restricted time frame in which the research occurred. Nevertheless, we are confident that all the selected studies in our Research Topic bring important and enduring contributions to the understanding of how media, individual differences, and social factors intertwine to shape our lives, which can also be useful to guide public policies during these challenging times.

Author Contributions

PA: conceptualization, writing the original draft, funding acquisition, writing—review, and editing. FE: conceptualization, writing—review, and editing. MP: writing—review and editing. NP: conceptualization, writing the original draft, writing—review, and editing. All authors approved the submitted version.

PA and NP received partial support to work on this Research Topic through Fundação para a Ciência e Tecnologia (FCT) with reference to the project PTDC/CCI-INF/29234/2017. MP contribution was supported by the German Research Foundation (DFG, PA847/22-1 and PA847/25-1). The authors are independent of the funders.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

We would like to express our gratitude to all the authors who proposed their work, all the researchers who reviewed the submissions to this Research Topic, and to Rob Richards for proofreading the Editorial manuscript.

Keywords: COVID-19, coronavirus disease, mass media, health communication, prevention, intervention, social behavioral changes

Citation: Arriaga P, Esteves F, Pavlova MA and Piçarra N (2021) Editorial: Coronavirus Disease (COVID-19): The Impact and Role of Mass Media During the Pandemic. Front. Psychol. 12:729238. doi: 10.3389/fpsyg.2021.729238

Received: 22 June 2021; Accepted: 30 July 2021; Published: 23 August 2021.

Edited and reviewed by: Eduard Brandstätter , Johannes Kepler University of Linz, Austria

Copyright © 2021 Arriaga, Esteves, Pavlova and Piçarra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Patrícia Arriaga, patricia.arriaga@iscte-iul.pt

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

  • Report Writing On Covid 19 For Students

Report Writing on COVID-19 for Students

A report, as you know, is a detailed account of a particular event or something that happened. Writing a report on a pandemic such as COVID-19, which shook the whole world, requires a lot of research. You should have a thorough knowledge of the details that have to be included in the report before you start writing one. Check out the following sections to learn what they are and also go through the sample reports to see how to structure your report.

Table of Contents

What to include in a report on covid-19, sample report on covid-19 around the world, sample report on covid-19 in india for students, frequently asked questions on report writing on covid-19.

Before you start writing your report, make sure you understand what the term ‘COVID-19’ refers to and gather all the significant information about it. Since COVID-19 is a pandemic, you have to try and understand the causes, symptoms, difficulties caused by the virus, aftereffects, precautions, aftercure and so on. Once you do this, also explore information about the number of cases reported, number of deaths caused, number of people cured, advancements in the field of medicine, etc. Having a thorough knowledge of these factors can give you a clear idea of what to write and how to structure your report.

While plague, cholera and flu were pandemics of the past, the current COVID-19 pandemic has put the whole world in a fix. With the first case of COVID-19 reported in Wuhan, Hubei Province, China in December of 2019, life on Earth had changed forever. Since then, everybody was locked inside, asked to cover their noses and mouths, wash their hands, keep themselves clean, use sanitisers every time they step out and step back into their houses, eat protein-rich and hygienic food, inhale steam, drink hot water and so on. For many, everything changed with the outbreak of the pandemic. A huge number of people lost their loved ones, some their jobs and some were even disturbed mentally rather than just physically. Life simply switched to a new normal.

The commonly found symptoms were fatigue, severe headaches, common cold, breathing difficulties, reduced oxygen levels, loss of appetite, taste and smell and so on. The government and the medical community continuously asked people to be on their guard, stay indoors and report to the nearest hospitals in case they identify any of the above stated symptoms in themselves or in the people around them.

As of December 2021, around 1 million new cases and around 7500 deaths were reported and the daily moving average of cases rose to 390 in the first week of December. However, with the development of vaccinations by scientists and doctors, the number of cases as well as the number of deaths have been reduced. Still, people have been asked to take precautions even though vaccinations have been administered to most people around the world.

The spread of COVID-19 in India began with the first case being reported in Kerala on January 30, 2020. In a year’s time, more than twenty-eight million people were tested positive for COVID. Around five million people – the highest recorded number of diagnosed cases – were from Maharashtra; the next in line was Karnataka, Kerala and Tamil Nadu with more than two million cases each, followed by Andhra Pradesh with over one million cases.

Owing to the widespread increase in the number of deaths, Prime Minister Narendra Modi announced a nationwide lockdown until further notice. All schools, colleges and offices were closed. Schools, colleges, community halls and convention centers were turned into isolation wards as hospitals were overflowing with patients. Healthcare professionals, along with many volunteers, worked day and night to treat patients and reduce the number of deaths.

After almost a year, vaccinations such as Covishield and Covaxin were launched in India. These vaccines were first administered to people above the age of sixty, followed by people from the age of forty to sixty, above eighteen and then younger kids. Vaccinations were given in two doses with an interval of one and a half to two months in between. With the government making vaccinations mandatory for travel and other purposes, almost all people had taken the vaccinations. A third dose of the vaccine (booster dose) also has been launched. The government has taken efforts to set up multiple vaccination booths in government schools and hospitals. With continuous efforts from the government, medical and police officials, and cooperation from the citizens, India has successfully seen a decrease in the number of cases and deaths, and an increase in the number of recoveries.

What is a report?

A report is an official document presented in writing or print about a particular event or happening.

What are the details to be included in a report on COVID-19?

The details to be included in a report on COVID-19 are as follows.

  • Difficulties caused by the virus
  • Aftereffects
  • Precautions
  • Number of cases reported
  • Number of deaths caused
  • Number of people cured
  • Advancements in the field of medicine

report essay about covid 19

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

SARS-CoV-2 articles from across Nature Portfolio

SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is contagious in humans and is the cause of the coronavirus disease 2019 (COVID-19).

Latest Research and Reviews

report essay about covid 19

Three-year outcomes of post-acute sequelae of COVID-19

Analyses from the US Department of Veterans Affairs databases reported residual elevated risk and health burden of long COVID at 3 years in hospitalized individuals after SARS-CoV-2 infection.

  • Ziyad Al-Aly

report essay about covid 19

Kinetics of SARS-CoV-2 infection biomarkers in a household transmission study

  • Ana M. Groh
  • Maria J. G. T. Vehreschild
  • Annemarie Berger

report essay about covid 19

PMMA dialyzers modulate both humoral and cell-mediate immune response to anti-COVID-19 vaccine (BNT162b2) in a cohort of chronic hemodialyzed patients

  • Giuseppe Castellano
  • Giuseppe Stefano Netti
  • Giovanni Stallone

report essay about covid 19

Safety outcomes following COVID-19 vaccination and infection in 5.1 million children in England

COVID-19 vaccines reduce the risk of severe disease in young people, but the absolute risk is low, and side effects have been reported. Here, the authors use data on 5–17 year olds in England to assess the overall risk-benefit profile of the vaccines.

  • Emma Copland
  • Martina Patone
  • Julia Hippisley-Cox

report essay about covid 19

Acute and post-acute respiratory complications of SARS-CoV-2 infection: population-based cohort study in South Korea and Japan

Respiratory complications of SARS-CoV-2 infection have been described in the acute (within 30 days) and post-acute (after 30 days) phase. Here, the authors characterise the risk of acute and post-acute respiratory complications of SARS-CoV-2 using population-based data from South Korea and Japan.

  • Hyeon Jin Kim
  • Dong Keon Yon

report essay about covid 19

Intranasal vaccination with an NDV-vectored SARS-CoV-2 vaccine protects against Delta and Omicron challenges

  • Bryce M. Warner
  • Jacob G. E. Yates
  • Darwyn Kobasa

Advertisement

News and Comment

Trials that infected people with common colds can inform today’s covid-19 challenge trials.

  • Jonathan Ewbank

report essay about covid 19

A global pandemic treaty is in sight: don’t scupper it

Millions of people died of COVID-19 because the fundamental principle of equity between nations was ignored during the outbreak. That must not be allowed to happen again.

report essay about covid 19

US halts funding to controversial virus-hunting group: what researchers think

Some scientists think the decision regarding EcoHealth Alliance is fair; others say it might negatively affect virus surveillance.

  • Mariana Lenharo

report essay about covid 19

US funders to tighten oversight of controversial ‘gain of function’ research

New policy on high-risk biology studies aims to address criticism that previous rules were too vague.

report essay about covid 19

Chinese virologist who was first to share COVID-19 genome sleeps on street after lab shuts

Zhang Yongzhen shared the genomic sequence of SARS-CoV-2 with the world, speeding up the development of vaccines.

  • Smriti Mallapaty

report essay about covid 19

Scientists tried to give people COVID — and failed

Researchers deliberately infect participants with SARS-CoV-2 in ‘challenge’ trials — but high levels of immunity complicate efforts to test vaccines and treatments.

  • Ewen Callaway

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

report essay about covid 19

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • JEE Main Advanced Answer Key
  • JEE Advanced Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • KCET Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Answer Key
  • TS ICET 2024 Hall Ticket
  • CMAT Result 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet
  • CUET DU CSAS Portal 2024
  • CUET Admit card 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Covid 19 Essay in English

Essay on Covid -19: In a very short amount of time, coronavirus has spread globally. It has had an enormous impact on people's lives, economy, and societies all around the world, affecting every country. Governments have had to take severe measures to try and contain the pandemic. The virus has altered our way of life in many ways, including its effects on our health and our economy. Here are a few sample essays on ‘CoronaVirus’.

100 Words Essay on Covid 19

200 words essay on covid 19, 500 words essay on covid 19.

Covid 19 Essay in English

COVID-19 or Corona Virus is a novel coronavirus that was first identified in 2019. It is similar to other coronaviruses, such as SARS-CoV and MERS-CoV, but it is more contagious and has caused more severe respiratory illness in people who have been infected. The novel coronavirus became a global pandemic in a very short period of time. It has affected lives, economies and societies across the world, leaving no country untouched. The virus has caused governments to take drastic measures to try and contain it. From health implications to economic and social ramifications, COVID-19 impacted every part of our lives. It has been more than 2 years since the pandemic hit and the world is still recovering from its effects.

Since the outbreak of COVID-19, the world has been impacted in a number of ways. For one, the global economy has taken a hit as businesses have been forced to close their doors. This has led to widespread job losses and an increase in poverty levels around the world. Additionally, countries have had to impose strict travel restrictions in an attempt to contain the virus, which has resulted in a decrease in tourism and international trade. Furthermore, the pandemic has put immense pressure on healthcare systems globally, as hospitals have been overwhelmed with patients suffering from the virus. Lastly, the outbreak has led to a general feeling of anxiety and uncertainty, as people are fearful of contracting the disease.

My Experience of COVID-19

I still remember how abruptly colleges and schools shut down in March 2020. I was a college student at that time and I was under the impression that everything would go back to normal in a few weeks. I could not have been more wrong. The situation only got worse every week and the government had to impose a lockdown. There were so many restrictions in place. For example, we had to wear face masks whenever we left the house, and we could only go out for essential errands. Restaurants and shops were only allowed to operate at take-out capacity, and many businesses were shut down.

In the current scenario, coronavirus is dominating all aspects of our lives. The coronavirus pandemic has wreaked havoc upon people’s lives, altering the way we live and work in a very short amount of time. It has revolutionised how we think about health care, education, and even social interaction. This virus has had long-term implications on our society, including its impact on mental health, economic stability, and global politics. But we as individuals can help to mitigate these effects by taking personal responsibility to protect themselves and those around them from infection.

Effects of CoronaVirus on Education

The outbreak of coronavirus has had a significant impact on education systems around the world. In China, where the virus originated, all schools and universities were closed for several weeks in an effort to contain the spread of the disease. Many other countries have followed suit, either closing schools altogether or suspending classes for a period of time.

This has resulted in a major disruption to the education of millions of students. Some have been able to continue their studies online, but many have not had access to the internet or have not been able to afford the costs associated with it. This has led to a widening of the digital divide between those who can afford to continue their education online and those who cannot.

The closure of schools has also had a negative impact on the mental health of many students. With no face-to-face contact with friends and teachers, some students have felt isolated and anxious. This has been compounded by the worry and uncertainty surrounding the virus itself.

The situation with coronavirus has improved and schools have been reopened but students are still catching up with the gap of 2 years that the pandemic created. In the meantime, governments and educational institutions are working together to find ways to support students and ensure that they are able to continue their education despite these difficult circumstances.

Effects of CoronaVirus on Economy

The outbreak of the coronavirus has had a significant impact on the global economy. The virus, which originated in China, has spread to over two hundred countries, resulting in widespread panic and a decrease in global trade. As a result of the outbreak, many businesses have been forced to close their doors, leading to a rise in unemployment. In addition, the stock market has taken a severe hit.

Effects of CoronaVirus on Health

The effects that coronavirus has on one's health are still being studied and researched as the virus continues to spread throughout the world. However, some of the potential effects on health that have been observed thus far include respiratory problems, fever, and coughing. In severe cases, pneumonia, kidney failure, and death can occur. It is important for people who think they may have been exposed to the virus to seek medical attention immediately so that they can be treated properly and avoid any serious complications. There is no specific cure or treatment for coronavirus at this time, but there are ways to help ease symptoms and prevent the virus from spreading.

Applications for Admissions are open.

ALLEN Digital Scholarship Admission Test (ADSAT)

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

PW NEET Coaching

PW NEET Coaching

Enrol in PW Vidyapeeth center for NEET coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

ALLEN JEE Exam Prep

ALLEN JEE Exam Prep

Start your JEE preparation with ALLEN

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

Iran further increases its stockpile of uranium enriched to near weapons-grade levels, watchdog says

International Atomic Energy Agency (IAEA) Director General, Rafael Grossi, addresses the media after arriving at the Vienna International Airport in Schwechat, Austria, Tuesday, May 7, 2024. The head of the United Nations' atomic watchdog traveled Monday to Iran, where his agency faces increasing difficulty in monitoring the Islamic Republic's rapidly advancing nuclear program as tensions remain high in the wider Middle East over the Israel-Hamas war. (AP Photo/Heinz-Peter Bader)

International Atomic Energy Agency (IAEA) Director General, Rafael Grossi, addresses the media after arriving at the Vienna International Airport in Schwechat, Austria, Tuesday, May 7, 2024. The head of the United Nations’ atomic watchdog traveled Monday to Iran, where his agency faces increasing difficulty in monitoring the Islamic Republic’s rapidly advancing nuclear program as tensions remain high in the wider Middle East over the Israel-Hamas war. (AP Photo/Heinz-Peter Bader)

This is a locator map for Iran with its capital, Tehran. (AP Photo)

FILE - Head of Iran’s atomic energy department Mohammad Eslami waves to media at the conclusion of his joint press conference with International Atomic Energy Organization, IAEA, Director General Rafael Mariano Grossi, left, after their meeting in the central city of Isfahan, Iran, on May 7, 2024. While Iran’s nuclear program stands at the precipice of tipping over into enriching uranium at weapons-grade levels, Tehran has held quiet, indirect talks with the United States and invited the head of the United Nations’ atomic watchdog into the country for negotiations. (AP Photo/Vahid Salemi)

  • Copy Link copied

VIENNA (AP) — Iran has further increased its stockpile of uranium enriched to near weapons-grade levels, according to a confidential report on Monday by the United Nations’ nuclear watchdog, the latest in Tehran’s attempts to steadily exert pressure on the international community.

Iran is seeking to have economic sanctions imposed over the country’s controversial nuclear program lifted in exchange for slowing the program down. The program — as all matters of state in Iran — are under the guidance of Iran’s supreme leader , Ayatollah Ali Khamenei, and that likely won’t change in the wake of last week’s helicopter crash that killed Iran’s president and foreign minister.

The report by the International Atomic Energy Agency also comes against the backdrop of heightened tensions in the wider Middle East over the ongoing Israel-Hamas war. Israel and Iran have carried out direct strikes on each other’s territory for the first time last month.

The report, seen by The Associated Press, said that as of May 11, Iran has 142.1 kilograms (313.2 pounds) of uranium enriched up to 60% — an increase of 20.6 kilograms (45.4 pounds) since the last report by the U.N. watchdog in February . Uranium enriched at 60% purity is just a short, technical step away from weapons-grade levels of 90%.

FILE - Iranian President Ebrahim Raisi speaks during a commemoration for the late Revolutionary Guard Gen. Qassem Soleimani, who was killed in a U.S drone attack in 2020 in Iraq, at the Imam Khomeini grand mosque, Jan. 3, 2024, in Tehran, Iran. The U.N. General Assembly’s tribute to Iran’s late President Raisi was snubbed by Western and East European nations on Thursday, May 30, amid protests against honoring a leader who was reviled for his crackdown on opponents. (AP Photo/Vahid Salemi, File)

By IAEA’s definition, around 42 kilograms (92.5 pounds) of uranium enriched to 60% is the amount at which creating one atomic weapon is theoretically possible — if the material is enriched further, to 90%.

Also as of May 11, the report says Iran’s overall stockpile of enriched uranium stands at 6,201.3 kilograms (1,3671.5 pounds), which represents an increase of 675.8 kilograms (1,489.8 pounds) since the IAEA’s previous report.

Iran has maintained its nuclear program is for peaceful purposes only, but the IAEA chief, Rafael Mariano Grossi , has previously warned that Tehran has enough uranium enriched to near-weapons-grade levels to make “several” nuclear bombs if it chose to do so. He has acknowledged the U.N. agency cannot guarantee that none of Iran’s centrifuges may have been peeled away for clandestine enrichment .

Tensions have grown between Iran and the IAEA since 2018, when then-President Donald Trump unilaterally withdrew the United States from Tehran’s nuclear deal with world powers. Since then, Iran has abandoned all limits the deal put on its program and quickly stepped up enrichment.

Under the original nuclear deal, struck in 2015, Iran was allowed to enrich uranium only up to 3.67% purity, maintain a stockpile of about 300 kilograms and use only very basic IR-1 centrifuges — machines that spin uranium gas at high speed for enrichment purposes.

The 2015 deal saw Tehran agree to limit enrichment of uranium to levels necessary for generating nuclear power in exchange for the lifting of economic sanctions. At the time, U.N. inspectors were tasked with monitoring the program.

Monday’s report also said that Tehran has not reconsidered its September 2023 decision to bar IAEA inspectors from further monitoring its nuclear program and added that it expects Iran “to do so in the context of the ongoing consultations between the (IAEA) agency and Iran.”

According to the report, Grossi “deeply regrets” Iran’s decision to bar inspectors — and a reversal of that decision “remains essential to fully allow the agency to conduct its verification activities in Iran effectively.”

The deaths of Iran’s President Ebrahim Raisi and Foreign Minister Hossein Amirabdollahian have triggered a pause in the IAEA’s talks with Tehran over improving cooperation, the report acknowledged.

Before the May 19 helicopter crash, Iran had agreed to hold technical negotiations with IAEA on May 20, following a visit by Grossi earlier in the month. But those meetings fell apart due to the crash. Iran then sent a letter on May 21, saying its nuclear team wants to continue discussions in Tehran “on an appropriate date that will be mutually agreed upon,” the report said.

The report also said Iran has still not provided answers to the IAEA’s years-long investigation about the origin and current location of manmade uranium particles found at two locations that Tehran has failed to declare as potential nuclear sites, Varamin and Turquzabad.

It said the IAEA’s request need to be resolved, otherwise the the agency “will not be able to confirm the correctness an completeness of Iran’s declarations” under a safeguards agreement between Tehran and the nuclear watchdog.

The report also said there was no progress so far in reinstalling more monitoring equipment, including cameras, removed in June 2022. Since then, the only recorded data is that of IAEA cameras installed at a centrifuge workshop in the city of Isfahan in May 2023 — although Iran has not provided the IAEA with access to this data.

The IAEA said that on May 21, IAEA inspectors after a delay in April “successfully serviced the cameras at the workshops in Isfahan and the data they had collected since late December 2023 were placed under separate Agency seals and Iranians seals at the locations.”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

Coronavirus disease 2019 (COVID-19): A literature review

Harapan harapan.

a Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

b Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

c Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

d Division of Infectious Diseases, AichiCancer Center Hospital, Chikusa-ku Nagoya, Japan

Amanda Yufika

e Department of Family Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

Wira Winardi

f Department of Pulmonology and Respiratory Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

g School of Medicine, The University of Western Australia, Perth, Australia

Haypheng Te

h Siem Reap Provincial Health Department, Ministry of Health, Siem Reap, Cambodia

Dewi Megawati

i Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia

j Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA

Zinatul Hayati

k Department of Clinical Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

Abram L. Wagner

l Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, MI 48109, USA

Mudatsir Mudatsir

In early December 2019, an outbreak of coronavirus disease 2019 (COVID-19), caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), occurred in Wuhan City, Hubei Province, China. On January 30, 2020 the World Health Organization declared the outbreak as a Public Health Emergency of International Concern. As of February 14, 2020, 49,053 laboratory-confirmed and 1,381 deaths have been reported globally. Perceived risk of acquiring disease has led many governments to institute a variety of control measures. We conducted a literature review of publicly available information to summarize knowledge about the pathogen and the current epidemic. In this literature review, the causative agent, pathogenesis and immune responses, epidemiology, diagnosis, treatment and management of the disease, control and preventions strategies are all reviewed.

On December 31, 2019, the China Health Authority alerted the World Health Organization (WHO) to several cases of pneumonia of unknown aetiology in Wuhan City in Hubei Province in central China. The cases had been reported since December 8, 2019, and many patients worked at or lived around the local Huanan Seafood Wholesale Market although other early cases had no exposure to this market [1] . On January 7, a novel coronavirus, originally abbreviated as 2019-nCoV by WHO, was identified from the throat swab sample of a patient [2] . This pathogen was later renamed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the Coronavirus Study Group [3] and the disease was named coronavirus disease 2019 (COVID-19) by the WHO. As of January 30, 7736 confirmed and 12,167 suspected cases had been reported in China and 82 confirmed cases had been detected in 18 other countries [4] . In the same day, WHO declared the SARS-CoV-2 outbreak as a Public Health Emergency of International Concern (PHEIC) [4] .

According to the National Health Commission of China, the mortality rate among confirmed cased in China was 2.1% as of February 4 [5] and the mortality rate was 0.2% among cases outside China [6] . Among patients admitted to hospitals, the mortality rate ranged between 11% and 15% [7] , [8] . COVID-19 is moderately infectious with a relatively high mortality rate, but the information available in public reports and published literature is rapidly increasing. The aim of this review is to summarize the current understanding of COVID-19 including causative agent, pathogenesis of the disease, diagnosis and treatment of the cases, as well as control and prevention strategies.

The virus: classification and origin

SARS-CoV-2 is a member of the family Coronaviridae and order Nidovirales. The family consists of two subfamilies, Coronavirinae and Torovirinae and members of the subfamily Coronavirinae are subdivided into four genera: (a) Alphacoronavirus contains the human coronavirus (HCoV)-229E and HCoV-NL63; (b) Betacoronavirus includes HCoV-OC43, Severe Acute Respiratory Syndrome human coronavirus (SARS-HCoV), HCoV-HKU1, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV); (c) Gammacoronavirus includes viruses of whales and birds and; (d) Deltacoronavirus includes viruses isolated from pigs and birds [9] . SARS-CoV-2 belongs to Betacoronavirus together with two highly pathogenic viruses, SARS-CoV and MERS-CoV. SARS-CoV-2 is an enveloped and positive-sense single-stranded RNA (+ssRNA) virus [16] .

SARS-CoV-2 is considered a novel human-infecting Betacoronavirus [10] . Phylogenetic analysis of the SARS-CoV-2 genome indicates that the virus is closely related (with 88% identity) to two bat-derived SARS-like coronaviruses collected in 2018 in eastern China (bat-SL-CoVZC45 and bat-SL-CoVZXC21) and genetically distinct from SARS-CoV (with about 79% similarity) and MERS-CoV [10] . Using the genome sequences of SARS-CoV-2, RaTG13, and SARS-CoV [11] , a further study found that the virus is more related to BatCoV RaTG13, a bat coronavirus that was previously detected in Rhinolophus affinis from Yunnan Province, with 96.2% overall genome sequence identity [11] . A study found that no evidence of recombination events detected in the genome of SARS-CoV-2 from other viruses originating from bats such as BatCoV RaTG13, SARS-CoV and SARSr-CoVs [11] . Altogether, these findings suggest that bats might be the original host of this virus [10] , [11] .

However, a study is needed to elucidate whether any intermediate hosts have facilitated the transmission of the virus to humans. Bats are unlikely to be the animal that is directly responsible for transmission of the virus to humans for several reasons [10] : (1) there were various non-aquatic animals (including mammals) available for purchase in Huanan Seafood Wholesale Market but no bats were sold or found; (2) SARS-CoV-2 and its close relatives, bat-SL-CoVZC45 and bat-SL-CoVZXC21, have a relatively long branch (sequence identity of less than 90%), suggesting those viruses are not direct ancestors of SARS-CoV-2; and (3) in other coronaviruses where bat is the natural reservoir such as SARS-CoV and MERS-CoV, other animals have acted as the intermediate host (civets and possibly camels, respectively). Nevertheless, bats do not always need an intermediary host to transmit viruses to humans. For example, Nipah virus in Bangladesh is transmitted through bats shedding into raw date palm sap [12] .

Transmission

The role of the Huanan Seafood Wholesale Market in propagating disease is unclear. Many initial COVID-19 cases were linked to this market suggesting that SARS-CoV-2 was transmitted from animals to humans [13] . However, a genomic study has provided evidence that the virus was introduced from another, yet unknown location, into the market where it spread more rapidly, although human-to-human transmission may have occurred earlier [14] . Clusters of infected family members and medical workers have confirmed the presence of person-to-person transmission [15] . After January 1, less than 10% of patients had market exposure and more than 70% patients had no exposure to the market [13] . Person-to-person transmission is thought to occur among close contacts mainly via respiratory droplets produced when an infected person coughs or sneezes. Fomites may be a large source of transmission, as SARS-CoV has been found to persist on surfaces up to 96 h [16] and other coronaviruses for up to 9 days [17] .

Whether or not there is asymptomatic transmission of disease is controversial. One initial study published on January 30 reported asymptomatic transmission [18] , but later it was found that the researchers had not directly interviewed the patient, who did in fact have symptoms prior to transmitting disease [19] . A more recent study published on February 21 also purported asymptomatic transmission [20] , but any such study could be limited by errors in self-reported symptoms or contact with other cases and fomites.

Findings about disease characteristics are rapidly changing and subject to selection bias. A study indicated the mean incubation period was 5.2 days (95% confidence interval [95%CI]: 4.1–7.0) [13] . The incubation period has been found to be as long as 19 or 24 days [21] , [22] , although case definitions typically rely on a 14 day window [23] .

The basic reproductive number ( R 0 ) has been estimated with varying results and interpretations. R 0 measures the average number of infections that could result from one infected individual in a fully susceptible population [24] . Studies from previous outbreaks found R 0 to be 2.7 for SARS [25] and 2.4 for 2009 pandemic H1N1 influenza [26] . One study estimated that that basic reproductive number ( R 0 ) was 2.2 (95% CI: 1.4–3.9) [13] . However, later in a further analysis of 12 available studies found that R 0 was 3.28 [27] . Because R 0 represents an average value it is also important to consider the role of super spreaders, who may be hugely responsible for outbreaks within large clusters but who would not largely influence the value of R 0 [28] . During the acute phase of an outbreak or prepandemic, R 0 may be unstable [24] .

In pregnancy, a study of nine pregnancy women who developed COVID-19 in late pregnancy suggested COVID-19 did not lead to substantially worse symptoms than in nonpregnant persons and there is no evidence for intrauterine infection caused by vertical transmission [29] .

In hospital setting, a study involving 138 COVID-19 suggested that hospital-associated transmission of SARS-CoV-2 occurred in 41% of patients [30] . Moreover, another study on 425 patients found that the proportion of cases in health care workers gradually increased by time [13] . These cases likely reflect exposure to a higher concentration of virus from sustained contact in close quarters.

Outside China, as of February 12, 2020, there were 441 confirmed COVID-19 cases reported in 24 countries [6] of which the first imported case was reported in Thailand on January 13, 2020 [6] , [31] . Among those countries, 11 countries have reported local transmission with the highest number of cases reported in Singapore with 47 confirmed cases [6] .

Risk factors

The incidence of SARS-CoV-2 infection is seen most often in adult male patients with the median age of the patients was between 34 and 59 years [20] , [30] , [7] , [32] . SARS-CoV-2 is also more likely to infect people with chronic comorbidities such as cardiovascular and cerebrovascular diseases and diabetes [8] . The highest proportion of severe cases occurs in adults ≥60 years of age, and in those with certain underlying conditions, such as cardiovascular and cerebrovascular diseases and diabetes [20] , [30] . Severe manifestations maybe also associated with coinfections of bacteria and fungi [8] .

Fewer COVID-19 cases have been reported in children less than 15 years [20] , [30] , [7] , [32] . In a study of 425 COVID-19 patients in Wuhan, published on January 29, there were no cases in children under 15 years of age [13] , [33] . Nevertheless, 28 paediatric patients have been reported by January 2020 [34] . The clinical features of infected paediatric patients vary, but most have had mild symptoms with no fever or pneumonia, and have a good prognosis [34] . Another study found that although a child had radiological ground-glass lung opacities, the patient was asymptomatic [35] . In summary, children might be less likely to be infected or, if infected, present milder manifestations than adults; therefore, it is possible that their parents will not seek out treatment leading to underestimates of COVID-19 incidence in this age group.

Pathogenesis and immune response

Like most other members of the coronavirus family, Betacoronavirus exhibit high species specificity, but subtle genetic changes can significantly alter their tissue tropism, host range, and pathogenicity. A striking example of the adaptability of these viruses is the emergence of deadly zoonotic diseases in human history caused by SARS-CoV [36] and MERS-CoV [37] . In both viruses, bats served as the natural reservoir and humans were the terminal host, with the palm civet and dromedary camel the intermediary host for SARS-CoV and MERS-CoV, respectively [38] , [39] . Intermediate hosts clearly play a critical role in cross species transmission as they can facilitate increased contact between a virus and a new host and enable further adaptation necessary for an effective replication in the new host [40] . Because of the pandemic potential of SARS-CoV-2, careful surveillance is immensely important to monitor its future host adaptation, viral evolution, infectivity, transmissibility, and pathogenicity.

The host range of a virus is governed by multiple molecular interactions, including receptor interaction. The envelope spike (S) protein receptor binding domain of SARS-CoV-2 was shown structurally similar to that of SARS-CoV, despite amino acid variation at some key residues [10] . Further extensive structural analysis strongly suggests that SARS-CoV-2 may use host receptor angiotensin-converting enzyme 2 (ACE2) to enter the cells [41] , the same receptor facilitating SARS-CoV to infect the airway epithelium and alveolar type 2 (AT2) pneumocytes, pulmonary cells that synthesize pulmonary surfactant [42] . In general, the spike protein of coronavirus is divided into the S1 and S2 domain, in which S1 is responsible for receptor binding and S2 domain is responsible for cell membrane fusion [10] . The S1 domain of SARS-CoV and SARS-CoV-2 share around 50 conserved amino acids, whereas most of the bat-derived viruses showed more variation [10] . In addition, identification of several key residues (Gln493 and Asn501) that govern the binding of SARS-CoV-2 receptor binding domain with ACE2 further support that SARS-CoV-2 has acquired capacity for person-to-person transmission [41] . Although, the spike protein sequence of receptor binding SARS-CoV-2 is more similar to that of SARS-CoV, at the whole genome level SARS-CoV-2 is more closely related to bat-SL-CoVZC45 and bat-SL-CoVZXC21 [10] .

However, receptor recognition is not the only determinant of species specificity. Immediately after binding to their receptive receptor, SARS-CoV-2 enters host cells where they encounter the innate immune response. In order to productively infect the new host, SARS-CoV-2 must be able to inhibit or evade host innate immune signalling. However, it is largely unknown how SARS-CoV-2 manages to evade immune response and drive pathogenesis. Given that COVID-19 and SARS have similar clinical features [7] , SARS-CoV-2 may have a similar pathogenesis mechanism as SARS-CoV. In response to SARS-CoV infections, the type I interferon (IFN) system induces the expression of IFN-stimulated genes (ISGs) to inhibit viral replication. To overcome this antiviral activity, SARS-CoV encodes at least 8 viral antagonists that modulate induction of IFN and cytokines and evade ISG effector function [43] .

The host immune system response to viral infection by mediating inflammation and cellular antiviral activity is critical to inhibit viral replication and dissemination. However, excessive immune responses together with lytic effects of the virus on host cells will result in pathogenesis. Studies have shown patients suffering from severe pneumonia, with fever and dry cough as common symptoms at onset of illness [7] , [8] . Some patients progressed rapidly with Acute Respiratory Stress Syndrome (ARDS) and septic shock, which was eventually followed by multiple organ failure and about 10% of patients have died [8] . ARDS progression and extensive lung damage in COVID-19 are further indications that ACE2 might be a route of entry for the SARS-CoV-2 as ACE2 is known abundantly present on ciliated cells of the airway epithelium and alveolar type II (cells (pulmonary cells that synthesize pulmonary surfactant) in humans [44] .

Patients with SARS and COVID-19 have similar patterns of inflammatory damage. In serum from patients diagnosed with SARS, there is increased levels of proinflammatory cytokines (e.g. interleukin (IL)-1, IL6, IL12, interferon gamma (IFNγ), IFN-γ-induced protein 10 (IP10), macrophage inflammatory proteins 1A (MIP1A) and monocyte chemoattractant protein-1 (MCP1)), which are associated with pulmonary inflammation and severe lung damage [45] . Likewise, patients infected with SARS-CoV-2 are reported to have higher plasma levels of proinflammatory cytokines including IL1β, IL-2, IL7, TNF-α, GSCF, MCP1 than healthy adults [7] . Importantly, patients in the intensive care unit (ICU) have a significantly higher level of GSCF, IP10, MCP1, and TNF-α than those non-ICU patients, suggesting that a cytokine storm might be an underlying cause of disease severity [7] . Unexpectedly, anti-inflammatory cytokines such as IL10 and IL4 were also increased in those patients [7] , which was uncommon phenomenon for an acute phase viral infection. Another interesting finding, as explained before, was that SARS-CoV-2 has shown to preferentially infect older adult males with rare cases reported in children [7] , [8] . The same trend was observed in primate models of SARS-CoV where the virus was found more likely to infect aged Cynomolgus macaque than young adults [46] . Further studies are necessary to identify the virulence factors and the host genes of SARS-CoV-2 that allows the virus to cross the species-specific barrier and cause lethal disease in humans.

Clinical manifestations

Clinical manifestations of 2019-nCoV infection have similarities with SARS-CoV where the most common symptoms include fever, dry cough, dyspnoea, chest pain, fatigue and myalgia [7] , [30] , [47] . Less common symptoms include headache, dizziness, abdominal pain, diarrhoea, nausea, and vomiting [7] , [30] . Based on the report of the first 425 confirmed cases in Wuhan, the common symptoms include fever, dry cough, myalgia and fatigue with less common are sputum production, headache, haemoptysis, abdominal pain, and diarrhoea [13] . Approximately 75% patients had bilateral pneumonia [8] . Different from SARS-CoV and MERS-CoV infections, however, is that very few COVID-19 patients show prominent upper respiratory tract signs and symptoms such as rhinorrhoea, sneezing, or sore throat, suggesting that the virus might have greater preference for infecting the lower respiratory tract [7] . Pregnant and non-pregnant women have similar characteristics [48] . The common clinical presentation of 2019-nCoV infection are presented in Table 1 .

Clinical symptoms of patients with 2019-nCoV infection.

Severe complications such as hypoxaemia, acute ARDS, arrythmia, shock, acute cardiac injury, and acute kidney injury have been reported among COVID-19 patients [7] , [8] . A study among 99 patients found that approximately 17% patients developed ARDS and, among them, 11% died of multiple organ failure [8] . The median duration from first symptoms to ARDS was 8 days [30] .

Efforts to control spread of COVID-19, institute quarantine and isolation measures, and appropriately clinically manage patients all require useful screening and diagnostic tools. While SARS-CoV-2 is spreading, other respiratory infections may be more common in a local community. The WHO has released a guideline on case surveillance of COVID-19 on January 31, 2020 [23] . For a person who meets certain criteria, WHO recommends to first screen for more common causes of respiratory illness given the season and location. If a negative result is found, the sample should be sent to referral laboratory for SARS-CoV-2 detection.

Case definitions can vary by country and will evolve over time as the epidemiological circumstances change in a given location. In China, a confirmed case from January 15, 2020 required an epidemiological linkage to Wuhan within 2 weeks and clinical features such as fever, pneumonia, and low white blood cell count. On January 18, 2020 the epidemiological criterion was expanded to include contact with anyone who had been in Wuhan in the past 2 weeks [50] . Later, the case definitions removed the epidemiological linkage.

The WHO has put forward case definitions [23] . Suspected cases of COVID-19 are persons (a) with severe acute respiratory infections (history of fever and cough requiring admission to hospital) and with no other aetiology that fully explains the clinical presentation and a history of travel to or residence in China during the 14 days prior to symptom onset; or (b) a patient with any acute respiratory illness and at least one of the following during the 14 days prior to symptom onset: contact with a confirmed or probable case of SARS-CoV-2 infection or worked in or attended a health care facility where patients with confirmed or probable SARS-CoV-2 acute respiratory disease patients were being treated. Probable cases are those for whom testing for SARS-CoV-2 is inconclusive or who test positive using a pan-coronavirus assay and without laboratory evidence of other respiratory pathogens. A confirmed case is one with a laboratory confirmation of SARS-CoV-2 infection, irrespective of clinical signs and symptoms.

For patients who meet diagnostic criteria for SARS-CoV-2 testing, the CDC recommends collection of specimens from the upper respiratory tract (nasopharyngeal and oropharyngeal swab) and, if possible, the lower respiratory tract (sputum, tracheal aspirate, or bronchoalveolar lavage) [51] . In each country, the tests are performed by laboratories designated by the government.

Laboratory findings

Among COVID-19 patients, common laboratory abnormalities include lymphopenia [8] , [20] , [30] , prolonged prothrombin time, and elevated lactate dehydrogenase [30] . ICU-admitted patients had more laboratory abnormalities compared with non-ICU patients [30] , [7] . Some patients had elevated aspartate aminotransferase, creatine kinase, creatinine, and C-reactive protein [20] , [7] , [35] . Most patients have shown normal serum procalcitonin levels [20] , [30] , [7] .

COVID-19 patients have high level of IL1β, IFN-γ, IP10, and MCP1 [7] . ICU-admitted patients tend to have higher concentration of granulocyte-colony stimulating factor (GCSF), IP10, MCP1A, MIP1A, and TNF-α [7] .

Radiology findings

Radiology finding may vary with patients age, disease progression, immunity status, comorbidity, and initial medical intervention [52] . In a study describing 41 of the initial cases of 2019-nCoV infection, all 41 patients had pneumonia with abnormal findings on chest computed tomography (CT-scan) [7] . Abnormalities on chest CT-scan were also seen in another study of 6 cases, in which all of them showed multifocal patchy ground-glass opacities notably nearby the peripheral sections of the lungs [35] . Data from studies indicate that the typical of chest CT-scan findings are bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities [7] , [8] , [20] , [30] , [32] , [53] . The consolidated lung lesions among patients five or more days from disease onset and those 50 years old or older compared to 4 or fewer days and those 50 years or younger, respectively [47] .

As the disease course continue, mild to moderate progression of disease were noted in some cases which manifested by extension and increasing density of lung opacities [49] . Bilateral multiple lobular and subsegmental areas of consolidation are typical findings on chest CT-scan of ICU-admitted patients [7] . A study among 99 patients, one patient had pneumothorax in an imaging examination [8] .

Similar to MERS-CoV and SARS-CoV, there is still no specific antiviral treatment for COVID-19 [54] . Isolation and supportive care including oxygen therapy, fluid management, and antibiotics treatment for secondary bacterial infections is recommended [55] . Some COVID-19 patients progressed rapidly to ARDS and septic shock, which was eventually followed by multiple organ failure [7] , [8] . Therefore, the effort on initial management of COVID-19 must be addressed to the early recognition of the suspect and contain the disease spread by immediate isolation and infection control measures [56] .

Currently, no vaccination is available, but even if one was available, uptake might be suboptimal. A study of intention to vaccinate during the H1N1 pandemic in the United States was around 50% at the start of the pandemic in May 2009 but had decreased to 16% by January 2010 [57] .

Neither is a treatment available. Therefore, the management of the disease has been mostly supportive referring to the disease severity which has been introduced by WHO. If sepsis is identified, empiric antibiotic should be administered based on clinical diagnosis and local epidemiology and susceptibility information. Routine glucocorticoids administration are not recommended to use unless there are another indication [58] . Clinical evidence also does not support corticosteroid treatment [59] . Use of intravenous immunoglobulin might help for severely ill patients [8] .

Drugs are being evaluated in line with past investigations into therapeutic treatments for SARS and MERS [60] . Overall, there is not robust evidence that these antivirals can significantly improve clinical outcomes A. Antiviral drugs such as oseltamivir combined with empirical antibiotic treatment have also been used to treat COVID-19 patients [7] . Remdesivir which was developed for Ebola virus, has been used to treat imported COVID-19 cases in US [61] . A brief report of treatment combination of Lopinavir/Ritonavir, Arbidol, and Shufeng Jiedu Capsule (SFJDC), a traditional Chinese medicine, showed a clinical benefit to three of four COVID-19 patients [62] . There is an ongoing clinical trial evaluating the safety and efficacy of lopinavir-ritonavir and interferon-α 2b in patients with COVID-19 [55] . Ramsedivir, a broad spectrum antivirus has demonstrated in vitro and in vivo efficacy against SARS-CoV-2 and has also initiated its clinical trial [63] , [64] . In addition, other potential drugs from existing antiviral agent have also been proposed [65] , [66] .

Control and prevention strategies

COVID-19 is clearly a serious disease of international concern. By some estimates it has a higher reproductive number than SARS [27] , and more people have been reported to have been infected or died from it than SARS [67] . Similar to SARS-CoV and MERS-CoV, disrupting the chain of transmission is considered key to stopping the spread of disease [68] . Different strategies should be implemented in health care settings and at the local and global levels.

Health care settings can unfortunately be an important source of viral transmission. As shown in the model for SARS, applying triage, following correct infection control measures, isolating the cases and contact tracing are key to limit the further spreading of the virus in clinics and hospitals [68] . Suspected cases presenting at healthcare facilities with symptoms of respiratory infections (e.g. runny nose, fever and cough) must wear a face mask to contain the virus and strictly adhere triage procedure. They should not be permitted to wait with other patients seeking medical care at the facilities. They should be placed in a separated, fully ventilated room and approximately 2 m away from other patients with convenient access to respiratory hygiene supplies [69] . In addition, if a confirmed COVID-19 case require hospitalization, they must be placed in a single patient room with negative air pressure – a minimum of six air changes per hour. Exhausted air has to be filtered through high efficiency particulate air (HEPA) and medical personnel entering the room should wear personal protective equipment (PPE) such as gloves, gown, disposable N95, and eye protection. Once the cases are recovered and discharged, the room should be decontaminated or disinfected and personnel entering the room need to wear PPE particularly facemask, gown, eye protection [69] .

In a community setting, isolating infected people are the primary measure to interrupt the transmission. For example, immediate actions taken by Chinese health authorities included isolating the infected people and quarantining of suspected people and their close contacts [70] . Also, as there are still conflicting assumptions regarding the animal origins of the virus (i.e. some studies linked the virus to bat [71] , [72] while others associated the virus with snake [73] ), contacts with these animal fluids or tissues or consumption of wild caught animal meet should be avoided. Moreover, educating the public to recognize unusual symptoms such as chronic cough or shortness of breath is essential therefore that they could seek medical care for early detection of the virus. If large-scale community transmission occurs, mitigating social gatherings, temporary school closure, home isolation, close monitoring of symptomatic individual, provision of life supports (e.g. oxygen supply, mechanical ventilator), personal hand hygiene, and wearing personal protective equipment such as facemask should also be enforced [74] .

In global setting, locking down Wuhan city was one of the immediate measure taken by Chinese authorities and hence had slowed the global spread of COVID-19 [74] . Air travel should be limited for the cases unless severe medical attentions are required. Setting up temperature check or scanning is mandatory at airport and border to identify the suspected cases. Continued research into the virus is critical to trace the source of the outbreak and provide evidence for future outbreak [74] .

Conclusions

The current COVID-19 pandemic is clearly an international public health problem. There have been rapid advances in what we know about the pathogen, how it infects cells and causes disease, and clinical characteristics of disease. Due to rapid transmission, countries around the world should increase attention into disease surveillance systems and scale up country readiness and response operations including establishing rapid response teams and improving the capacity of the national laboratory system.

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not required.

The state of AI in early 2024: Gen AI adoption spikes and starts to generate value

If 2023 was the year the world discovered generative AI (gen AI) , 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey  on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our previous survey just ten months ago. Respondents’ expectations for gen AI’s impact remain as high as they were last year , with three-quarters predicting that gen AI will lead to significant or disruptive change in their industries in the years ahead.

About the authors

This article is a collaborative effort by Alex Singla , Alexander Sukharevsky , Lareina Yee , and Michael Chui , with Bryce Hall , representing views from QuantumBlack, AI by McKinsey, and McKinsey Digital.

Organizations are already seeing material benefits from gen AI use, reporting both cost decreases and revenue jumps in the business units deploying the technology. The survey also provides insights into the kinds of risks presented by gen AI—most notably, inaccuracy—as well as the emerging practices of top performers to mitigate those challenges and capture value.

AI adoption surges

Interest in generative AI has also brightened the spotlight on a broader set of AI capabilities. For the past six years, AI adoption by respondents’ organizations has hovered at about 50 percent. This year, the survey finds that adoption has jumped to 72 percent (Exhibit 1). And the interest is truly global in scope. Our 2023 survey found that AI adoption did not reach 66 percent in any region; however, this year more than two-thirds of respondents in nearly every region say their organizations are using AI. 1 Organizations based in Central and South America are the exception, with 58 percent of respondents working for organizations based in Central and South America reporting AI adoption. Looking by industry, the biggest increase in adoption can be found in professional services. 2 Includes respondents working for organizations focused on human resources, legal services, management consulting, market research, R&D, tax preparation, and training.

Also, responses suggest that companies are now using AI in more parts of the business. Half of respondents say their organizations have adopted AI in two or more business functions, up from less than a third of respondents in 2023 (Exhibit 2).

Gen AI adoption is most common in the functions where it can create the most value

Most respondents now report that their organizations—and they as individuals—are using gen AI. Sixty-five percent of respondents say their organizations are regularly using gen AI in at least one business function, up from one-third last year. The average organization using gen AI is doing so in two functions, most often in marketing and sales and in product and service development—two functions in which previous research  determined that gen AI adoption could generate the most value 3 “ The economic potential of generative AI: The next productivity frontier ,” McKinsey, June 14, 2023. —as well as in IT (Exhibit 3). The biggest increase from 2023 is found in marketing and sales, where reported adoption has more than doubled. Yet across functions, only two use cases, both within marketing and sales, are reported by 15 percent or more of respondents.

Gen AI also is weaving its way into respondents’ personal lives. Compared with 2023, respondents are much more likely to be using gen AI at work and even more likely to be using gen AI both at work and in their personal lives (Exhibit 4). The survey finds upticks in gen AI use across all regions, with the largest increases in Asia–Pacific and Greater China. Respondents at the highest seniority levels, meanwhile, show larger jumps in the use of gen Al tools for work and outside of work compared with their midlevel-management peers. Looking at specific industries, respondents working in energy and materials and in professional services report the largest increase in gen AI use.

Investments in gen AI and analytical AI are beginning to create value

The latest survey also shows how different industries are budgeting for gen AI. Responses suggest that, in many industries, organizations are about equally as likely to be investing more than 5 percent of their digital budgets in gen AI as they are in nongenerative, analytical-AI solutions (Exhibit 5). Yet in most industries, larger shares of respondents report that their organizations spend more than 20 percent on analytical AI than on gen AI. Looking ahead, most respondents—67 percent—expect their organizations to invest more in AI over the next three years.

Where are those investments paying off? For the first time, our latest survey explored the value created by gen AI use by business function. The function in which the largest share of respondents report seeing cost decreases is human resources. Respondents most commonly report meaningful revenue increases (of more than 5 percent) in supply chain and inventory management (Exhibit 6). For analytical AI, respondents most often report seeing cost benefits in service operations—in line with what we found last year —as well as meaningful revenue increases from AI use in marketing and sales.

Inaccuracy: The most recognized and experienced risk of gen AI use

As businesses begin to see the benefits of gen AI, they’re also recognizing the diverse risks associated with the technology. These can range from data management risks such as data privacy, bias, or intellectual property (IP) infringement to model management risks, which tend to focus on inaccurate output or lack of explainability. A third big risk category is security and incorrect use.

Respondents to the latest survey are more likely than they were last year to say their organizations consider inaccuracy and IP infringement to be relevant to their use of gen AI, and about half continue to view cybersecurity as a risk (Exhibit 7).

Conversely, respondents are less likely than they were last year to say their organizations consider workforce and labor displacement to be relevant risks and are not increasing efforts to mitigate them.

In fact, inaccuracy— which can affect use cases across the gen AI value chain , ranging from customer journeys and summarization to coding and creative content—is the only risk that respondents are significantly more likely than last year to say their organizations are actively working to mitigate.

Some organizations have already experienced negative consequences from the use of gen AI, with 44 percent of respondents saying their organizations have experienced at least one consequence (Exhibit 8). Respondents most often report inaccuracy as a risk that has affected their organizations, followed by cybersecurity and explainability.

Our previous research has found that there are several elements of governance that can help in scaling gen AI use responsibly, yet few respondents report having these risk-related practices in place. 4 “ Implementing generative AI with speed and safety ,” McKinsey Quarterly , March 13, 2024. For example, just 18 percent say their organizations have an enterprise-wide council or board with the authority to make decisions involving responsible AI governance, and only one-third say gen AI risk awareness and risk mitigation controls are required skill sets for technical talent.

Bringing gen AI capabilities to bear

The latest survey also sought to understand how, and how quickly, organizations are deploying these new gen AI tools. We have found three archetypes for implementing gen AI solutions : takers use off-the-shelf, publicly available solutions; shapers customize those tools with proprietary data and systems; and makers develop their own foundation models from scratch. 5 “ Technology’s generational moment with generative AI: A CIO and CTO guide ,” McKinsey, July 11, 2023. Across most industries, the survey results suggest that organizations are finding off-the-shelf offerings applicable to their business needs—though many are pursuing opportunities to customize models or even develop their own (Exhibit 9). About half of reported gen AI uses within respondents’ business functions are utilizing off-the-shelf, publicly available models or tools, with little or no customization. Respondents in energy and materials, technology, and media and telecommunications are more likely to report significant customization or tuning of publicly available models or developing their own proprietary models to address specific business needs.

Respondents most often report that their organizations required one to four months from the start of a project to put gen AI into production, though the time it takes varies by business function (Exhibit 10). It also depends upon the approach for acquiring those capabilities. Not surprisingly, reported uses of highly customized or proprietary models are 1.5 times more likely than off-the-shelf, publicly available models to take five months or more to implement.

Gen AI high performers are excelling despite facing challenges

Gen AI is a new technology, and organizations are still early in the journey of pursuing its opportunities and scaling it across functions. So it’s little surprise that only a small subset of respondents (46 out of 876) report that a meaningful share of their organizations’ EBIT can be attributed to their deployment of gen AI. Still, these gen AI leaders are worth examining closely. These, after all, are the early movers, who already attribute more than 10 percent of their organizations’ EBIT to their use of gen AI. Forty-two percent of these high performers say more than 20 percent of their EBIT is attributable to their use of nongenerative, analytical AI, and they span industries and regions—though most are at organizations with less than $1 billion in annual revenue. The AI-related practices at these organizations can offer guidance to those looking to create value from gen AI adoption at their own organizations.

To start, gen AI high performers are using gen AI in more business functions—an average of three functions, while others average two. They, like other organizations, are most likely to use gen AI in marketing and sales and product or service development, but they’re much more likely than others to use gen AI solutions in risk, legal, and compliance; in strategy and corporate finance; and in supply chain and inventory management. They’re more than three times as likely as others to be using gen AI in activities ranging from processing of accounting documents and risk assessment to R&D testing and pricing and promotions. While, overall, about half of reported gen AI applications within business functions are utilizing publicly available models or tools, gen AI high performers are less likely to use those off-the-shelf options than to either implement significantly customized versions of those tools or to develop their own proprietary foundation models.

What else are these high performers doing differently? For one thing, they are paying more attention to gen-AI-related risks. Perhaps because they are further along on their journeys, they are more likely than others to say their organizations have experienced every negative consequence from gen AI we asked about, from cybersecurity and personal privacy to explainability and IP infringement. Given that, they are more likely than others to report that their organizations consider those risks, as well as regulatory compliance, environmental impacts, and political stability, to be relevant to their gen AI use, and they say they take steps to mitigate more risks than others do.

Gen AI high performers are also much more likely to say their organizations follow a set of risk-related best practices (Exhibit 11). For example, they are nearly twice as likely as others to involve the legal function and embed risk reviews early on in the development of gen AI solutions—that is, to “ shift left .” They’re also much more likely than others to employ a wide range of other best practices, from strategy-related practices to those related to scaling.

In addition to experiencing the risks of gen AI adoption, high performers have encountered other challenges that can serve as warnings to others (Exhibit 12). Seventy percent say they have experienced difficulties with data, including defining processes for data governance, developing the ability to quickly integrate data into AI models, and an insufficient amount of training data, highlighting the essential role that data play in capturing value. High performers are also more likely than others to report experiencing challenges with their operating models, such as implementing agile ways of working and effective sprint performance management.

About the research

The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. Of those respondents, 981 said their organizations had adopted AI in at least one business function, and 878 said their organizations were regularly using gen AI in at least one function. To adjust for differences in response rates, the data are weighted by the contribution of each respondent’s nation to global GDP.

Alex Singla and Alexander Sukharevsky  are global coleaders of QuantumBlack, AI by McKinsey, and senior partners in McKinsey’s Chicago and London offices, respectively; Lareina Yee  is a senior partner in the Bay Area office, where Michael Chui , a McKinsey Global Institute partner, is a partner; and Bryce Hall  is an associate partner in the Washington, DC, office.

They wish to thank Kaitlin Noe, Larry Kanter, Mallika Jhamb, and Shinjini Srivastava for their contributions to this work.

This article was edited by Heather Hanselman, a senior editor in McKinsey’s Atlanta office.

Explore a career with us

Related articles.

One large blue ball in mid air above many smaller blue, green, purple and white balls

Moving past gen AI’s honeymoon phase: Seven hard truths for CIOs to get from pilot to scale

A thumb and an index finger form a circular void, resembling the shape of a light bulb but without the glass component. Inside this empty space, a bright filament and the gleaming metal base of the light bulb are visible.

A generative AI reset: Rewiring to turn potential into value in 2024

High-tech bees buzz with purpose, meticulously arranging digital hexagonal cylinders into a precisely stacked formation.

Implementing generative AI with speed and safety

IMAGES

  1. Protecting and mobilizing youth in COVID-19 responses

    report essay about covid 19

  2. UN/DESA Policy Brief #85: Impact of COVID-19: perspective from

    report essay about covid 19

  3. Complete Essay on Coronavirus (COVID-19) (with latest statistics)

    report essay about covid 19

  4. Guidelines to Plan for COVID-19 Vaccine Introduction, Version: July

    report essay about covid 19

  5. How to protect yourself from the spread of COVID-19

    report essay about covid 19

  6. ≫ Nationalism and Covid-19 Pandemic Free Essay Sample on Samploon.com

    report essay about covid 19

VIDEO

  1. coronavirus introduction in hindi || essay on corona in english || corona essay writing in english

  2. Essay on Coronavirus in English

  3. whats covid 19.by ‎@Inspiredrecitals . corona virus #covid19 #coronavirus

  4. Karangan Covid 19

  5. Essay Hslc 2021- Covid 19

  6. Essay about During the Covid-19 pandemic what technologies you used to help your studies.@Gurubaa

COMMENTS

  1. How to Write About Coronavirus in a College Essay

    Writing About COVID-19 in College Essays. Experts say students should be honest and not limit themselves to merely their experiences with the pandemic. The global impact of COVID-19, the disease ...

  2. An Introduction to COVID-19

    A novel coronavirus (CoV) named '2019-nCoV' or '2019 novel coronavirus' or 'COVID-19' by the World Health Organization (WHO) is in charge of the current outbreak of pneumonia that began at the beginning of December 2019 near in Wuhan City, Hubei Province, China [1-4]. COVID-19 is a pathogenic virus. From the phylogenetic analysis ...

  3. Impact of COVID-19 on the social, economic, environmental and energy

    1. Introduction. The newly identified infectious coronavirus (SARS-CoV-2) was discovered in Wuhan and has spread rapidly since December 2019 within China and to other countries around the globe (Zhou et al., 2020; Kabir et al., 2020).The source of SARS-CoV-2 is still unclear (Gorbalenya et al., 2020).Fig. 1 demonstrates the initial timeline of the development of SARS-CoV-2 (Yan et al., 2020).

  4. COVID-19 pandemic and its impact on social relationships and health

    This essay examines key aspects of social relationships that were disrupted by the COVID-19 pandemic. It focuses explicitly on relational mechanisms of health and brings together theory and emerging evidence on the effects of the COVID-19 pandemic to make recommendations for future public health policy and recovery. We first provide an overview of the pandemic in the UK context, outlining the ...

  5. The COVID-19 pandemic as a scientific and social challenge in the 21st

    Abstract. The coronavirus disease-2019 (COVID-19) pandemic, caused by the new coronavirus SARS-CoV-2, has spread around the globe with unprecedented consequences for the health of millions of people. While the pandemic is still in progress, with new incidents being reported every day, the resilience of the global society is constantly being ...

  6. Introduction

    The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in ...

  7. Coronavirus disease (COVID-19) pandemic: an overview of systematic

    The spread of the "Severe Acute Respiratory Coronavirus 2" (SARS-CoV-2), the causal agent of COVID-19, was characterized as a pandemic by the World Health Organization (WHO) in March 2020 and has triggered an international public health emergency [].The numbers of confirmed cases and deaths due to COVID-19 are rapidly escalating, counting in millions [], causing massive economic strain ...

  8. Frontiers

    Majeed et al., on the other hand, examined the relation between problematic social media use, fear of COVID-19, depression, and mindfulness. Their study, involving 267 Pakistani adults (90 female), suggested trait mindfulness had a buffer effect, reducing the impact of problematic media use and fear of COVID-19 on depression.

  9. Coronavirus disease (COVID-19)

    Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most people infected with the virus will experience mild to moderate respiratory illness and recover without requiring special treatment. However, some will become seriously ill and require medical attention. Older people and those with underlying medical ...

  10. Report Writing on COVID-19 for Students

    Sample Report on COVID-19 in India for Students. The spread of COVID-19 in India began with the first case being reported in Kerala on January 30, 2020. In a year's time, more than twenty-eight million people were tested positive for COVID. Around five million people - the highest recorded number of diagnosed cases - were from Maharashtra ...

  11. Impact of COVID-19 on people's livelihoods, their health and our food

    Joint statement by ILO, FAO, IFAD and WHO. The COVID-19 pandemic has led to a dramatic loss of human life worldwide and presents an unprecedented challenge to public health, food systems and the world of work. The economic and social disruption caused by the pandemic is devastating: tens of millions of people are at risk of falling into extreme ...

  12. The Origins of Covid-19

    Key Events in the Effort to Determine the Origins of the Covid-19 Pandemic. The joint WHO-China technical report published in March 2021 rated a zoonotic spillover as a "likely to very likely ...

  13. COVID-19 impact on research, lessons learned from COVID-19 ...

    As reported by the CDC, from February 12 to April 2, 2020, of 149,760 cases of confirmed COVID-19 in the United States, 2572 (1.7%) were children aged <18 years, similar to published rates in ...

  14. Coronapod: The big COVID research papers of 2020

    Download MP3. In the final Coronapod of 2020, we dive into the scientific literature to reflect on the COVID-19 pandemic. Researchers have discovered so much about SARS-CoV-2 - information that ...

  15. PDF The Impact of Covid-19 on Student Experiences and Expectations ...

    more likely to delay graduation due to COVID-19 and are 41% more likely to report that COVID-19 impacted their major choice. Further, COVID-19 nearly doubled the gap between higher- and lower-income students' expected GPA.4 There also is substantial variation in the pandemic's e ect on preference for online learning,

  16. A Narrative Review of COVID-19: The New Pandemic Disease

    After the Spanish flu, now the world is in the grip of coronavirus disease 2019 (COVID-19). First detected in 2019 in the Chinese city of Wuhan, COVID-19 causes severe acute respiratory distress syndrome. Despite the initial evidence indicating a zoonotic origin, the contagion is now known to primarily spread from person to person through ...

  17. SARS-CoV-2

    It is contagious in humans and is the cause of the coronavirus disease 2019 (COVID-19). Latest Research and Reviews. Kinetics of SARS-CoV-2 infection biomarkers in a household transmission study.

  18. Global research on coronavirus disease (COVID-19)

    The WHO Covid-19 Research Database was maintained by the WHO Library & Digital Information Networks and was funded by COVID-19 emergency funds. The database was built by BIREME, the Specialized Center of PAHO/AMRO. Its content spanned the time period March 2020 to June 2023. It has now been archived, and no longer searchable since January 2024.

  19. Scientific papers and resources on COVID-19

    Readers will find below recently published articles on COVID-19, including links to the full-texts. The Pan American Health Organization has put together a set of technical guidelines, recommendations, scientific publications, and ongoing research protocols from the Americas and affected countries worldwide regarding the coronavirus disease ...

  20. Covid 19 Essay in English

    100 Words Essay on Covid 19. COVID-19 or Corona Virus is a novel coronavirus that was first identified in 2019. It is similar to other coronaviruses, such as SARS-CoV and MERS-CoV, but it is more contagious and has caused more severe respiratory illness in people who have been infected. The novel coronavirus became a global pandemic in a very ...

  21. Teaching in vocational training

    Search 218,701,386 papers from all fields of science. Search. Sign In Create Free ... {Souza2024TeachingIV, title={Teaching in vocational training - the connection between mental health and the COVID-19 pandemic: an experience report}, author={Odilon Adolfo Branco de Souza and Claudia Mara de Melo Tavares}, journal={Concilium}, year={2024 ...

  22. COVID-19 eliminated a decade of progress in global level of life

    World Health Statistics 2024 report urges countries to redouble efforts towards health-related SDGs by 2030. Geneva, May 24, 2024 — The latest edition of the World Health Statistics released today by the World Health Organization (WHO) reveals that the COVID-19 pandemic reversed the trend of steady gain in life expectancy at birth and healthy life expectancy at birth (HALE).

  23. Editor in Chief's Introduction to Essays on the Impact of COVID-19 on

    Editor in Chief's Introduction to Essays on the Impact of COVID-19 on Work and Workers. On March 11, 2020, the World Health Organization declared that COVID-19 was a global pandemic, indicating significant global spread of an infectious disease ( World Health Organization, 2020 ). At that point, there were 118,000 confirmed cases of the ...

  24. The race to deploy generative AI and raise skills

    Both regions navigated even higher levels of labor market shifts at the height of the COVID-19 period, suggesting that they can handle this scale of future job transitions. ... and teaching and training—skills they report as currently being in short supply. Companies plan to focus on retraining workers, more than hiring or subcontracting, to ...

  25. COVID-19 eliminated a decade of progress in global level of life expectancy

    The latest edition of the World Health Statistics released today by the World Health Organization (WHO) reveals that the COVID-19 pandemic reversed the trend of steady gain in life expectancy at birth and healthy life expectancy at birth (HALE).. The pandemic wiped out nearly a decade of progress in improving life expectancy within just two years. Between 2019 and 2021, global life expectancy ...

  26. Gender Diversity in The Executive Board: 2024 Report to The Board ...

    This report summarizes the Executive Board's recommendations for these targets and lays out proposals for concerted actions that can be taken by individual countries and constituencies. Policy Paper No. 2024/006. occasional. Please address any questions about this title to [email protected]. The benefits of gender diversity are well known ...

  27. Iran further increases its stockpile of uranium enriched to near

    The report, seen by The Associated Press, said that as of May 11, Iran has 142.1 kilograms (313.2 pounds) of uranium enriched up to 60% — an increase of 20.6 kilograms (45.4 pounds) since the last report by the U.N. watchdog in February. Uranium enriched at 60% purity is just a short, technical step away from weapons-grade levels of 90%.

  28. Coronavirus disease 2019 (COVID-19): A literature review

    Transmission. The role of the Huanan Seafood Wholesale Market in propagating disease is unclear. Many initial COVID-19 cases were linked to this market suggesting that SARS-CoV-2 was transmitted from animals to humans .However, a genomic study has provided evidence that the virus was introduced from another, yet unknown location, into the market where it spread more rapidly, although human-to ...

  29. Meningococcal Vaccines Analysis Report 2024: A $3.1 Billion

    Dublin, May 29, 2024 (GLOBE NEWSWIRE) -- The "Meningococcal Vaccines Market Report 2024-2034" report has been added to ResearchAndMarkets.com's offering. Meningococcal Vaccines Market will surpass ...

  30. The state of AI in early 2024: Gen AI adoption spikes and starts to

    If 2023 was the year the world discovered generative AI (gen AI), 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our ...