When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • About This Blog
  • Official PLOS Blog
  • EveryONE Blog
  • Speaking of Medicine
  • PLOS Biologue
  • Absolutely Maybe
  • DNA Science
  • PLOS ECR Community
  • All Models Are Wrong
  • About PLOS Blogs

A Guide to Using the Scientific Method in Everyday Life

scientific method problem solving examples in real life

The  scientific method —the process used by scientists to understand the natural world—has the merit of investigating natural phenomena in a rigorous manner. Working from hypotheses, scientists draw conclusions based on empirical data. These data are validated on large-scale numbers and take into consideration the intrinsic variability of the real world. For people unfamiliar with its intrinsic jargon and formalities, science may seem esoteric. And this is a huge problem: science invites criticism because it is not easily understood. So why is it important, then, that every person understand how science is done?

Because the scientific method is, first of all, a matter of logical reasoning and only afterwards, a procedure to be applied in a laboratory.

Individuals without training in logical reasoning are more easily victims of distorted perspectives about themselves and the world. An example is represented by the so-called “ cognitive biases ”—systematic mistakes that individuals make when they try to think rationally, and which lead to erroneous or inaccurate conclusions. People can easily  overestimate the relevance  of their own behaviors and choices. They can  lack the ability to self-estimate the quality of their performances and thoughts . Unconsciously, they could even end up selecting only the arguments  that support their hypothesis or beliefs . This is why the scientific framework should be conceived not only as a mechanism for understanding the natural world, but also as a framework for engaging in logical reasoning and discussion.

A brief history of the scientific method

The scientific method has its roots in the sixteenth and seventeenth centuries. Philosophers Francis Bacon and René Descartes are often credited with formalizing the scientific method because they contrasted the idea that research should be guided by metaphysical pre-conceived concepts of the nature of reality—a position that, at the time,  was highly supported by their colleagues . In essence, Bacon thought that  inductive reasoning based on empirical observation was critical to the formulation of hypotheses  and the  generation of new understanding : general or universal principles describing how nature works are derived only from observations of recurring phenomena and data recorded from them. The inductive method was used, for example, by the scientist Rudolf Virchow to formulate the third principle of the notorious  cell theory , according to which every cell derives from a pre-existing one. The rationale behind this conclusion is that because all observations of cell behavior show that cells are only derived from other cells, this assertion must be always true. 

Inductive reasoning, however, is not immune to mistakes and limitations. Referring back to cell theory, there may be rare occasions in which a cell does not arise from a pre-existing one, even though we haven’t observed it yet—our observations on cell behavior, although numerous, can still benefit from additional observations to either refute or support the conclusion that all cells arise from pre-existing ones. And this is where limited observations can lead to erroneous conclusions reasoned inductively. In another example, if one never has seen a swan that is not white, they might conclude that all swans are white, even when we know that black swans do exist, however rare they may be.  

The universally accepted scientific method, as it is used in science laboratories today, is grounded in  hypothetico-deductive reasoning . Research progresses via iterative empirical testing of formulated, testable hypotheses (formulated through inductive reasoning). A testable hypothesis is one that can be rejected (falsified) by empirical observations, a concept known as the  principle of falsification . Initially, ideas and conjectures are formulated. Experiments are then performed to test them. If the body of evidence fails to reject the hypothesis, the hypothesis stands. It stands however until and unless another (even singular) empirical observation falsifies it. However, just as with inductive reasoning, hypothetico-deductive reasoning is not immune to pitfalls—assumptions built into hypotheses can be shown to be false, thereby nullifying previously unrejected hypotheses. The bottom line is that science does not work to prove anything about the natural world. Instead, it builds hypotheses that explain the natural world and then attempts to find the hole in the reasoning (i.e., it works to disprove things about the natural world).

How do scientists test hypotheses?

Controlled experiments

The word “experiment” can be misleading because it implies a lack of control over the process. Therefore, it is important to understand that science uses controlled experiments in order to test hypotheses and contribute new knowledge. So what exactly is a controlled experiment, then? 

Let us take a practical example. Our starting hypothesis is the following: we have a novel drug that we think inhibits the division of cells, meaning that it prevents one cell from dividing into two cells (recall the description of cell theory above). To test this hypothesis, we could treat some cells with the drug on a plate that contains nutrients and fuel required for their survival and division (a standard cell biology assay). If the drug works as expected, the cells should stop dividing. This type of drug might be useful, for example, in treating cancers because slowing or stopping the division of cells would result in the slowing or stopping of tumor growth.

Although this experiment is relatively easy to do, the mere process of doing science means that several experimental variables (like temperature of the cells or drug, dosage, and so on) could play a major role in the experiment. This could result in a failed experiment when the drug actually does work, or it could give the appearance that the drug is working when it is not. Given that these variables cannot be eliminated, scientists always run control experiments in parallel to the real ones, so that the effects of these other variables can be determined.  Control experiments  are designed so that all variables, with the exception of the one under investigation, are kept constant. In simple terms, the conditions must be identical between the control and the actual experiment.     

Coming back to our example, when a drug is administered it is not pure. Often, it is dissolved in a solvent like water or oil. Therefore, the perfect control to the actual experiment would be to administer pure solvent (without the added drug) at the same time and with the same tools, where all other experimental variables (like temperature, as mentioned above) are the same between the two (Figure 1). Any difference in effect on cell division in the actual experiment here can be attributed to an effect of the drug because the effects of the solvent were controlled.

scientific method problem solving examples in real life

In order to provide evidence of the quality of a single, specific experiment, it needs to be performed multiple times in the same experimental conditions. We call these multiple experiments “replicates” of the experiment (Figure 2). The more replicates of the same experiment, the more confident the scientist can be about the conclusions of that experiment under the given conditions. However, multiple replicates under the same experimental conditions  are of no help  when scientists aim at acquiring more empirical evidence to support their hypothesis. Instead, they need  independent experiments  (Figure 3), in their own lab and in other labs across the world, to validate their results. 

scientific method problem solving examples in real life

Often times, especially when a given experiment has been repeated and its outcome is not fully clear, it is better  to find alternative experimental assays  to test the hypothesis. 

scientific method problem solving examples in real life

Applying the scientific approach to everyday life

So, what can we take from the scientific approach to apply to our everyday lives?

A few weeks ago, I had an agitated conversation with a bunch of friends concerning the following question: What is the definition of intelligence?

Defining “intelligence” is not easy. At the beginning of the conversation, everybody had a different, “personal” conception of intelligence in mind, which – tacitly – implied that the conversation could have taken several different directions. We realized rather soon that someone thought that an intelligent person is whoever is able to adapt faster to new situations; someone else thought that an intelligent person is whoever is able to deal with other people and empathize with them. Personally, I thought that an intelligent person is whoever displays high cognitive skills, especially in abstract reasoning. 

The scientific method has the merit of providing a reference system, with precise protocols and rules to follow. Remember: experiments must be reproducible, which means that an independent scientists in a different laboratory, when provided with the same equipment and protocols, should get comparable results.  Fruitful conversations as well need precise language, a kind of reference vocabulary everybody should agree upon, in order to discuss about the same “content”. This is something we often forget, something that was somehow missing at the opening of the aforementioned conversation: even among friends, we should always agree on premises, and define them in a rigorous manner, so that they are the same for everybody. When speaking about “intelligence”, we must all make sure we understand meaning and context of the vocabulary adopted in the debate (Figure 4, point 1).  This is the first step of “controlling” a conversation.

There is another downside that a discussion well-grounded in a scientific framework would avoid. The mistake is not structuring the debate so that all its elements, except for the one under investigation, are kept constant (Figure 4, point 2). This is particularly true when people aim at making comparisons between groups to support their claim. For example, they may try to define what intelligence is by comparing the  achievements in life of different individuals: “Stephen Hawking is a brilliant example of intelligence because of his great contribution to the physics of black holes”. This statement does not help to define what intelligence is, simply because it compares Stephen Hawking, a famous and exceptional physicist, to any other person, who statistically speaking, knows nothing about physics. Hawking first went to the University of Oxford, then he moved to the University of Cambridge. He was in contact with the most influential physicists on Earth. Other people were not. All of this, of course, does not disprove Hawking’s intelligence; but from a logical and methodological point of view, given the multitude of variables included in this comparison, it cannot prove it. Thus, the sentence “Stephen Hawking is a brilliant example of intelligence because of his great contribution to the physics of black holes” is not a valid argument to describe what intelligence is. If we really intend to approximate a definition of intelligence, Steven Hawking should be compared to other physicists, even better if they were Hawking’s classmates at the time of college, and colleagues afterwards during years of academic research. 

In simple terms, as scientists do in the lab, while debating we should try to compare groups of elements that display identical, or highly similar, features. As previously mentioned, all variables – except for the one under investigation – must be kept constant.

This insightful piece  presents a detailed analysis of how and why science can help to develop critical thinking.

scientific method problem solving examples in real life

In a nutshell

Here is how to approach a daily conversation in a rigorous, scientific manner:

  • First discuss about the reference vocabulary, then discuss about the content of the discussion.  Think about a researcher who is writing down an experimental protocol that will be used by thousands of other scientists in varying continents. If the protocol is rigorously written, all scientists using it should get comparable experimental outcomes. In science this means reproducible knowledge, in daily life this means fruitful conversations in which individuals are on the same page. 
  • Adopt “controlled” arguments to support your claims.  When making comparisons between groups, visualize two blank scenarios. As you start to add details to both of them, you have two options. If your aim is to hide a specific detail, the better is to design the two scenarios in a completely different manner—it is to increase the variables. But if your intention is to help the observer to isolate a specific detail, the better is to design identical scenarios, with the exception of the intended detail—it is therefore to keep most of the variables constant. This is precisely how scientists ideate adequate experiments to isolate new pieces of knowledge, and how individuals should orchestrate their thoughts in order to test them and facilitate their comprehension to others.   

Not only the scientific method should offer individuals an elitist way to investigate reality, but also an accessible tool to properly reason and discuss about it.

Edited by Jason Organ, PhD, Indiana University School of Medicine.

scientific method problem solving examples in real life

Simone is a molecular biologist on the verge of obtaining a doctoral title at the University of Ulm, Germany. He is Vice-Director at Culturico (https://culturico.com/), where his writings span from Literature to Sociology, from Philosophy to Science. His writings recently appeared in Psychology Today, openDemocracy, Splice Today, Merion West, Uncommon Ground and The Society Pages. Follow Simone on Twitter: @simredaelli

  • Pingback: Case Studies in Ethical Thinking: Day 1 | Education & Erudition

This has to be the best article I have ever read on Scientific Thinking. I am presently writing a treatise on how Scientific thinking can be adopted to entreat all situations.And how, a 4 year old child can be taught to adopt Scientific thinking, so that, the child can look at situations that bothers her and she could try to think about that situation by formulating the right questions. She may not have the tools to find right answers? But, forming questions by using right technique ? May just make her find a way to put her mind to rest even at that level. That is why, 4 year olds are often “eerily: (!)intelligent, I have iften been intimidated and plain embarrassed to see an intelligent and well spoken 4 year old deal with celibrity ! Of course, there are a lot of variables that have to be kept in mind in order to train children in such controlled thinking environment, as the screenplay of little Sheldon shows. Thanking the author with all my heart – #ershadspeak #wearescience #weareallscientists Ershad Khandker

Simone, thank you for this article. I have the idea that I want to apply what I learned in Biology to everyday life. You addressed this issue, and have given some basic steps in using the scientific method.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name and email for the next time I comment.

By Ashley Moses, edited by Andrew S. Cale Each year, millions of scientific research papers are published. Virtually none of them can…

By Ana Santos-Carvalho and Carolina Lebre, edited by Andrew S. Cale Excessive use of technical jargon can be a significant barrier to…

By Ryan McRae and Briana Pobiner, edited by Andrew S. Cale In 2023, the field of human evolution benefited from a plethora…

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

How to Use the Scientific Method in Everyday Life

The scientific method can help solve problems you encounter in your everyday surroundings.

How to Set Up a Controlled Science Experiment

The scientific method is a procedure consisting of a series of steps with the goal of problem-solving and information-gathering. The scientific method begins with the recognition of a problem and a clear elaboration or description of the problem itself. A process of experimentation and data collection then follows. The final steps consist of the formulation and testing of a hypothesis or potential solution and conclusion. For people unaccustomed to using the scientific method, the process may seem abstract and unapproachable. With a little consideration and observation, any problem encountered in daily life is a potential possibility to use the scientific method.

Identify the problem you're trying to solve.

Locate or identify a problem to solve. Your personal environment is a good place to start, either in the workplace, the home, or your town or city.

Think about the problem in detail.

Describe the problem in detail. Make quantifiable observations, such as number of times of occurrence, duration, specific physical measurements, and so on.

Form a hypothesis about what the possible cause of the problem might be.

Form a hypothesis about what the possible cause of the problem might be, or what a potential solution could be. Check if the previously collected data suggests a pattern or possible cause.

Test your hypothesis through further observation or by creating an experiment.

Test your hypothesis either through further observation of the problem or by creating an experiment that highlights the aspect of the problem you wish to test. For example, if you suspect a faulty wire is the cause of a light not working, you must find a way to isolate and test whether or not the wire is actually the cause.

Consider using household repairs when using the scientific method.

Repeat the steps of observation, hypothesis formation and testing until you reach a conclusion that is reinforced by supporting data or directly solves the problem at hand.

  • The scientific method is best suited to solving problems without direct or simple answers. For example, a light bulb that burns out may simply need to be replaced. A light bulb that works intermittently is a much more suitable candidate for use of the scientific method, because of all of the potential causes of it not working.

Related Articles

What is the next step if an experiment fails to confirm..., steps & procedures for conducting scientific research, how to calculate a p-value, advantages & disadvantages of finding variance, what are the 8 steps in scientific research, how to make a simple circuit, how to do exponents outside of the parenthesis, how to dispose of lead aprons, how do humans cause erosion, science project ideas & the scientific method, how to check my math answers, how to find a number pattern, how to test for potassium iodide, how to find the domain of a fraction, how to find b in y=mx + b, how to make geometry proofs easier, definition of a land ecosystem, how to interpret a student's t-test results, different kinds of probability.

  • Britannica Online Encyclopedia: Scientific Method; June 2011

About the Author

Alex Jakubik began his writing career in 2000 with book-cover summaries for Barnes & Noble. He has also authored concert programs and travel blogs, and worked both nationally and internationally in the arts. Jakubik holds a Bachelor of Music degree from Indiana University and a Master of Music from Yale University.

Photo Credits

Alexander Raths/iStock/Getty Images

Find Your Next Great Science Fair Project! GO

helpful professor logo

15 Scientific Method Examples

15 Scientific Method Examples

Viktoriya Sus (MA)

Viktoriya Sus is an academic writer specializing mainly in economics and business from Ukraine. She holds a Master’s degree in International Business from Lviv National University and has more than 6 years of experience writing for different clients. Viktoriya is passionate about researching the latest trends in economics and business. However, she also loves to explore different topics such as psychology, philosophy, and more.

Learn about our Editorial Process

15 Scientific Method Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

scientific method problem solving examples in real life

The scientific method is a structured and systematic approach to investigating natural phenomena using empirical evidence . 

The scientific method has been a lynchpin for rapid improvements in human development. It has been an invaluable procedure for testing and improving upon human ingenuity. It’s led to amazing scientific, technological, and medical breakthroughs.

Some common steps in a scientific approach would include:

  • Observation
  • Question formulation
  • Hypothesis development
  • Experimentation and collecting data
  • Analyzing results
  • Drawing conclusions

chris

Definition of Scientific Method

The scientific method is a structured and systematic approach to investigating natural phenomena or events through empirical evidence. 

Empirical evidence can be gathered from experimentation, observation, analysis, and interpretation of data that allows one to create generalizations about probable reasons behind those happenings. 

As mentioned in the article published in the journal  Nature,

“ As schoolchildren, we are taught that the scientific method involves a question and suggested explanation (hypothesis) based on observation, followed by the careful design and execution of controlled experiments, and finally validation, refinement or rejection of this hypothesis” (p. 237).

The use of scientific methods permits replication and validation of other people’s scientific analyses, leading toward improvement upon previous results, and solid empirical conclusions. 

Voit (2019) adds that:

“…it not only prescribes the order and types of activities that give a scientific study validity and a stamp of approval but also has substantially shaped how we collectively think about the endeavor of investigating nature” (p. 1).

This method aims to minimize subjective biases while maximizing objectivity helping researchers gather factual data. 

It follows set procedures and guidelines for testing hypotheses using controlled conditions, assuring optimum accuracy and relevance in concluding by assessing a range of aspects (Blystone & Blodgett, 2006).

Overall, the scientific method provides researchers with a structured way of inquiry that seeks insightful explanations regarding evidence-based investigation grounded in facts acquired from an array of fields.

15 Examples of Scientific Method

  • Medicine Delivery : Scientists use scientific method to determine the most effective way of delivering a medicine to its target location in the body. They perform experiments and gather data on the different methods of medicine delivery, monitoring factors such as dosage and time release.
  • Agricultural Research : Scientific method is frequently used in agricultural research to determine the most effective way to grow crops or raise livestock. This may involve testing different fertilizers, irrigation methods, or animal feed, measuring yield, and analyzing data.
  • Food Science and Nutrition : Nutritionists and food scientists use the scientific method to study the effects of different food types and diet on health. They design experiments to understand the impact of dietary changes on weight, disease risk, and overall health outcomes.
  • Environmental Studies : Researchers use scientific method to study natural ecosystems and how human activities impact them. They collect data on things like biodiversity, water quality, and pollution levels, analyzing changes over time.
  • Psychological Studies : Psychologists use the scientific method to understand human behavior and cognition. They conduct experiments under controlled conditions to test theories about learning, memory, social interaction, and more.
  • Climate Change Research : Climate scientists use the scientific method to study the Earth’s changing climate. They collect and analyze data on temperature, CO2 levels, and ice coverage to understand trends and make predictions about future changes.
  • Geology Exploration : Geologists use scientific method to analyze rock samples from deep in the earth’s crust and gather information about geological processes over millions of years. They evaluate data by studying patterns left behind by these processes.
  • Space Exploration : Scientists use scientific methods in designing space missions so that they can explore other planets or learn more about our solar system. They employ experiments like landing craft exploration missions as well as remote sensing techniques that allow them to examine far-off planets without having physically land on their surfaces.
  • Archaeology : Archaeologists use the scientific method to understand past human cultures. They formulate hypotheses about a site or artifact, conduct excavations or analyses, and then interpret the data to test their hypotheses.
  • Clinical Trials : Medical researchers use scientific method to test new treatments and therapies for various diseases. They design controlled studies that track patients’ outcomes while varying variables like dosage or treatment frequency.
  • Industrial Research & Development : Many companies use scientific methods in their R&D departments. For example, automakers may assess the effectiveness of anti-lock brakes before releasing them into the marketplace through tests with dummy targets.
  • Material Science Experiments : Engineers have extensively used scientific method experimentation efforts when designing new materials and testing which options could be flexible enough for certain applications. These experiments might include casting molten material into molds and then subjecting it to high heat to expose vulnerabilities
  • Chemical Engineering Investigations : Chemical engineers also abide by scientific method principles to create new chemical compounds & technologies designed to be valuable in the industry. They may experiment with different substances, changing materials’ concentration and heating conditions to ensure the final end-product safety and reliability of the material.
  • Biotechnology : Biotechnologists use the scientific method to develop new products or processes. For instance, they may experiment with genetic modification techniques to enhance crop resistance to pests or disease.
  • Physics Research : Scientists use scientific method in their work to study fundamental principles of the universe. They seek answers for how atoms and molecules are breaking down and related events that unfold naturally by running many simulations using computer models or designing sophisticated experiments to test hypotheses.

Origins of the Scientific Method

The scientific method can be traced back to ancient times when philosophers like Aristotle used observation and logic to understand the natural world. 

These early philosophers were focused on understanding the world around them and sought explanations for natural phenomena through direct observation (Betz, 2010).

In the Middle Ages, Muslim scholars played a key role in developing scientific inquiry by emphasizing empirical observations. 

Alhazen (a.k.a Ibn al-Haytham), for example, introduced experimental methods that helped establish optics as a modern science. He emphasized investigation through experimentation with controlled conditions (De Brouwer, 2021).

During the Scientific Revolution of the 17th century in Europe, scientists such as Francis Bacon and René Descartes began to develop what we now know as the scientific method observation (Betz, 2010).

Bacon argued that knowledge must be based on empirical evidence obtained through observation and experimentation rather than relying solely upon tradition or authority. 

Descartes emphasized mathematical methods as tools in experimentation and rigorous thinking processes (Fukuyama, 2021).

These ideas later developed into systematic research designs , including hypothesis testing, controlled experiments, and statistical analysis – all of which are still fundamental aspects of modern-day scientific research.

Since then, technological advancements have allowed for more sophisticated instruments and measurements, yielding far more precise data sets scientists use today in fields ranging from Medicine & Chemistry to Astrophysics or Genetics.

So, while early Greek philosophers laid much groundwork toward an observational-based approach to explaining nature, Islam scholars furthered our understanding of logical reasoning techniques and gave rise to a more formalized methodology.

Steps in the Scientific Method

While there may be variations in the specific steps scientists follow, the general process has six key steps (Blystone & Blodgett, 2006).

Here is a brief overview of each of these steps:

1. Observation

The first step in the scientific method is to identify and observe a phenomenon that requires explanation. 

This can involve asking open-ended questions, making detailed observations using our senses or tools, or exploring natural patterns, which are sources to develop hypotheses. 

2. Formulation of a Hypothesis

A hypothesis is an educated guess or proposed explanation for the observed phenomenon based on previous observations & experiences or working assumptions derived from a valid literature review . 

The hypothesis should be testable and falsifiable through experimentation and subsequent analysis.

3. Testing of the Hypothesis

In this step, scientists perform experiments to test their hypothesis while ensuring that all variables are controlled besides the one being observed.

The data collected in these experiments must be measurable, repeatable, and consistent.

4. Data Analysis

Researchers carefully scrutinize data gathered from experiments – typically using inferential statistics techniques to analyze whether results support their hypotheses or not.

This helps them gain important insights into what previously unknown mechanisms might exist based on statistical evidence gained about their system.

See: 15 Examples of Data Analysis

5. Drawing Conclusions 

Based on their data analyses, scientists reach conclusions about whether their original hypotheses were supported by evidence obtained from testing.

If there is insufficient supporting evidence for their ideas – trying again with modified iterations of the initial idea sometimes happens.

6. Communicating Results

Once results have been analyzed and interpreted under accepted principles within the scientific community, scientists publish findings in respected peer-reviewed journals.

These publications help knowledge-driven communities establish trends within respective fields while indirectly subjecting papers reviews requests boosting research quality across the scientific discipline.

Importance of the Scientific Method

The scientific method is important because it helps us to collect reliable data and develop testable hypotheses that can be used to explain natural phenomena (Haig, 2018).

Here are some reasons why the scientific method is so essential:

  • Objectivity : The scientific method requires researchers to conduct unbiased experiments and analyses, which leads to more impartial conclusions. In this way, replication of findings by peers also ensures results can be relied upon as founded on sound principles allowing others confidence in building further knowledge on top of existing research.
  • Precision & Predictive Power : Scientific methods usually include techniques for obtaining highly precise measurements, ensuring that data collected is more meaningful with fewer uncertainties caused by limited measuring errors leading to statistically significant results having firm logical foundations. If predictions develop scientifically tested generalized defined conditions factored into the analysis, it helps in delivering realistic expectations
  • Validation : By following established scientific principles defined within the community – independent scholars can replicate observation data without being influenced by subjective biases or prejudices. It assures general acceptance among scientific communities who follow similar protocols when researching within respective fields.
  • Application & Innovation : Scientific concept advancements that occur based on correct hypothesis testing commonly lead scientists toward new discoveries, identifying potential breakthroughs in research. They pave the way for technological innovations often seen as game changers, like mapping human genome DNA onto creating novel therapies against genetic diseases or unlocking secrets of today’s universe through discoveries at LHC.
  • Impactful Decision-Making : Policymakers can draw from these scientific findings investing resources into informed decisions leading us toward a sustainable future. For example, research gathered about carbon pollution’s impact on climate change informs debate making policy action decisions about our planet’s environment, providing valuable knowledge-useful information benefiting societies (Haig, 2018).

The scientific method is an essential tool that has revolutionized our understanding of the natural world.

By emphasizing rigorous experimentation, objective measurement, and logical analysis- scientists can obtain more unbiased evidence with empirical validity . 

Utilizing this methodology has led to groundbreaking discoveries & knowledge expansion that have shaped our modern world from medicine to technology. 

The scientific method plays a crucial role in advancing research and our overall societal consensus on reliable information by providing reliable results, ensuring we can make more informed decisions toward a sustainable future. 

As scientific advancements continue rapidly, ensuring we’re applying core principles of this process enables objectives to progress, paving new ways for interdisciplinary research across all fields, thereby fuelling ever-driving human curiosity.

Betz, F. (2010). Origin of scientific method.  Managing Science , 21–41. https://doi.org/10.1007/978-1-4419-7488-4_2

Blystone, R. V., & Blodgett, K. (2006). WWW: The scientific method.  CBE—Life Sciences Education ,  5 (1), 7–11. https://doi.org/10.1187/cbe.05-12-0134

De Brouwer , P. J. S. (2021).  The big r-book: From data science to learning machines and big data . John Wiley & Sons, Inc.

Defining the scientific method. (2009).  Nature Methods ,  6 (4), 237–237. https://doi.org/10.1038/nmeth0409-237

Fukuyama, F. (2012).  The end of history and the last man . New York: Penguin.

Haig, B. D. (2018). The importance of scientific method for psychological science.  Psychology, Crime & Law ,  25 (6), 527–541. https://doi.org/10.1080/1068316x.2018.1557181

Voit, E. O. (2019). Perspective: Dimensions of the scientific method.  PLOS Computational Biology ,  15 (9), e1007279. https://doi.org/10.1371/journal.pcbi.1007279

Viktoriya Sus

  • Viktoriya Sus (MA) #molongui-disabled-link Cognitive Dissonance Theory: Examples and Definition
  • Viktoriya Sus (MA) #molongui-disabled-link 15 Free Enterprise Examples
  • Viktoriya Sus (MA) #molongui-disabled-link 21 Sunk Costs Examples (The Fallacy Explained)
  • Viktoriya Sus (MA) #molongui-disabled-link Price Floor: 15 Examples & Definition

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • About & FAQ
  • What is a Cult?
  • Public Speaking
  • Critical Merchandise
  • Books I Recommend
  • Become a Patron
  • Curriculum Vitae

Using the Scientific Method in Everyday Life

  • by Chris Shelton
  • December 18, 2013 January 6, 2022

scientific method graphic

Science is not just for Scientists

Critical thinking skills are very important for getting along in life. They allow you to analyze  problems or situations you find yourself involved in that don’t always have an easy or obvious answer. We all run into problems in relationships, work, school, etc. Wouldn’t it be easier if we could understand why things were happening around us and more easily see what we could do about them? That’s what critical thinking is all about. It’s not just for winning arguments!

In my last article, I mentioned the scientific method. The scientific method is just the steps any scientist takes to solve problems or discover new things. But it’s not just for scientists. And just because it has the word “scientific” in it, doesn’t mean that it’s hard to understand or use. In fact, you most likely already use the scientific method all the time. But like any skill, it is something that can be greatly improved through conscientious practice.

Scientific method can be described in different ways and some people include slightly different steps, but basically it comes down to these:

1. Make observations.

Looking is the first and most important step. Whether it’s noticing something odd or interesting, or whether you are confronted with a problem of some kind, the first thing you do is observe.

Observation doesn’t take place just because of something unusual or odd. You can easily observe what is going on around you anytime. Stop reading this for a moment and look up at the space around you. Notice something you may never have noticed before, or see if there is anything in the environment around you that is different from what you remember the last time you looked around. That is observation.

The word “observation” is used rather than “looking” because observing is not just done with the eyes. Visual observation is important, but it can also include any of your senses. Walking into a room and smelling something bad is observation. Hearing a ringing sound coming from a machine or feeling warm air coming off a hot pad are perfectly valid observations.

It also can involve using instruments or measuring devices. It’s kind of hard to see with the naked eye that something is 5.498 centimeters wide. Having a measuring device helps in the accuracy of the observation. Using a telescope to observe a distant planet or a microscope to observe cellular behavior is the only way we can even be aware of these things.

Observing, by the way, is something that you do on purpose, it’s not passive. You can’t observe something when you are putting up some “mental picture” of what you’ve always seen there every single day instead of seeing what is really there right now in this moment. People do this all the time. It’s not unusual at all for someone to be looking right into an intersection and not “see” the person on a motorcycle twenty feet away. They aren’t really observing what is going on in front of them. Instead, they are “seeing” the same thing they always see when they cross this same intersection on their way home from work every day. Their mind is on other things. And it’s one reason people miss things that are perfectly obvious to other people around them.

Observation is a skill you can practice all by itself. And it should be practiced every day.

2. Propose a hypothesis.

A hypothesis is an idea or a proposition that explains an observation. It is not necessarily true, but it’s a starting point. It’s basically a guess as to why a particular observation is the way it is. It’s now up to the person who made the hypothesis to find evidence to prove whether it’s true or not.

In real life, outside of science, many people will guess or dream up explanations or answers and then stop right there. They’ll assume that what they came up with is true because it’s the best answer they could come up with based on the information available to them at the time.

Until you have some proof and have verified the hypothesis is correct, it’s just as likely that it’s not true and you could end up making a really big mistake. So it’s very important to realize that a hypothesis is not the end of critical thinking – it’s just the beginning.

An example of a hypothesis you could propose would be something about the weather. Here we are in the middle of December. You are inside and you see that it’s crystal clear outside, the sun is shining brightly with no clouds. There appears to be a slight breeze blowing. You hate having to bundle up every time you want to go outside, so you think to yourself that perhaps today it’s not really so cold out. How could it be when it’s so clear and beautiful?

You propose a hypothesis that the temperature outside is tolerable and won’t require you to multi-layer two shirts, a sweater and your parka just to get out to your car so you can drive to work.This could just be wishful thinking, so before you act on it,  you first have to test that hypothesis.

3. Design and perform an experiment to test the hypothesis.

An experiment is simply anything that is done to test whether a hypothesis proves out to be true or false. Experiments can be simple, like just taking a measurement of something to see if it’s the amount you think it is. They can also be very complicated, such as injecting a new medicine into thousands of people and carefully monitoring the results as well as monitoring injections of a placebo (a fake medicine) into a similar group of people to see what happens to them too. By comparing the results of the real medicine to the fake medicine, you can test its effectiveness.

The most important thing about experimentation is testing your hypothesis in such a way as to actually prove out whether it is true or false. Depending on the circumstances, it may take many experiments before you can conclude for sure that your hypothesis if valid.

In the case of our hypothesis about the temperature outside, there are a couple of experiments you could perform to test this out.

  • Look at a thermometer on the window. In doing so, you see that it shows the temperature outside is 5 degrees. Okay, that is one indication that it is not so warm outside. It’s not necessarily conclusive evidence yet, but it’s a start. The thermometer could be off because it could be broken and also, it may only be measuring the temperature in one specific location where there could be a “cold pocket”.
  • Open the window and stick your head outside. The freezing cold temperature assaults your face and the slight “breeze” stings your skin. You quickly close the window.

You determine at this point that your experiment is over.

One last point on experimentation. To find out whether it is cold outside, you could always just consult Google or the Weather Channel. But that is not really an experiment. Things on the internet or on the TV or radio come from people. When you “google” something, you are basically asking someone else for their opinion or their ideas.

No matter who is telling you what, there is always a chance they could be wrong. They may be able to point you in a direction or help you with an experiment, but that is not the same thing as accepting their opinions or ideas as facts. One of the most common mistakes in logic and critical thinking is to take someone else’s opinions or “facts” as true without verifying it yourself first.

4. Analyze your data to determine whether to accept or reject the hypothesis.

Now that you have the results of your experiments, you use that to determine whether your hypothesis was correct. In our simple case, we have the following results:

  • Temperature reads 5 degrees outside.
  • Physical test of the air and temperature indicated that it was frigid and very uncomfortable.

The hypothesis that it is warm and tolerable outside has been proven false. It is, in fact, freezing and you decide that you are not going out without bundling up first.

5. If necessary, propose and test a new hypothesis.

In this case, there is no need to proceed with further hypotheses as the one we came up with was proven wrong. At the same time, we concluded that bundling up would handle our aversion to the freezing weather.

There are many other instances where you may make one hypothesis, test it out and it doesn’t turn out to be true and then you need to come up with another one. Let’s say you are working on fixing a broken air conditioner. You don’t know what the problem is exactly, but you see that a pipe is sticking out that doesn’t look like it should, so you experiment with putting it back in place. That seemed to be a good idea but the air conditioner still doesn’t work after you fix the pipe. So you look some more and see that it’s not plugged in. You formulate a new hypothesis that it may not be working because it needs electricity. You plug it in and, voila, it turns on and operates smoothly.

Perhaps the pipe and the electricity both needed to be fixed before it would operate. The bottom line is that by observing, experimenting and re-evaluating the information and further experimenting, you were able to solve the problem. That is what the scientific method is for. Following these steps are the heart of critical thinking.

Chances are, you already are doing these steps many times every single day. But by knowing these steps and going over them yourself, you can be more certain about what you are doing. You can also catch yourself if you miss a step or find yourself stuck. The solution to almost any problem you will encounter in life is to observe, analyze, experiment and re-evaluate based on what you find until you come to a solution.

Practice, practice, practice using the steps of the scientific method and see what results you get. Every single discovery in our history, every leap forward in science or technology or anything else, was made using these steps.  They are the basis of all the rest of the critical thinking skills you can learn.  Learn them well and may your life and thinking never be the same again.

Here are some practical exercises you can do:

  • The next time you go into a space or room you are very familiar with, look around the room and observe it as though you had never seen it before. See if you can find at least three things about the space that you have never noticed before.
  • Recall some example from your experience where a problem was solved using scientific method. Break down the steps so you can see what hypothesis you formed and how you tested it and then proved it to be correct.
  • See if you can recall a time that you or someone you know came up with a hypothesis but then did not test it out before acting on it. What was the result? What could they have done as an experiment to test the hypothesis?
  • The next time you encounter a problem in life, form a hypothesis about what the source of that problem might be. Perform some kind of test or experiment to see if your hypothesis is actually valid. Only after you have proven that the hypothesis is correct, come up with the solution. Notice to yourself what might have happened if you had not verified your hypothesis before acting.

I am very interested in what results you get from these exercises. Please leave me any comments if you have any feedback on this.

Share this:

5 thoughts on “using the scientific method in everyday life”.

' src=

I totally agree with Chris Shelton critical thinking is really important to get along in life like science and questions can really help you.

' src=

This helped me on my homework so I love this website THANK YOU!!!!!!!!

Pingback:  Psych in Your Life – starboundkid

' src=

Now that makes a good life orientation exercise.

Pingback:  STS Exercise : The Scientific Method | Baratillo Pamphlet

Leave a Reply Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

1.2 The Scientific Methods

Section learning objectives.

By the end of this section, you will be able to do the following:

  • Explain how the methods of science are used to make scientific discoveries
  • Define a scientific model and describe examples of physical and mathematical models used in physics
  • Compare and contrast hypothesis, theory, and law

Teacher Support

The learning objectives in this section will help your students master the following standards:

  • (A) know the definition of science and understand that it has limitations, as specified in subsection (b)(2) of this section;
  • (B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories;
  • (C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly-reliable explanations, but may be subject to change as new areas of science and new technologies are developed;
  • (D) distinguish between scientific hypotheses and scientific theories.

Section Key Terms

experiment hypothesis model observation principle
scientific law scientific methods theory universal

[OL] Pre-assessment for this section could involve students sharing or writing down an anecdote about when they used the methods of science. Then, students could label their thought processes in their anecdote with the appropriate scientific methods. The class could also discuss their definitions of theory and law, both outside and within the context of science.

[OL] It should be noted and possibly mentioned that a scientist , as mentioned in this section, does not necessarily mean a trained scientist. It could be anyone using methods of science.

Scientific Methods

Scientists often plan and carry out investigations to answer questions about the universe around us. These investigations may lead to natural laws. Such laws are intrinsic to the universe, meaning that humans did not create them and cannot change them. We can only discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle, triumph, and disappointment inherent in any creative effort. The cornerstone of discovering natural laws is observation. Science must describe the universe as it is, not as we imagine or wish it to be.

We all are curious to some extent. We look around, make generalizations, and try to understand what we see. For example, we look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled experiments (if we can), and write down ideas about how data may be organized. We then formulate models, theories, and laws based on the data we have collected, and communicate those results with others. This, in a nutshell, describes the scientific method that scientists employ to decide scientific issues on the basis of evidence from observation and experiment.

An investigation often begins with a scientist making an observation . The scientist observes a pattern or trend within the natural world. Observation may generate questions that the scientist wishes to answer. Next, the scientist may perform some research about the topic and devise a hypothesis . A hypothesis is a testable statement that describes how something in the natural world works. In essence, a hypothesis is an educated guess that explains something about an observation.

[OL] An educated guess is used throughout this section in describing a hypothesis to combat the tendency to think of a theory as an educated guess.

Scientists may test the hypothesis by performing an experiment . During an experiment, the scientist collects data that will help them learn about the phenomenon they are studying. Then the scientists analyze the results of the experiment (that is, the data), often using statistical, mathematical, and/or graphical methods. From the data analysis, they draw conclusions. They may conclude that their experiment either supports or rejects their hypothesis. If the hypothesis is supported, the scientist usually goes on to test another hypothesis related to the first. If their hypothesis is rejected, they will often then test a new and different hypothesis in their effort to learn more about whatever they are studying.

Scientific processes can be applied to many situations. Let’s say that you try to turn on your car, but it will not start. You have just made an observation! You ask yourself, "Why won’t my car start?" You can now use scientific processes to answer this question. First, you generate a hypothesis such as, "The car won’t start because it has no gasoline in the gas tank." To test this hypothesis, you put gasoline in the car and try to start it again. If the car starts, then your hypothesis is supported by the experiment. If the car does not start, then your hypothesis is rejected. You will then need to think up a new hypothesis to test such as, "My car won’t start because the fuel pump is broken." Hopefully, your investigations lead you to discover why the car won’t start and enable you to fix it.

A model is a representation of something that is often too difficult (or impossible) to study directly. Models can take the form of physical models, equations, computer programs, or simulations—computer graphics/animations. Models are tools that are especially useful in modern physics because they let us visualize phenomena that we normally cannot observe with our senses, such as very small objects or objects that move at high speeds. For example, we can understand the structure of an atom using models, without seeing an atom with our own eyes. Although images of single atoms are now possible, these images are extremely difficult to achieve and are only possible due to the success of our models. The existence of these images is a consequence rather than a source of our understanding of atoms. Models are always approximate, so they are simpler to consider than the real situation; the more complete a model is, the more complicated it must be. Models put the intangible or the extremely complex into human terms that we can visualize, discuss, and hypothesize about.

Scientific models are constructed based on the results of previous experiments. Even still, models often only describe a phenomenon partially or in a few limited situations. Some phenomena are so complex that they may be impossible to model them in their entirety, even using computers. An example is the electron cloud model of the atom in which electrons are moving around the atom’s center in distinct clouds ( Figure 1.12 ), that represent the likelihood of finding an electron in different places. This model helps us to visualize the structure of an atom. However, it does not show us exactly where an electron will be within its cloud at any one particular time.

As mentioned previously, physicists use a variety of models including equations, physical models, computer simulations, etc. For example, three-dimensional models are often commonly used in chemistry and physics to model molecules. Properties other than appearance or location are usually modelled using mathematics, where functions are used to show how these properties relate to one another. Processes such as the formation of a star or the planets, can also be modelled using computer simulations. Once a simulation is correctly programmed based on actual experimental data, the simulation can allow us to view processes that happened in the past or happen too quickly or slowly for us to observe directly. In addition, scientists can also run virtual experiments using computer-based models. In a model of planet formation, for example, the scientist could alter the amount or type of rocks present in space and see how it affects planet formation.

Scientists use models and experimental results to construct explanations of observations or design solutions to problems. For example, one way to make a car more fuel efficient is to reduce the friction or drag caused by air flowing around the moving car. This can be done by designing the body shape of the car to be more aerodynamic, such as by using rounded corners instead of sharp ones. Engineers can then construct physical models of the car body, place them in a wind tunnel, and examine the flow of air around the model. This can also be done mathematically in a computer simulation. The air flow pattern can be analyzed for regions smooth air flow and for eddies that indicate drag. The model of the car body may have to be altered slightly to produce the smoothest pattern of air flow (i.e., the least drag). The pattern with the least drag may be the solution to increasing fuel efficiency of the car. This solution might then be incorporated into the car design.

Using Models and the Scientific Processes

Be sure to secure loose items before opening the window or door.

In this activity, you will learn about scientific models by making a model of how air flows through your classroom or a room in your house.

  • One room with at least one window or door that can be opened
  • Work with a group of four, as directed by your teacher. Close all of the windows and doors in the room you are working in. Your teacher may assign you a specific window or door to study.
  • Before opening any windows or doors, draw a to-scale diagram of your room. First, measure the length and width of your room using the tape measure. Then, transform the measurement using a scale that could fit on your paper, such as 5 centimeters = 1 meter.
  • Your teacher will assign you a specific window or door to study air flow. On your diagram, add arrows showing your hypothesis (before opening any windows or doors) of how air will flow through the room when your assigned window or door is opened. Use pencil so that you can easily make changes to your diagram.
  • On your diagram, mark four locations where you would like to test air flow in your room. To test for airflow, hold a strip of single ply tissue paper between the thumb and index finger. Note the direction that the paper moves when exposed to the airflow. Then, for each location, predict which way the paper will move if your air flow diagram is correct.
  • Now, each member of your group will stand in one of the four selected areas. Each member will test the airflow Agree upon an approximate height at which everyone will hold their papers.
  • When you teacher tells you to, open your assigned window and/or door. Each person should note the direction that their paper points immediately after the window or door was opened. Record your results on your diagram.
  • Did the airflow test data support or refute the hypothetical model of air flow shown in your diagram? Why or why not? Correct your model based on your experimental evidence.
  • With your group, discuss how accurate your model is. What limitations did it have? Write down the limitations that your group agreed upon.
  • Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow would help you model the system more accurately.
  • Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow is not useful for modeling the new system.
  • No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow would help you model the system more accurately.
  • No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow is not useful for modeling the new system.

This Snap Lab! has students construct a model of how air flows in their classroom. Each group of four students will create a model of air flow in their classroom using a scale drawing of the room. Then, the groups will test the validity of their model by placing weathervanes that they have constructed around the room and opening a window or door. By observing the weather vanes, students will see how air actually flows through the room from a specific window or door. Students will then correct their model based on their experimental evidence. The following material list is given per group:

  • One room with at least one window or door that can be opened (An optimal configuration would be one window or door per group.)
  • Several pieces of construction paper (at least four per group)
  • Strips of single ply tissue paper
  • One tape measure (long enough to measure the dimensions of the room)
  • Group size can vary depending on the number of windows/doors available and the number of students in the class.
  • The room dimensions could be provided by the teacher. Also, students may need a brief introduction in how to make a drawing to scale.
  • This is another opportunity to discuss controlled experiments in terms of why the students should hold the strips of tissue paper at the same height and in the same way. One student could also serve as a control and stand far away from the window/door or in another area that will not receive air flow from the window/door.
  • You will probably need to coordinate this when multiple windows or doors are used. Only one window or door should be opened at a time for best results. Between openings, allow a short period (5 minutes) when all windows and doors are closed, if possible.

Answers to the Grasp Check will vary, but the air flow in the new window or door should be based on what the students observed in their experiment.

Scientific Laws and Theories

A scientific law is a description of a pattern in nature that is true in all circumstances that have been studied. That is, physical laws are meant to be universal , meaning that they apply throughout the known universe. Laws are often also concise, whereas theories are more complicated. A law can be expressed in the form of a single sentence or mathematical equation. For example, Newton’s second law of motion , which relates the motion of an object to the force applied ( F ), the mass of the object ( m ), and the object’s acceleration ( a ), is simply stated using the equation

Scientific ideas and explanations that are true in many, but not all situations in the universe are usually called principles . An example is Pascal’s principle , which explains properties of liquids, but not solids or gases. However, the distinction between laws and principles is sometimes not carefully made in science.

A theory is an explanation for patterns in nature that is supported by much scientific evidence and verified multiple times by multiple researchers. While many people confuse theories with educated guesses or hypotheses, theories have withstood more rigorous testing and verification than hypotheses.

[OL] Explain to students that in informal, everyday English the word theory can be used to describe an idea that is possibly true but that has not been proven to be true. This use of the word theory often leads people to think that scientific theories are nothing more than educated guesses. This is not just a misconception among students, but among the general public as well.

As a closing idea about scientific processes, we want to point out that scientific laws and theories, even those that have been supported by experiments for centuries, can still be changed by new discoveries. This is especially true when new technologies emerge that allow us to observe things that were formerly unobservable. Imagine how viewing previously invisible objects with a microscope or viewing Earth for the first time from space may have instantly changed our scientific theories and laws! What discoveries still await us in the future? The constant retesting and perfecting of our scientific laws and theories allows our knowledge of nature to progress. For this reason, many scientists are reluctant to say that their studies prove anything. By saying support instead of prove , it keeps the door open for future discoveries, even if they won’t occur for centuries or even millennia.

[OL] With regard to scientists avoiding using the word prove , the general public knows that science has proven certain things such as that the heart pumps blood and the Earth is round. However, scientists should shy away from using prove because it is impossible to test every single instance and every set of conditions in a system to absolutely prove anything. Using support or similar terminology leaves the door open for further discovery.

Check Your Understanding

  • Models are simpler to analyze.
  • Models give more accurate results.
  • Models provide more reliable predictions.
  • Models do not require any computer calculations.
  • They are the same.
  • A hypothesis has been thoroughly tested and found to be true.
  • A hypothesis is a tentative assumption based on what is already known.
  • A hypothesis is a broad explanation firmly supported by evidence.
  • A scientific model is a representation of something that can be easily studied directly. It is useful for studying things that can be easily analyzed by humans.
  • A scientific model is a representation of something that is often too difficult to study directly. It is useful for studying a complex system or systems that humans cannot observe directly.
  • A scientific model is a representation of scientific equipment. It is useful for studying working principles of scientific equipment.
  • A scientific model is a representation of a laboratory where experiments are performed. It is useful for studying requirements needed inside the laboratory.
  • The hypothesis must be validated by scientific experiments.
  • The hypothesis must not include any physical quantity.
  • The hypothesis must be a short and concise statement.
  • The hypothesis must apply to all the situations in the universe.
  • A scientific theory is an explanation of natural phenomena that is supported by evidence.
  • A scientific theory is an explanation of natural phenomena without the support of evidence.
  • A scientific theory is an educated guess about the natural phenomena occurring in nature.
  • A scientific theory is an uneducated guess about natural phenomena occurring in nature.
  • A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is an educated guess about a natural phenomenon.
  • A hypothesis is an educated guess about natural phenomenon, while a scientific theory is an explanation of natural world with experimental support.
  • A hypothesis is experimental evidence of a natural phenomenon, while a scientific theory is an explanation of the natural world with experimental support.
  • A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is experimental evidence of a natural phenomenon.

Use the Check Your Understanding questions to assess students’ achievement of the section’s learning objectives. If students are struggling with a specific objective, the Check Your Understanding will help identify which objective and direct students to the relevant content.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/physics/pages/1-introduction
  • Authors: Paul Peter Urone, Roger Hinrichs
  • Publisher/website: OpenStax
  • Book title: Physics
  • Publication date: Mar 26, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/physics/pages/1-introduction
  • Section URL: https://openstax.org/books/physics/pages/1-2-the-scientific-methods

© Jan 19, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Scientific Method

Illustration by J.R. Bee. ThoughtCo. 

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis , and conducting scientific experiments . Scientific inquiry starts with an observation followed by the formulation of a question about what has been observed. The steps of the scientific method are as follows:

Observation

The first step of the scientific method involves making an observation about something that interests you. This is very important if you are doing a science project because you want your project to be focused on something that will hold your attention. Your observation can be on anything from plant movement to animal behavior, as long as it is something you really want to know more about.​ This is where you come up with the idea for your science project.

Once you've made your observation, you must formulate a question about what you have observed. Your question should tell what it is that you are trying to discover or accomplish in your experiment. When stating your question you should be as specific as possible.​ For example, if you are doing a project on plants , you may want to know how plants interact with microbes. Your question may be: Do plant spices inhibit bacterial growth ?

The hypothesis is a key component of the scientific process. A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be testable. That means that you should be able to test your hypothesis through experimentation .​ Your hypothesis must either be supported or falsified by your experiment. An example of a good hypothesis is: If there is a relation between listening to music and heart rate, then listening to music will cause a person's resting heart rate to either increase or decrease.

Once you've developed a hypothesis, you must design and conduct an experiment that will test it. You should develop a procedure that states very clearly how you plan to conduct your experiment. It is important that you include and identify a controlled variable or dependent variable in your procedure. Controls allow us to test a single variable in an experiment because they are unchanged. We can then make observations and comparisons between our controls and our independent variables (things that change in the experiment) to develop an accurate conclusion.​

The results are where you report what happened in the experiment. That includes detailing all observations and data made during your experiment. Most people find it easier to visualize the data by charting or graphing the information.​

The final step of the scientific method is developing a conclusion. This is where all of the results from the experiment are analyzed and a determination is reached about the hypothesis. Did the experiment support or reject your hypothesis? If your hypothesis was supported, great. If not, repeat the experiment or think of ways to improve your procedure.

  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • The 10 Most Important Lab Safety Rules
  • Six Steps of the Scientific Method
  • What Is an Experiment? Definition and Design
  • Scientific Method Flow Chart
  • Scientific Method Lesson Plan
  • How To Design a Science Fair Experiment
  • Science Projects for Every Subject
  • How to Do a Science Fair Project
  • What Are the Elements of a Good Hypothesis?
  • How to Write a Lab Report
  • What Is a Hypothesis? (Science)
  • Biology Science Fair Project Ideas
  • Understanding Simple vs Controlled Experiments
  • Null Hypothesis Definition and Examples
  • Shopping Cart

Advanced Search

  • Browse Our Shelves
  • Best Sellers
  • Digital Audiobooks
  • Featured Titles
  • New This Week
  • Staff Recommended
  • Reading Lists
  • Upcoming Events
  • Ticketed Events
  • Science Book Talks
  • Past Events
  • Video Archive
  • Online Gift Codes
  • University Clothing
  • Goods & Gifts from Harvard Book Store
  • Hours & Directions
  • Newsletter Archive
  • Frequent Buyer Program
  • Signed First Edition Club
  • Signed New Voices in Fiction Club
  • Off-Site Book Sales
  • Corporate & Special Sales
  • Print on Demand

Harvard Book Store

Our Shelves
  • All Our Shelves
  • Academic New Arrivals
  • New Hardcover - Biography
  • New Hardcover - Fiction
  • New Hardcover - Nonfiction
  • New Titles - Paperback
  • African American Studies
  • Anthologies
  • Anthropology / Archaeology
  • Architecture
  • Asia & The Pacific
  • Astronomy / Geology
  • Boston / Cambridge / New England
  • Business & Management
  • Career Guides
  • Child Care / Childbirth / Adoption
  • Children's Board Books
  • Children's Picture Books
  • Children's Activity Books
  • Children's Beginning Readers
  • Children's Middle Grade
  • Children's Gift Books
  • Children's Nonfiction
  • Children's/Teen Graphic Novels
  • Teen Nonfiction
  • Young Adult
  • Classical Studies
  • Cognitive Science / Linguistics
  • College Guides
  • Cultural & Critical Theory
  • Education - Higher Ed
  • Environment / Sustainablity
  • European History
  • Exam Preps / Outlines
  • Games & Hobbies
  • Gender Studies / Gay & Lesbian
  • Gift / Seasonal Books
  • Globalization
  • Graphic Novels
  • Hardcover Classics
  • Health / Fitness / Med Ref
  • Islamic Studies
  • Large Print
  • Latin America / Caribbean
  • Law & Legal Issues
  • Literary Crit & Biography
  • Local Economy
  • Mathematics
  • Media Studies
  • Middle East
  • Myths / Tales / Legends
  • Native American
  • Paperback Favorites
  • Performing Arts / Acting
  • Personal Finance
  • Personal Growth
  • Photography
  • Physics / Chemistry
  • Poetry Criticism
  • Ref / English Lang Dict & Thes
  • Ref / Foreign Lang Dict / Phrase
  • Reference - General
  • Religion - Christianity
  • Religion - Comparative
  • Religion - Eastern
  • Romance & Erotica
  • Science Fiction
  • Short Introductions
  • Technology, Culture & Media
  • Theology / Religious Studies
  • Travel Atlases & Maps
  • Travel Lit / Adventure
  • Urban Studies
  • Wines And Spirits
  • Women's Studies
  • World History
  • Writing Style And Publishing
Gift Cards

Add to Cart

Solving Everyday Problems with the Scientific Method: Thinking Like a Scientist (Second Edition)

This book describes how one can use The Scientific Method to solve everyday problems including medical ailments, health issues, money management, traveling, shopping, cooking, household chores, etc. It illustrates how to exploit the information collected from our five senses, how to solve problems when no information is available for the present problem situation, how to increase our chances of success by redefining a problem, and how to extrapolate our capabilities by seeing a relationship among heretofore unrelated concepts. One should formulate a hypothesis as early as possible in order to have a sense of direction regarding which path to follow. Occasionally, by making wild conjectures, creative solutions can transpire. However, hypotheses need to be well-tested. Through this way, The Scientific Method can help readers solve problems in both familiar and unfamiliar situations. Containing real-life examples of how various problems are solved — for instance, how some observant patients cure their own illnesses when medical experts have failed — this book will train readers to observe what others may have missed and conceive what others may not have contemplated. With practice, they will be able to solve more problems than they could previously imagine. In this second edition, the authors have added some more theories which they hope can help in solving everyday problems. At the same time, they have updated the book by including quite a few examples which they think are interesting. Readership: General public interested in self-help books; undergraduates majoring in education and behavioral psychology; graduates and researchers with research interests in problem solving, creativity and scientific research methodology.

There are no customer reviews for this item yet.

Classic Totes

scientific method problem solving examples in real life

Tote bags and pouches in a variety of styles, sizes, and designs , plus mugs, bookmarks, and more!

Shipping & Pickup

scientific method problem solving examples in real life

We ship anywhere in the U.S. and orders of $75+ ship free via media mail!

Noteworthy Signed Books: Join the Club!

scientific method problem solving examples in real life

Join our Signed First Edition Club (or give a gift subscription) for a signed book of great literary merit, delivered to you monthly.

Harvard Book Store

Harvard Square's Independent Bookstore

© 2024 Harvard Book Store All rights reserved

Contact Harvard Book Store 1256 Massachusetts Avenue Cambridge, MA 02138

Tel (617) 661-1515 Toll Free (800) 542-READ Email [email protected]

View our current hours »

Join our bookselling team »

We plan to remain closed to the public for two weeks, through Saturday, March 28 While our doors are closed, we plan to staff our phones, email, and harvard.com web order services from 10am to 6pm daily.

Store Hours Monday - Saturday: 9am - 11pm Sunday: 10am - 10pm

Holiday Hours 12/24: 9am - 7pm 12/25: closed 12/31: 9am - 9pm 1/1: 12pm - 11pm All other hours as usual.

Map Find Harvard Book Store »

Online Customer Service Shipping » Online Returns » Privacy Policy »

Harvard University harvard.edu »

Facebook

  • Clubs & Services

scientific method problem solving examples in real life

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

flow chart of scientific method

scientific method

Our editors will review what you’ve submitted and determine whether to revise the article.

  • University of Nevada, Reno - College of Agriculture, Biotechnology and Natural Resources Extension - The Scientific Method
  • World History Encyclopedia - Scientific Method
  • LiveScience - What Is Science?
  • Verywell Mind - Scientific Method Steps in Psychology Research
  • WebMD - What is the Scientific Method?
  • Chemistry LibreTexts - The Scientific Method
  • National Center for Biotechnology Information - PubMed Central - Redefining the scientific method: as the use of sophisticated scientific methods that extend our mind
  • Khan Academy - The scientific method
  • Simply Psychology - What are the steps in the Scientific Method?
  • Stanford Encyclopedia of Philosophy - Scientific Method

flow chart of scientific method

Recent News

scientific method , mathematical and experimental technique employed in the sciences . More specifically, it is the technique used in the construction and testing of a scientific hypothesis .

The process of observing, asking questions, and seeking answers through tests and experiments is not unique to any one field of science. In fact, the scientific method is applied broadly in science, across many different fields. Many empirical sciences, especially the social sciences , use mathematical tools borrowed from probability theory and statistics , together with outgrowths of these, such as decision theory , game theory , utility theory, and operations research . Philosophers of science have addressed general methodological problems, such as the nature of scientific explanation and the justification of induction .

Earth's Place in the Universe. Introduction: The History of the Solar System. Aristotle's Philosophical Universe. Ptolemy's Geocentric Cosmos. Copernicus' Heliocentric System. Kepler's Laws of Planetary Motion.

The scientific method is critical to the development of scientific theories , which explain empirical (experiential) laws in a scientifically rational manner. In a typical application of the scientific method, a researcher develops a hypothesis , tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments. The modified hypothesis is then retested, further modified, and tested again, until it becomes consistent with observed phenomena and testing outcomes. In this way, hypotheses serve as tools by which scientists gather data. From that data and the many different scientific investigations undertaken to explore hypotheses, scientists are able to develop broad general explanations, or scientific theories.

See also Mill’s methods ; hypothetico-deductive method .

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

jamiefosterscience logo

Science In Everyday Life: 50 Examples Showing How Science Impacts Our Daily Activities

Science plays a vital role in our daily lives, even if we don’t always realize it. From the alarm that wakes us up to the phones we scroll through before bed, advancements in science, technology, engineering, and math touch every aspect of our routines.

If you’re short on time, here’s a quick answer on examples of science in daily life: Science gives us technology like smartphones, WiFi, microwaves, and virtual assistants . It brings us medical treatments, weather forecasts, and green energy solutions.

Fields like chemistry, biology, and physics explain the world around us and advancements that enhance how we live.

This comprehensive guide provides over 50 examples demonstrating the many amazing ways science impacts our lives. We’ll cover common technologies, healthcare innovations, environmental applications, and insights science provides into the world around us.

Read on to gain appreciation for just how integral STEM is to our modern lives.

Technology Innovations from Science

Smartphones and wifi.

Smartphones have become an integral part of our lives, and we can thank science for their existence. These devices combine various technologies, such as wireless communication, touchscreen displays, and powerful processors, all made possible through scientific advancements.

With the advent of WiFi technology, we can now connect our smartphones to the internet seamlessly, allowing us to access information, communicate with others, and stay connected wherever we go. According to a report by Statista, there are over 3.8 billion smartphone users worldwide, highlighting the widespread impact of this technology.

Virtual Assistants and AI

Virtual assistants, like Siri, Alexa, and Google Assistant, have become an integral part of our daily lives. These AI-powered technologies are the result of extensive research and development in the field of artificial intelligence.

They can perform a wide range of tasks, from answering questions and setting reminders to controlling smart home devices. Virtual assistants have revolutionized the way we interact with technology and have made our lives more convenient.

According to a study by Pew Research Center, around 46% of Americans use voice assistants, showcasing the widespread adoption of this technology.

Streaming Entertainment

Gone are the days when we had to wait for our favorite TV shows or movies to air on traditional television networks. Thanks to scientific advancements, we now have streaming platforms like Netflix, Hulu, and Amazon Prime Video that allow us to enjoy a vast library of entertainment content on demand.

Streaming services rely on technologies like high-speed internet connections and video compression algorithms, which have made it possible to deliver high-quality content to our devices. According to a report by Conviva, global streaming hours increased by 57% in 2020, highlighting the growing popularity of streaming entertainment.

Kitchen Appliances

Science has also revolutionized our kitchens with innovative appliances that make cooking and food preparation easier and more efficient. From microwave ovens and induction cooktops to smart refrigerators and programmable coffee makers, these appliances utilize scientific principles to enhance our culinary experiences.

For example, microwave ovens use electromagnetic waves to heat food quickly, while induction cooktops use magnetic fields to generate heat directly in the cookware. These advancements have saved us time and energy in the kitchen, allowing us to focus on creating delicious meals.

Healthcare and Medicine

Medical treatments and drugs.

Science plays a crucial role in the development of medical treatments and drugs. Through extensive research and experimentation, scientists are able to discover new medications and therapies that help treat diseases and improve the quality of life for patients.

From antibiotics to cancer-fighting drugs, science has revolutionized the field of medicine. For instance, in recent years, breakthroughs in immunotherapy have provided hope for patients with previously untreatable cancers, offering them a chance at a longer and healthier life.

Medical Imaging and Scans

The advancement of medical imaging technology has greatly contributed to the field of healthcare. X-rays, CT scans, MRIs, and ultrasounds are all examples of medical imaging techniques that allow doctors to visualize the internal structures of the body without invasive procedures.

These imaging tools aid in the diagnosis and monitoring of various conditions, such as broken bones, tumors, and organ abnormalities. With the help of these technologies, doctors can make more accurate and timely diagnoses, leading to better treatment outcomes for patients.

Prosthetics and Implants

Science has also revolutionized the field of prosthetics and implants, providing individuals with enhanced mobility and improved quality of life. With advancements in materials science and robotics, prosthetic limbs have become increasingly sophisticated, allowing amputees to regain functionality and perform daily activities with greater ease.

Additionally, advancements in medical implants, such as pacemakers and artificial joints, have significantly improved the lives of individuals with chronic conditions, enabling them to live longer and more fulfilling lives.

Genetic Testing

Genetic testing is another area where science has had a significant impact on healthcare. With advancements in DNA sequencing technology, scientists are now able to analyze an individual’s genetic makeup and identify potential genetic disorders or predispositions to certain diseases.

This information can be used for early detection and prevention, allowing individuals to make informed decisions about their health. Genetic testing has also paved the way for personalized medicine, where treatments can be tailored to an individual’s specific genetic profile, leading to more effective and targeted therapies.

Energy and Environment

Renewable energy.

Renewable energy plays a crucial role in reducing our carbon footprint and preserving the environment. Solar power, for example, harnesses the energy from the sun and converts it into electricity, providing a sustainable and clean alternative to traditional fossil fuels.

Wind power is another example, where the kinetic energy of the wind is converted into electricity through wind turbines. According to the International Renewable Energy Agency (IRENA), renewable energy accounted for 26% of global electricity generation in 2018, and this number is expected to rise significantly in the coming years.

Harnessing the power of renewable energy sources not only reduces greenhouse gas emissions but also leads to economic growth and job creation in the renewable energy sector.

Water Filtration and Conservation

Science has greatly contributed to improving water filtration systems and promoting water conservation. Advanced technologies such as reverse osmosis and ultraviolet (UV) disinfection are used to remove impurities and pathogens from water, making it safe for consumption.

These filtration systems are essential in areas where access to clean drinking water is limited. Additionally, scientific research has led to the development of water-saving devices and techniques, such as low-flow showerheads and rainwater harvesting systems.

These innovations help conserve water resources and reduce water wastage, ultimately benefiting both the environment and our daily lives.

Weather Forecasting

Weather forecasting relies heavily on scientific advancements to accurately predict and analyze weather patterns. Meteorologists use a variety of tools and technologies, including satellites, radar systems, and computer models, to collect data and make predictions about future weather conditions.

By understanding atmospheric phenomena and analyzing historical data, scientists can provide crucial information regarding upcoming storms, hurricanes, and other weather events. Accurate weather forecasts not only help us plan our daily activities but also play a vital role in disaster preparedness and mitigation efforts, potentially saving lives and minimizing damage.

Recycling and Waste Management

In today’s world, proper waste management and recycling have become essential for the health of our environment. Science has played a significant role in developing efficient recycling processes and waste management systems.

Recycling helps reduce the amount of waste sent to landfills and conserves valuable resources. Through various scientific methods, materials such as paper, plastic, glass, and metal can be recycled and used for the production of new products.

Furthermore, advancements in waste management technologies, such as waste-to-energy systems, enable the conversion of waste materials into renewable energy sources. These innovations not only reduce the environmental impact of waste but also contribute to a more sustainable and circular economy.

Science continues to drive innovations and advancements in the energy and environmental sectors. By embracing renewable energy, implementing efficient water filtration and conservation methods, improving weather forecasting accuracy, and promoting recycling and waste management, we can create a more sustainable and environmentally friendly future.

Transportation Innovations

Aircraft technology.

Aircraft technology has come a long way since the Wright brothers’ first flight. Today, we have advanced and sophisticated airplanes that allow us to travel to any corner of the world in a matter of hours.

From the use of composite materials to improve fuel efficiency, to the development of quieter engines and advanced navigation systems, science has played a crucial role in revolutionizing air travel. The aerodynamic design of modern airplanes allows them to achieve incredible speeds while maintaining stability and safety.

This not only makes air travel more convenient for passengers but also reduces the environmental impact of aviation.

Automotive Engineering

The field of automotive engineering has witnessed tremendous advancements, making our cars safer, more efficient, and more comfortable. Science has enabled the development of innovative safety features such as airbags, ABS brakes, and collision avoidance systems, which have significantly reduced the number of accidents and saved countless lives.

The use of lightweight materials and aerodynamic designs has made cars more fuel-efficient, reducing greenhouse gas emissions. Additionally, the integration of GPS technology and smart infotainment systems has made navigation and entertainment more convenient for drivers and passengers alike.

Traffic Optimization Systems

With the increasing number of vehicles on the road, traffic congestion has become a major issue in many cities around the world. Science has played a vital role in developing traffic optimization systems that help manage and reduce congestion.

These systems use advanced algorithms and real-time data to analyze traffic patterns and suggest the most efficient routes for drivers. By optimizing traffic flow, these systems not only save time for commuters but also reduce fuel consumption and air pollution.

Examples of such systems include smart traffic lights, intelligent transportation systems, and traffic management apps.

Supply Chain Logistics

Supply chain logistics involves the management and coordination of the flow of goods and services from the point of origin to the point of consumption. Science has revolutionized this field by introducing innovative technologies and processes that improve efficiency and reduce costs.

For example, the use of barcode scanning, RFID tags, and GPS tracking has made inventory management more accurate and streamlined. Advanced analytics and predictive modeling help optimize routing and scheduling, ensuring timely delivery while minimizing transportation costs.

These innovations have transformed the way goods are transported, making supply chains more efficient and responsive to customer demands.

Insights into Our World

Science plays a fundamental role in our daily lives, often in ways we may not even realize. From the stars in the sky to the products we use, science provides us with valuable insights and understanding. Let’s explore some examples of how science impacts our everyday activities.

Astronomy and Space Science

Have you ever looked up at the night sky and marveled at the stars? Astronomy, the study of celestial objects and phenomena, helps us understand the vastness of the universe. Through telescopes and satellites, scientists have made groundbreaking discoveries about galaxies, planets, and even the origins of the universe itself.

Websites like NASA offer a wealth of information and breathtaking images that bring the wonders of space closer to us.

Physics Principles at Work

Physics is the study of matter and energy, and its principles can be found in many aspects of our daily lives. For example, the laws of motion explain why objects fall to the ground, why vehicles move, and why we can ride a bicycle.

Understanding these principles allows us to design safer cars, build sturdy bridges, and even enjoy thrilling roller coaster rides. Physics is not just for scientists in labs; it’s all around us!

Earth Sciences – Climate, Seismology

Earth sciences, such as climatology and seismology, provide us with valuable knowledge about our planet. Climate science helps us understand the changes happening in our environment and the impact of human activities on the Earth’s climate.

Seismology, the study of earthquakes, allows us to monitor and predict seismic activity, helping to save lives and minimize damage. Websites like climate.gov and USGS offer comprehensive information on these topics.

Chemistry in Everyday Products

Chemistry is present in countless products we use every day, from cleaning supplies to personal care items. For instance, the chemical reactions that occur in batteries power our smartphones and other electronic devices.

Additionally, the development of new materials and pharmaceuticals relies heavily on chemical research. Understanding the principles of chemistry allows us to create safer and more efficient products. Websites like American Chemical Society provide valuable resources on the role of chemistry in our daily lives.

Science is an integral part of our lives, providing us with knowledge and improving our understanding of the world around us. Whether it’s exploring the mysteries of space, harnessing the power of physics, studying our planet’s climate, or utilizing chemistry in everyday products, science impacts our daily activities in profound ways.

As this extensive list of examples shows, science fundamentally shapes our daily lives in modern society. Cutting-edge innovations that enhance how we live, work, communicate, travel, stay healthy, and understand the world all stem from scientific discovery.

Fields like physics, chemistry, biology, astronomy, and engineering create astounding technologies, life-saving medications, and solutions for sustainability. They also unlock deeper insights into our own bodies, the environment, and the universe around us.

So whether you’re video chatting on your phone, cooking dinner, driving your car, or just breathing – you have science to thank! Our modern world simply would not function without the dedicated work of scientists pushing boundaries every day.

Similar Posts

Mit’S Introduction To Computer Science Course: An In-Depth Overview

Mit’S Introduction To Computer Science Course: An In-Depth Overview

For aspiring computer scientists, MIT’s Introduction to Computer Science and Programming course provides a foundational gateway into this dynamic field. Widely known as 6.00.1x, this course draws tens of thousands of learners on edX eager to master computational thinking. If you’re short on time, here’s a quick overview: MIT’s intro computer science course 6.00.1x teaches…

Princeton Computer Science Acceptance Rate: An In-Depth Look

Princeton Computer Science Acceptance Rate: An In-Depth Look

Getting accepted into Princeton University’s renowned computer science program is a dream for many prospective students. But with an exceptionally competitive admissions process, you probably want to know—what are your actual chances of getting in? In this comprehensive guide, we’ll break down everything you need to know about Princeton computer science’s acceptance rate. If you’re…

Science Terms Starting With X – An In-Depth Look

Science Terms Starting With X – An In-Depth Look

You may not think there are many science terms that start with the letter X. But while less common than some other letters, there are still important X terms that are key to science fields like physics, astronomy, biology, and more. If you’re short on time, here’s a quick answer about some science vocabulary starting…

What Does Mod Mean In Computer Science? A Detailed Explanation

What Does Mod Mean In Computer Science? A Detailed Explanation

Mod, short for modulo, is an essential operation in computer science used for everything from circular indexing to checksums. If you’re short on time, here’s a quick answer: Mod refers to the remainder left over after dividing two numbers. In this comprehensive guide, we’ll explore what mod means in depth across applications like programming languages,…

Is Science Diet Good For Cats? An Evidence-Based Analysis

Is Science Diet Good For Cats? An Evidence-Based Analysis

With so many cat food options on the market, pet owners want to know if popular brands like Science Diet deliver quality nutrition. If you’re short on time, here’s a quick answer: Overall, Science Diet is a good choice for cats according to veterinarians, as it undergoes extensive research and feeding trials to formulate recipes…

How To Study For Ap Computer Science Principles: The Ultimate Guide

How To Study For Ap Computer Science Principles: The Ultimate Guide

Are you taking AP Computer Science Principles this year and wondering how to prepare? This course covers a wide range of critical computing topics and can be challenging for many students. With the right study plan and tools, you can build your knowledge and confidence to ace the AP CSP exam. If you’re short on…

What Is the Scientific Method?

scientific method problem solving examples in real life

The scientific method is a systematic way of conducting experiments or studies so that you can explore the things you observe in the world and answer questions about them. The scientific method, also known as the hypothetico-deductive method, is a series of steps that can help you accurately describe the things you observe or improve your understanding of them.

Ultimately, your goal when you use the scientific method is to:

  • Find a cause-and-effect relationship by asking a question about something you observed
  • Collect as much evidence as you can about what you observed, as this can help you explore the connection between your evidence and what you observed
  • Determine if all your evidence can be combined to answer your question in a way that makes sense

Francis Bacon and René Descartes are usually credited with formalizing the process in the 16th and 17th centuries. The two philosophers argued that research shouldn’t be guided by preset metaphysical ideas of how reality works. They supported the use of inductive reasoning to come up with hypotheses and understand new things about reality.

Scientific Method Steps

The scientific method is a step-by-step problem-solving process. These steps include:

Observe the world around you. This will help you come up with a topic you are interested in and want to learn more about. In many cases, you already have a topic in mind because you have a related question for which you couldn't find an immediate answer.

Either way, you'll start the process by finding out what people before you already know about the topic, as well as any questions that people are still asking about. You may need to look up and read books and articles from academic journals or talk to other people so that you understand as much as you possibly can about your topic. This will help you with your next step.

Ask questions. Asking questions about what you observed and learned from reading and talking to others can help you figure out what the "problem" is. Scientists try to ask questions that are both interesting and specific and can be answered with the help of a fairly easy experiment or series of experiments. Your question should have one part (called a variable) that you can change in your experiment and another variable that you can measure. Your goal is to design an experiment that is a "fair test," which is when all the conditions in the experiment are kept the same except for the one you change (called the experimental or independent variable).

Form a hypothesis and make predictions based on it.  A hypothesis is an educated guess about the relationship between two or more variables in your question. A good hypothesis lets you predict what will happen when you test it in an experiment. Another important feature of a good hypothesis is that, if the hypothesis is wrong, you should be able to show that it's wrong. This is called falsifiability. If your experiment shows that your prediction is true, then your hypothesis is supported by your data.

Test your prediction by doing an experiment or making more observations.  The way you test your prediction depends on what you are studying. The best support comes from an experiment, but in some cases, it's too hard or impossible to change the variables in an experiment. Sometimes, you may need to do descriptive research where you gather more observations instead of doing an experiment. You will carefully gather notes and measurements during your experiments or studies, and you can share them with other people interested in the same question as you. Ideally, you will also repeat your experiment a couple more times because it's possible to get a result by chance, but it's less possible to get the same result more than once by chance.

Draw a conclusion. You will analyze what you already know about your topic from your literature research and the data gathered during your experiment. This will help you decide if the conclusion you draw from your data supports or contradicts your hypothesis. If your results contradict your hypothesis, you can use this observation to form a new hypothesis and make a new prediction. This is why scientific research is ongoing and scientific knowledge is changing all the time. It's very common for scientists to get results that don't support their hypotheses. In fact, you sometimes learn more about the world when your experiments don't support your hypotheses because it leads you to ask more questions. And this time around, you already know that one possible explanation is likely wrong.

Use your results to guide your next steps (iterate). For instance, if your hypothesis is supported, you may do more experiments to confirm it. Or you could come up with a hypothesis about why it works this way and design an experiment to test that. If your hypothesis is not supported, you can come up with another hypothesis and do experiments to test it. You'll rarely get the right hypothesis in one go. Most of the time, you'll have to go back to the hypothesis stage and try again. Every attempt offers you important information that helps you improve your next round of questions, hypotheses, and predictions.

Share your results. Scientific research isn't something you can do on your own; you must work with other people to do it.   You may be able to do an experiment or a series of experiments on your own, but you can't come up with all the ideas or do all the experiments by yourself .

Scientists and researchers usually share information by publishing it in a scientific journal or by presenting it to their colleagues during meetings and scientific conferences. These journals are read and the conferences are attended by other researchers who are interested in the same questions. If there's anything wrong with your hypothesis, prediction, experiment design, or conclusion, other researchers will likely find it and point it out to you.

It can be scary, but it's a critical part of doing scientific research. You must let your research be examined by other researchers who are as interested and knowledgeable about your question as you. This process helps other researchers by pointing out hypotheses that have been proved wrong and why they are wrong. It helps you by identifying flaws in your thinking or experiment design. And if you don't share what you've learned and let other people ask questions about it, it's not helpful to your or anyone else's understanding of what happens in the world.

Scientific Method Example

Here's an everyday example of how you can apply the scientific method to understand more about your world so you can solve your problems in a helpful way.

Let's say you put slices of bread in your toaster and press the button, but nothing happens. Your toaster isn't working, but you can't afford to buy a new one right now. You might be able to rescue it from the trash can if you can figure out what's wrong with it. So, let's figure out what's wrong with your toaster.

Observation. Your toaster isn't working to toast your bread.

Ask a question. In this case, you're asking, "Why isn't my toaster working?" You could even do a bit of preliminary research by looking in the owner's manual for your toaster. The manufacturer has likely tested your toaster model under many conditions, and they may have some ideas for where to start with your hypothesis.

Form a hypothesis and make predictions based on it. Your hypothesis should be a potential explanation or answer to the question that you can test to see if it's correct. One possible explanation that we could test is that the power outlet is broken. Our prediction is that if the outlet is broken, then plugging it into a different outlet should make the toaster work again.

Test your prediction by doing an experiment or making more observations. You plug the toaster into a different outlet and try to toast your bread.

If that works, then your hypothesis is supported by your experimental data. Results that support your hypothesis don't prove it right; they simply suggest that it's a likely explanation. This uncertainty arises because, in the real world, we can't rule out the possibility of mistakes, wrong assumptions, or weird coincidences affecting the results. If the toaster doesn’t work even after plugging it into a different outlet, then your hypothesis is not supported and it's likely the wrong explanation.

Use your results to guide your next steps (iteration). If your toaster worked, you may decide to do further tests to confirm it or revise it. For example, you could plug something else that you know is working into the first outlet to see if that stops working too. That would be further confirmation that your hypothesis is correct.

If your toaster failed to toast when plugged into the second outlet, you need a new hypothesis. For example, your next hypothesis might be that the toaster has a shorted wire. You could test this hypothesis directly if you have the right equipment and training, or you could take it to a repair shop where they could test that hypothesis for you.

Share your results. For this everyday example, you probably wouldn't want to write a paper, but you could share your problem-solving efforts with your housemates or anyone you hire to repair your outlet or help you test if the toaster has a short circuit.

What the Scientific Method Is Used For

The scientific method is useful whenever you need to reason logically about your questions and gather evidence to support your problem-solving efforts. So, you can use it in everyday life to answer many of your questions; however, when most people think of the scientific method, they likely think of using it to:

Describe how nature works . It can be hard to accurately describe how nature works because it's almost impossible to account for every variable that's involved in a natural process. Researchers may not even know about many of the variables that are involved. In some cases, all you can do is make assumptions. But you can use the scientific method to logically disprove wrong assumptions by identifying flaws in the reasoning.

Do scientific research in a laboratory to develop things such as new medicines.

Develop critical thinking skills.  Using the scientific method may help you develop critical thinking in your daily life because you learn to systematically ask questions and gather evidence to find answers. Without logical reasoning, you might be more likely to have a distorted perspective or bias. Bias is the inclination we all have to favor one perspective (usually our own) over another.

The scientific method doesn't perfectly solve the problem of bias, but it does make it harder for an entire field to be biased in the same direction. That's because it's unlikely that all the people working in a field have the same biases. It also helps make the biases of individuals more obvious because if you repeatedly misinterpret information in the same way in multiple experiments or over a period, the other people working on the same question will notice. If you don't correct your bias when others point it out to you, you'll lose your credibility. Other people might then stop believing what you have to say.

Why Is the Scientific Method Important?

When you use the scientific method, your goal is to do research in a fair, unbiased, and repeatable way. The scientific method helps meet these goals because:

It's a systematic approach to problem-solving. It can help you figure out where you're going wrong in your thinking and research if you're not getting helpful answers to your questions. Helpful answers solve problems and keep you moving forward. So, a systematic approach helps you improve your problem-solving abilities if you get stuck.

It can help you solve your problems.  The scientific method helps you isolate problems by focusing on what's important. In addition, it can help you make your solutions better every time you go through the process.

It helps you eliminate (or become aware of) your personal biases.  It can help you limit the influence of your own personal, preconceived notions . A big part of the process is considering what other people already know and think about your question. It also involves sharing what you've learned and letting other people ask about your methods and conclusions. At the end of the process, even if you still think your answer is best, you have considered what other people know and think about the question.

The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step problem-solving process that involves: (1) observation, (2) asking questions, (3) forming hypotheses and making predictions, (4) testing your hypotheses through experiments or more observations, (5) using what you learned through experiment or observation to guide further investigation, and (6) sharing your results.

Top doctors in ,

Find more top doctors on, related links.

  • Health A-Z News
  • Health A-Z Reference
  • Health A-Z Slideshows
  • Health A-Z Quizzes
  • Health A-Z Videos
  • WebMDRx Savings Card
  • Coronavirus (COVID-19)
  • Hepatitis C
  • Diabetes Warning Signs
  • Rheumatoid Arthritis
  • Morning-After Pill
  • Breast Cancer Screening
  • Psoriatic Arthritis Symptoms
  • Heart Failure
  • Multiple Myeloma
  • Types of Crohn's Disease

scientific method problem solving examples in real life

turtle

The Biology Corner

Biology Teaching Resources

two turtles

How Can the Scientific Method Solve Real-World Problems?

screeenshot

 Students read short stories about how scientists used the scientific method to solve real problems.  

In the first case, Dr. Eijkman used observation to notice that chickens who ate polished rice became sick with beriberi.  He developed an experiment to determine what was causing the illness. Eijkman discovered the that rice did not have a vitamin chickens need.

Further studies lead to the conclusion that a vitamin deficiency could make both chickens and humans sick.  After reading the story, students identify the hypothesis, how the hypothesis was tested, and what conclusions were reached as a result of the experiment.

The second scenario provides a summary of how penicillin was discovered by Alexander Fleming. This accidental discovery lead to a major improvement in health care for humans across the world. Antibiotics!

Grade Level: 7-9  | Time Required: 20 min

CCSS.ELA-LITERACY.RST.9-10.2 Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.

Shannan Muskopf

Login to your account

Change password, your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

Create a new account

Can't sign in? Forgot your password?

Enter your email address below and we will send you the reset instructions

If the address matches an existing account you will receive an email with instructions to reset your password

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

World Scientific

  •   
  • Institutional Access

Cookies Notification

Our site uses javascript to enchance its usability. you can disable your ad blocker or whitelist our website www.worldscientific.com to view the full content., select your blocker:, adblock plus instructions.

  • Click the AdBlock Plus icon in the extension bar
  • Click the blue power button
  • Click refresh

Adblock Instructions

  • Click the AdBlock icon
  • Click "Don't run on pages on this site"

uBlock Origin Instructions

  • Click on the uBlock Origin icon in the extension bar
  • Click on the big, blue power button
  • Refresh the web page

uBlock Instructions

  • Click on the uBlock icon in the extension bar

Adguard Instructions

  • Click on the Adguard icon in the extension bar
  • Click on the toggle next to the "Protection on this website" text

Brave Instructions

  • Click on the orange lion icon to the right of the address bar
  • Click the toggle on the top right, shifting from "Up" to "Down

Adremover Instructions

  • Click on the AdRemover icon in the extension bar
  • Click the "Don’t run on pages on this domain" button
  • Click "Exclude"

Adblock Genesis Instructions

  • Click on the Adblock Genesis icon in the extension bar
  • Click on the button that says "Whitelist Website"

Super Adblocker Instructions

  • Click on the Super Adblocker icon in the extension bar
  • Click on the "Don’t run on pages on this domain" button
  • Click the "Exclude" button on the pop-up

Ultrablock Instructions

  • Click on the UltraBlock icon in the extension bar
  • Click on the "Disable UltraBlock for ‘domain name here’" button

Ad Aware Instructions

  • Click on the AdAware icon in the extension bar
  • Click on the large orange power button

Ghostery Instructions

  • Click on the Ghostery icon in the extension bar
  • Click on the "Trust Site" button

Firefox Tracking Protection Instructions

  • Click on the shield icon on the left side of the address bar
  • Click on the toggle that says "Enhanced Tracking protection is ON for this site"

Duck Duck Go Instructions

  • Click on the DuckDuckGo icon in the extension bar
  • Click on the toggle next to the words "Site Privacy Protection"

Privacy Badger Instructions

  • Click on the Privacy Badger icon in the extension bar
  • Click on the button that says "Disable Privacy Badger for this site"

Disconnect Instructions

  • Click on the Disconnect icon in the extension bar
  • Click the button that says "Whitelist Site"

Opera Instructions

  • Click on the blue shield icon on the right side of the address bar
  • Click the toggle next to "Ads are blocked on this site"

CONNECT Login Notice

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

WSPC-logo

Solving Everyday Problems with the Scientific Method

The Scientific Method

Now, what exactly is the scientific method? It can actually be described in different versions.

A comprehensive version can be depicted as such: Observation, Recognition, Definition, Hypothesis, Prediction, and Experiment.

Observation is the noticing or perceiving of some aspect of the universe. Then, one needs to recognize that a problem situation is significant enough to require attention. The circumstance is then defined or modeled. A tentative description or hypothesis is then formulated to explain the phenomenon, and to predict the existence of other phenomena. The prediction is then tested by an experiment.

The hypothesis may be accepted or modified or rejected in light of new observations. A hypothesis has to be capable of being tested by an experiment, i.e., it has to be falsifiable. This differentiates it from a belief or a faith. Thus, the statement "This is destiny" is not falsifiable, as no experiment can be designed to prove whether it is true or not. The strength of a hypothesis is in its predictive power - where we can get more out than what we have put in. The validity of a hypothesis has to be tested under controlled conditions. In its simplest form, a controlled experiment is performed when one variable (the independent variable) is changed, thus causing another variable (the dependent variable) to change at the same time. All other variables will be kept as constants. The result of the experiment has to be reproducible by others under the same experimental description and procedure.

This comprehensive version of the Scientific Method can be abbreviated to: Observation, Hypothesis, and Experiment. This simple version seems to suffice for accomplishing quite a number of scientific works, and also for coping with everyday problems.

Application of the Scientific Method to Everyday Problem

Everyday problems share the same commonalities as scientific problems. They are situations that require solutions; they hold difficulties that need to be resolved. As such, everyday problems would benefit by employing the scientific method. We will study how the scientific method can be used in daily life.

Let us take a look at the wet foot problem discussed in Chapter 1. The father noticed that his daughter stepped only the left foot into the puddle of water. As a result, only the sock and the shoe of the left foot got wet. After drying the left foot first, he took off her right sock and put it onto her left foot. He then put both shoes back on, leaving the right foot without a sock. The little girl felt comfortable, and did not complain. The whole family continued walking to the playground. The children spent half an hour playing there, and the family then walked back home after.

Here we note that the father observed where the problem was. He hypothesized what could be the solution. He tested it out, and found that the idea worked.

Solving Everyday Problems with the Scientific Method

This article is an abstract of Solving Everyday Problems with the Scientific Method by Don K Mak, Angela T Mak, Anthony B Mak

Copyright © 2017 World Scientific Publishing Co. All rights reserved.

banner

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.2: Scientific Approach for Solving Problems

  • Last updated
  • Save as PDF
  • Page ID 358114

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • To identify the components of the scientific method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method . This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1}\)).

imageedit_2_5896776795.jpg

Observations can be qualitative or quantitative. Qualitative observations describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: the outside air temperature is cooler during the winter season, table salt is a crystalline solid, sulfur crystals are yellow, and dissolving a penny in dilute nitric acid forms a blue solution and a brown gas. Quantitative observations are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: the melting point of crystalline sulfur is 115.21 °C, and 35.9 grams of table salt—whose chemical name is sodium chloride—dissolve in 100 grams of water at 20 °C. An example of a quantitative observation was the initial observation leading to the modern theory of the dinosaurs’ extinction: iridium concentrations in sediments dating to 66 million years ago were found to be 20–160 times higher than normal. The development of this theory is a good exemplar of the scientific method in action (see Figure \(\PageIndex{2}\) below).

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis , a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness corresponding to observed movements of the sun, moon, clouds, and shadows is consistent with either of two hypotheses:

  • Earth rotates on its axis every 24 hours, alternately exposing one side to the sun, or
  • The sun revolves around Earth every 24 hours.

Suitable experiments can be designed to choose between these two alternatives. For the disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists collected additional data that either support or refute it.

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes. For example, in the dinosaur extinction scenario, iridium concentrations were measured worldwide and compared. A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. Experiments often demonstrate that the hypothesis is incorrect or that it must be modified. More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law , a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply says what happens; it does not address the question of why.

One example of a law, the Law of Definite Proportions , which was discovered by the French scientist Joseph Proust (1754–1826), states that a chemical substance always contains the same proportions of elements by mass. Thus sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine, in this case 39.34% sodium and 60.66% chlorine by mass, and sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass. Some solid compounds do not strictly obey the law of definite proportions. The law of definite proportions should seem obvious—we would expect the composition of sodium chloride to be consistent—but the head of the US Patent Office did not accept it as a fact until the early 20th century.

Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time unless a major experimental error is discovered. In contrast, a theory, by definition, is incomplete and imperfect, evolving with time to explain new facts as they are discovered. The theory developed to explain the extinction of the dinosaurs, for example, is that Earth occasionally encounters small- to medium-sized asteroids, and these encounters may have unfortunate implications for the continued existence of most species. This theory is by no means proven, but it is consistent with the bulk of evidence amassed to date. Figure \(\PageIndex{2}\) summarizes the application of the scientific method in this case.

imageedit_8_3393569312.jpg

Example \(\PageIndex{1}\)

Classify each statement as a law, a theory, an experiment, a hypothesis, a qualitative observation, or a quantitative observation.

  • Ice always floats on liquid water.
  • Birds evolved from dinosaurs.
  • Hot air is less dense than cold air, probably because the components of hot air are moving more rapidly.
  • When 10 g of ice were added to 100 mL of water at 25 °C, the temperature of the water decreased to 15.5 °C after the ice melted.
  • The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.

Given : components of the scientific method

Asked for : statement classification

Strategy: Refer to the definitions in this section to determine which category best describes each statement.

  • This is a general statement of a relationship between the properties of liquid and solid water, so it is a law.
  • This is a possible explanation for the origin of birds, so it is a hypothesis.
  • This is a statement that tries to explain the relationship between the temperature and the density of air based on fundamental principles, so it is a theory.
  • The temperature is measured before and after a change is made in a system, so these are quantitative observations.
  • This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise \(\PageIndex{1}\)

  • Measured amounts of acid were added to a Rolaids tablet to see whether it really “consumes 47 times its weight in excess stomach acid.”
  • Heat always flows from hot objects to cooler ones, not in the opposite direction.
  • The universe was formed by a massive explosion that propelled matter into a vacuum.
  • Michael Jordan is the greatest pure shooter ever to play professional basketball.
  • Limestone is relatively insoluble in water but dissolves readily in dilute acid with the evolution of a gas.
  • Gas mixtures that contain more than 4% hydrogen in air are potentially explosive.

qualitative observation

quantitative observation

Because scientists can enter the cycle shown in Figure \(\PageIndex{1}\) at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

It is important to remember that scientists have a tendency to formulate hypotheses in familiar terms simply because it is difficult to propose something that has never been encountered or imagined before. As a result, scientists sometimes discount or overlook unexpected findings that disagree with the basic assumptions behind the hypothesis or theory being tested. Fortunately, truly important findings are immediately subject to independent verification by scientists in other laboratories, so science is a self-correcting discipline. When the Alvarezes originally suggested that an extraterrestrial impact caused the extinction of the dinosaurs, the response was almost universal skepticism and scorn. In only 20 years, however, the persuasive nature of the evidence overcame the skepticism of many scientists, and their initial hypothesis has now evolved into a theory that has revolutionized paleontology and geology.

Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and theories to explain them. In doing so, they are using the scientific method.

Science Hacks: Scientific Solutions To Everyday Problems

Thu, Jan 12, 2017

Est. Reading Time min

I was cooking recently and became frustrated with the amount of water I was losing over the top of my pot as it was boiling over. My roommate quickly came to the rescue with a wooden spoon to place over the top of my pot, which immediately reduced the over boiling of the water. As I witnessed this new development I began to question the science behind this process. It got me thinking: what other simple scientific solutions are out there to assist us with everyday frustrations?

Place a wooden spoon across your pot to prevent boil over

This age-old technique can help prevent water in a pot from boiling over, or at least delay the boiling over, so you have enough time to turn the stove down. This works in two ways; first, the spoon laying across the open boiling pot of water helps pop many of the bubbles that form once water boils, and the use of a wooden spoon rather than a metal spoon keeps your hands safe from burning. Wood is an insulator , so it takes more heat to warm up and burn your skin when touched compared to a metal spoon or kitchen tool, which you would eventually have to remove with an oven mitt!

Apple can reduce garlic breath

The scientific reason for poor breath after eating garlic is a chemical compound called allyl methyl sulfide (AMS). This compound is not metabolized in the gut and liver very well and as a result, is  exhaled out of your mouth .  AMS releases a gas that, instead of being absorbed into your blood stream, is exhaled through your lungs. Since AMS can’t be broken down very easily, it can stick around in your body for a couple of hours to a couple of days. Brushing your teeth can get rid of some of the smells coming from your mouth, but you need something more to help combat AMS from behind exhaled through your lungs.

Garlic breath is reduced by eating or drinking different foods that can break down AMS. For example, eating fruits and vegetables that turn brown (apples, pears, avocados) are great at  battling AMS because they contain another compound, and enzyme called polyphenol oxidase (PO). When PO is exposed to oxygen, it reduces the odor produced by AMS through enzymatic deodorizarion . So, next time someone passes on dessert, you can tell them that science actually suggests that apple pie might be a cure to their garlicky breath. 

Meat tenderizer can stop sweat stains

If you’re a sweaty individual, like me, and you like wearing light-coloured shirts, you’ve experienced the grief of yellow sweat stains that don’t come off in the laundry. Ironically, these “sweat stains” don’t come from sweat itself, because sweat is colourless. Instead, these yellowish (and sometimes brown) stains come from a chemical reaction between sweat and your deodorant or antiperspirant . The urea in sweat reacts with aluminum and acidic ingredients in your deodorant and antiperspirant to result in the yellow stains on your clothing. One way to remedy stains that have already set in your clothing is to spread a paste of meat tenderizer powder and water onto the stains, let it dry and then launder as usual. The meat tenderizer powder contains enzymes such as papain and bromelain that help break down the proteins in the yellow stain so that the stains can be washed away!

Now that I've learned that science can help me in ways I didn't even realize, I can't help but be inspired to brainstorm new solutions to challenges I regularly encounter. We can be our own super heroes if we take the time to think it through; more often than not science can help us save the day. 

Science hacks are a great way to talk about everyday science. Have you read about our Bulletproof Coffee Experiment ? What science hack do you employ in your everyday life? 

About the sticker

Artist: Jeff Kulak

Jeff is a senior graphic designer at Science World. His illustration work has been published in the Walrus, The National Post, Reader’s Digest and Chickadee Magazine. He loves to make music, ride bikes, and spend time in the forest.

Comet Crisp

T-Rex and Baby

Artist: Michelle Yong

Michelle is a designer with a focus on creating joyful digital experiences! She enjoys exploring the potential forms that an idea can express itself in and helping then take shape.

Buddy the T-Rex

Science Buddies

Artist: Ty Dale

From Canada, Ty was born in Vancouver, British Columbia in 1993. From his chaotic workspace he draws in several different illustrative styles with thick outlines, bold colours and quirky-child like drawings. Ty distils the world around him into its basic geometry, prompting us to look at the mundane in a different way.

Western Dinosaur

Time-Travel T-Rex

We believe that now, more than ever, the world needs people who care about science. Help us fund the future and next generation of problem solvers, wonder seekers, world changers and nerds.

What Are The Steps Of The Scientific Method?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Science is not just knowledge. It is also a method for obtaining knowledge. Scientific understanding is organized into theories.

The scientific method is a step-by-step process used by researchers and scientists to determine if there is a relationship between two or more variables. Psychologists use this method to conduct psychological research, gather data, process information, and describe behaviors.

It involves careful observation, asking questions, formulating hypotheses, experimental testing, and refining hypotheses based on experimental findings.

How it is Used

The scientific method can be applied broadly in science across many different fields, such as chemistry, physics, geology, and psychology. In a typical application of this process, a researcher will develop a hypothesis, test this hypothesis, and then modify the hypothesis based on the outcomes of the experiment.

The process is then repeated with the modified hypothesis until the results align with the observed phenomena. Detailed steps of the scientific method are described below.

Keep in mind that the scientific method does not have to follow this fixed sequence of steps; rather, these steps represent a set of general principles or guidelines.

7 Steps of the Scientific Method

Psychology uses an empirical approach.

Empiricism (founded by John Locke) states that the only source of knowledge comes through our senses – e.g., sight, hearing, touch, etc.

Empirical evidence does not rely on argument or belief. Thus, empiricism is the view that all knowledge is based on or may come from direct observation and experience.

The empiricist approach of gaining knowledge through experience quickly became the scientific approach and greatly influenced the development of physics and chemistry in the 17th and 18th centuries.

Steps of the Scientific Method

Step 1: Make an Observation (Theory Construction)

Every researcher starts at the very beginning. Before diving in and exploring something, one must first determine what they will study – it seems simple enough!

By making observations, researchers can establish an area of interest. Once this topic of study has been chosen, a researcher should review existing literature to gain insight into what has already been tested and determine what questions remain unanswered.

This assessment will provide helpful information about what has already been comprehended about the specific topic and what questions remain, and if one can go and answer them.

Specifically, a literature review might implicate examining a substantial amount of documented material from academic journals to books dating back decades. The most appropriate information gathered by the researcher will be shown in the introduction section or abstract of the published study results.

The background material and knowledge will help the researcher with the first significant step in conducting a psychology study, which is formulating a research question.

This is the inductive phase of the scientific process. Observations yield information that is used to formulate theories as explanations. A theory is a well-developed set of ideas that propose an explanation for observed phenomena.

Inductive reasoning moves from specific premises to a general conclusion. It starts with observations of phenomena in the natural world and derives a general law.

Step 2: Ask a Question

Once a researcher has made observations and conducted background research, the next step is to ask a scientific question. A scientific question must be defined, testable, and measurable.

A useful approach to develop a scientific question is: “What is the effect of…?” or “How does X affect Y?”

To answer an experimental question, a researcher must identify two variables: the independent and dependent variables.

The independent variable is the variable manipulated (the cause), and the dependent variable is the variable being measured (the effect).

An example of a research question could be, “Is handwriting or typing more effective for retaining information?” Answering the research question and proposing a relationship between the two variables is discussed in the next step.

Step 3: Form a Hypothesis (Make Predictions)

A hypothesis is an educated guess about the relationship between two or more variables. A hypothesis is an attempt to answer your research question based on prior observation and background research. Theories tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

For example, a researcher might ask about the connection between sleep and educational performance. Do students who get less sleep perform worse on tests at school?

It is crucial to think about different questions one might have about a particular topic to formulate a reasonable hypothesis. It would help if one also considered how one could investigate the causalities.

It is important that the hypothesis is both testable against reality and falsifiable. This means that it can be tested through an experiment and can be proven wrong.

The falsification principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory to be considered scientific, it must be able to be tested and conceivably proven false.

To test a hypothesis, we first assume that there is no difference between the populations from which the samples were taken. This is known as the null hypothesis and predicts that the independent variable will not influence the dependent variable.

Examples of “if…then…” Hypotheses:

  • If one gets less than 6 hours of sleep, then one will do worse on tests than if one obtains more rest.
  • If one drinks lots of water before going to bed, one will have to use the bathroom often at night.
  • If one practices exercising and lighting weights, then one’s body will begin to build muscle.

The research hypothesis is often called the alternative hypothesis and predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Although one could state and write a scientific hypothesis in many ways, hypotheses are usually built like “if…then…” statements.

Step 4: Run an Experiment (Gather Data)

The next step in the scientific method is to test your hypothesis and collect data. A researcher will design an experiment to test the hypothesis and gather data that will either support or refute the hypothesis.

The exact research methods used to examine a hypothesis depend on what is being studied. A psychologist might utilize two primary forms of research, experimental research, and descriptive research.

The scientific method is objective in that researchers do not let preconceived ideas or biases influence the collection of data and is systematic in that experiments are conducted in a logical way.

Experimental Research

Experimental research is used to investigate cause-and-effect associations between two or more variables. This type of research systematically controls an independent variable and measures its effect on a specified dependent variable.

Experimental research involves manipulating an independent variable and measuring the effect(s) on the dependent variable. Repeating the experiment multiple times is important to confirm that your results are accurate and consistent.

One of the significant advantages of this method is that it permits researchers to determine if changes in one variable cause shifts in each other.

While experiments in psychology typically have many moving parts (and can be relatively complex), an easy investigation is rather fundamental. Still, it does allow researchers to specify cause-and-effect associations between variables.

Most simple experiments use a control group, which involves those who do not receive the treatment, and an experimental group, which involves those who do receive the treatment.

An example of experimental research would be when a pharmaceutical company wants to test a new drug. They give one group a placebo (control group) and the other the actual pill (experimental group).

Descriptive Research

Descriptive research is generally used when it is challenging or even impossible to control the variables in question. Examples of descriptive analysis include naturalistic observation, case studies , and correlation studies .

One example of descriptive research includes phone surveys that marketers often use. While they typically do not allow researchers to identify cause and effect, correlational studies are quite common in psychology research. They make it possible to spot associations between distinct variables and measure the solidity of those relationships.

Step 5: Analyze the Data and Draw Conclusions

Once a researcher has designed and done the investigation and collected sufficient data, it is time to inspect this gathered information and judge what has been found. Researchers can summarize the data, interpret the results, and draw conclusions based on this evidence using analyses and statistics.

Upon completion of the experiment, you can collect your measurements and analyze the data using statistics. Based on the outcomes, you will either reject or confirm your hypothesis.

Analyze the Data

So, how does a researcher determine what the results of their study mean? Statistical analysis can either support or refute a researcher’s hypothesis and can also be used to determine if the conclusions are statistically significant.

When outcomes are said to be “statistically significant,” it is improbable that these results are due to luck or chance. Based on these observations, investigators must then determine what the results mean.

An experiment will support a hypothesis in some circumstances, but sometimes it fails to be truthful in other cases.

What occurs if the developments of a psychology investigation do not endorse the researcher’s hypothesis? It does mean that the study was worthless. Simply because the findings fail to defend the researcher’s hypothesis does not mean that the examination is not helpful or instructive.

This kind of research plays a vital role in supporting scientists in developing unexplored questions and hypotheses to investigate in the future. After decisions have been made, the next step is to communicate the results with the rest of the scientific community.

This is an integral part of the process because it contributes to the general knowledge base and can assist other scientists in finding new research routes to explore.

If the hypothesis is not supported, a researcher should acknowledge the experiment’s results, formulate a new hypothesis, and develop a new experiment.

We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist that could refute a theory.

Draw Conclusions and Interpret the Data

When the empirical observations disagree with the hypothesis, a number of possibilities must be considered. It might be that the theory is incorrect, in which case it needs altering, so it fully explains the data.

Alternatively, it might be that the hypothesis was poorly derived from the original theory, in which case the scientists were expecting the wrong thing to happen.

It might also be that the research was poorly conducted, or used an inappropriate method, or there were factors in play that the researchers did not consider. This will begin the process of the scientific method again.

If the hypothesis is supported, the researcher can find more evidence to support their hypothesis or look for counter-evidence to strengthen their hypothesis further.

In either scenario, the researcher should share their results with the greater scientific community.

Step 6: Share Your Results

One of the final stages of the research cycle involves the publication of the research. Once the report is written, the researcher(s) may submit the work for publication in an appropriate journal.

Usually, this is done by writing up a study description and publishing the article in a professional or academic journal. The studies and conclusions of psychological work can be seen in peer-reviewed journals such as  Developmental Psychology , Psychological Bulletin, the  Journal of Social Psychology, and numerous others.

Scientists should report their findings by writing up a description of their study and any subsequent findings. This enables other researchers to build upon the present research or replicate the results.

As outlined by the American Psychological Association (APA), there is a typical structure of a journal article that follows a specified format. In these articles, researchers:

  • Supply a brief narrative and background on previous research
  • Give their hypothesis
  • Specify who participated in the study and how they were chosen
  • Provide operational definitions for each variable
  • Explain the measures and methods used to collect data
  • Describe how the data collected was interpreted
  • Discuss what the outcomes mean

A detailed record of psychological studies and all scientific studies is vital to clearly explain the steps and procedures used throughout the study. So that other researchers can try this experiment too and replicate the results.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound. Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

This last step is important because all results, whether they supported or did not support the hypothesis, can contribute to the scientific community. Publication of empirical observations leads to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound.

Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

By replicating studies, psychologists can reduce errors, validate theories, and gain a stronger understanding of a particular topic.

Step 7: Repeat the Scientific Method (Iteration)

Now, if one’s hypothesis turns out to be accurate, find more evidence or find counter-evidence. If one’s hypothesis is false, create a new hypothesis or try again.

One may wish to revise their first hypothesis to make a more niche experiment to design or a different specific question to test.

The amazingness of the scientific method is that it is a comprehensive and straightforward process that scientists, and everyone, can utilize over and over again.

So, draw conclusions and repeat because the scientific method is never-ending, and no result is ever considered perfect.

The scientific method is a process of:

  • Making an observation.
  • Forming a hypothesis.
  • Making a prediction.
  • Experimenting to test the hypothesis.

The procedure of repeating the scientific method is crucial to science and all fields of human knowledge.

Further Information

  • Karl Popper – Falsification
  • Thomas – Kuhn Paradigm Shift
  • Positivism in Sociology: Definition, Theory & Examples
  • Is Psychology a Science?
  • Psychology as a Science (PDF)

List the 6 steps of the scientific methods in order

  • Make an observation (theory construction)
  • Ask a question. A scientific question must be defined, testable, and measurable.
  • Form a hypothesis (make predictions)
  • Run an experiment to test the hypothesis (gather data)
  • Analyze the data and draw conclusions
  • Share your results so that other researchers can make new hypotheses

What is the first step of the scientific method?

The first step of the scientific method is making an observation. This involves noticing and describing a phenomenon or group of phenomena that one finds interesting and wishes to explain.

Observations can occur in a natural setting or within the confines of a laboratory. The key point is that the observation provides the initial question or problem that the rest of the scientific method seeks to answer or solve.

What is the scientific method?

The scientific method is a step-by-step process that investigators can follow to determine if there is a causal connection between two or more variables.

Psychologists and other scientists regularly suggest motivations for human behavior. On a more casual level, people judge other people’s intentions, incentives, and actions daily.

While our standard assessments of human behavior are subjective and anecdotal, researchers use the scientific method to study psychology objectively and systematically.

All utilize a scientific method to study distinct aspects of people’s thinking and behavior. This process allows scientists to analyze and understand various psychological phenomena, but it also provides investigators and others a way to disseminate and debate the results of their studies.

The outcomes of these studies are often noted in popular media, which leads numerous to think about how or why researchers came to the findings they did.

Why Use the Six Steps of the Scientific Method

The goal of scientists is to understand better the world that surrounds us. Scientific research is the most critical tool for navigating and learning about our complex world.

Without it, we would be compelled to rely solely on intuition, other people’s power, and luck. We can eliminate our preconceived concepts and superstitions through methodical scientific research and gain an objective sense of ourselves and our world.

All psychological studies aim to explain, predict, and even control or impact mental behaviors or processes. So, psychologists use and repeat the scientific method (and its six steps) to perform and record essential psychological research.

So, psychologists focus on understanding behavior and the cognitive (mental) and physiological (body) processes underlying behavior.

In the real world, people use to understand the behavior of others, such as intuition and personal experience. The hallmark of scientific research is evidence to support a claim.

Scientific knowledge is empirical, meaning it is grounded in objective, tangible evidence that can be observed repeatedly, regardless of who is watching.

The scientific method is crucial because it minimizes the impact of bias or prejudice on the experimenter. Regardless of how hard one tries, even the best-intentioned scientists can’t escape discrimination. can’t

It stems from personal opinions and cultural beliefs, meaning any mortal filters data based on one’s experience. Sadly, this “filtering” process can cause a scientist to favor one outcome over another.

For an everyday person trying to solve a minor issue at home or work, succumbing to these biases is not such a big deal; in fact, most times, it is important.

But in the scientific community, where results must be inspected and reproduced, bias or discrimination must be avoided.

When to Use the Six Steps of the Scientific Method ?

One can use the scientific method anytime, anywhere! From the smallest conundrum to solving global problems, it is a process that can be applied to any science and any investigation.

Even if you are not considered a “scientist,” you will be surprised to know that people of all disciplines use it for all kinds of dilemmas.

Try to catch yourself next time you come by a question and see how you subconsciously or consciously use the scientific method.

Print Friendly, PDF & Email

Related Articles

Discourse Analysis

Research Methodology

Discourse Analysis

Phenomenology In Qualitative Research

Phenomenology In Qualitative Research

Ethnography In Qualitative Research

Ethnography In Qualitative Research

Narrative Analysis In Qualitative Research

Narrative Analysis In Qualitative Research

Thematic Analysis: A Step by Step Guide

Thematic Analysis: A Step by Step Guide

Metasynthesis Of Qualitative Research

Metasynthesis Of Qualitative Research

It’s a wonderful world — and universe — out there.

Come explore with us!  

Science News Explores

Problems with ‘the scientific method’.

Scientists rarely follow one straightforward path to understanding the natural world

scientific method problem solving examples in real life

 Across ages and scientific fields, students are increasingly probing their world by engaging in the types of activities scientists do.  

NASA/Goddard Space Flight Center/Bill Hrybyk

Share this:

  • Google Classroom

By Jennifer Cutraro

July 5, 2012 at 2:53 pm

In Connecticut, first-graders load up toy cars with different amounts of mass, or stuff, and send them racing down ramps, rooting for their favorites to travel the farthest. In Texas, middle school students sample seawater from the Gulf of Mexico. And in Pennsylvania, kindergarten students debate what makes something a seed.

Though separated by miles, age levels and scientific fields, one thing unites these students: They are all trying to make sense of the natural world by engaging in the kinds of activities that scientists do.

You might have learned about or participated in such activities as part of something your teacher described as the “scientific method.” It’s a sequence of steps that take you from asking a question to arriving at a conclusion. But scientists rarely follow the steps of the scientific method as textbooks describe it.

“The scientific method is a myth,” asserts Gary Garber, a physics teacher at Boston University Academy.

The term “scientific method,” he explains, isn’t even something scientists themselves came up with. It was invented by historians and philosophers of science during the last century to make sense of how science works. Unfortunately, he says, the term is usually interpreted to mean there is only one, step-by-step approach to science.

That’s a big misconception, Garber argues. “There isn’t one method of ‘doing science.’”

In fact, he notes, there are many paths to finding out the answer to something. Which route a researcher chooses may depend on the field of science being studied. It might also depend on whether experimentation is possible, affordable — even ethical.

In some instances, scientists may use computers to model, or simulate, conditions. Other times, researchers will test ideas in the real world. Sometimes they begin an experiment with no idea what may happen. They might disturb some system just to see what happens, Garber says, “because they’re experimenting with the unknown.”

The practices of science

But it’s not time to forget everything we thought we knew about how scientists work, says Heidi Schweingruber. She should know. She’s the deputy director of the Board on Science Education at the National Research Council, in Washington, D.C.

scientific method problem solving examples in real life

In the future, she says, students and teachers will be encouraged to think not about the scientific method, but instead about “practices of science” — or the many ways in which scientists look for answers.

Schweingruber and her colleagues recently developed a new set of national guidelines that highlight the practices central to how students should learn science.

“In the past, students have largely been taught there’s one way to do science,” she says. “It’s been reduced to ‘Here are the five steps, and this is how every scientist does it.’“

But that one-size-fits-all approach doesn’t reflect how scientists in different fields actually “do” science, she says.

For example, experimental physicists are scientists who study how particles such as electrons, ions and protons behave. These scientists might perform controlled experiments, starting with clearly defined initial conditions. Then they will change one variable, or factor, at a time.  For instance, experimental physicists might smash protons into various types of atoms, such as helium in one experiment, carbon during a second experiment and lead in a third. Then they would compare differences in the collisions to learn more about the building blocks of atoms.

In contrast, geologists, scientists who study the history of Earth as recorded in rocks, won’t necessarily do experiments, Schweingruber points out. “They’re going into the field, looking at landforms, looking at clues and doing a reconstruction to figure out the past,” she explains. Geologists are still collecting evidence, “but it’s a different kind of evidence.”

Current ways of teaching science might also give hypothesis testing more emphasis than it deserves, says Susan Singer, a biologist at Carleton College in Northfield, Minn.

A hypothesis is a testable idea or explanation for something. Starting with a hypothesis is a good way to do science, she acknowledges, “but it’s not the only way.”

“Often, we just start by saying, ‘I wonder’“ Singer says. “Maybe it gives rise to a hypothesis.” Other times, she says, you may need to first gather some data and look to see if a pattern emerges.

Figuring out a species’ entire genetic code, for example, generates enormous collections of data. Scientists who want to make sense of these data don’t always start with a hypothesis, Singer says.

“You can go in with a question,” she says. But that question might be: What environmental conditions — like temperature or pollution or moisture level — trigger certain genes to turn “on” or “off?”

The upside of mistakes

Scientists also recognize something that few students do: Mistakes and unexpected results can be blessings in disguise.

scientific method problem solving examples in real life

An experiment that doesn’t give the results that a scientist expected does not necessarily mean a researcher did something wrong. In fact, mistakes often point to unexpected results — and sometimes more important data — than the findings that scientists initially anticipated.

“Ninety percent of the experiments I did as a scientist didn’t work out,” says Bill Wallace, a former biologist with the National Institutes of Health.

“The history of science is full of controversies and mistakes that were made,” notes Wallace, who now teaches high school science at Georgetown Day School in Washington, D.C. “But the way we teach science is: The scientist did an experiment, got a result, it got into the textbook.” There is little indication for how these discoveries came about, he says. Some might have been expected. Others might reflect what a researcher stumbled upon — either by accident (for example, a flood in the lab) or through some mistake introduced by the scientist.

Schweingruber agrees. She thinks American classrooms treat mistakes too harshly. “Sometimes, seeing where you made a mistake gives you a lot more insight for learning than when you got everything right,” she says. In other words: People often learn more from mistakes than from having experiments turn out the way they expected.

Practicing science at school

One way teachers make science more authentic, or representative of how scientists work, is to have students do open-ended experiments. Such experiments are conducted simply to find out what happens when a variable is changed.

Carmen Andrews, a science specialist at Thurgood Marshall Middle School in Bridgeport, Conn., has her first-grade students record on graphs how far toy cars travel on the floor after racing down a ramp. The distance changes depending on how much stuff — or mass —the cars carry.

Andrews’ 6-year-old scientists perform simple investigations, interpret their data, use mathematics and then explain their observations. Those are four of the key practices of science highlighted in the new science-teaching guidelines.

Students “quickly see that when they add more mass, their cars travel farther,” Andrews explains. They get the sense that a force pulls on the heavier cars, causing them to travel farther.

Other teachers use something they call project-based learning. This is where they pose a question or identify a problem. Then they work with their students to develop a long-term class activity to investigate it.

scientific method problem solving examples in real life

Three times a year, Lollie Garay and her middle school students at the Redd School in Houston storm onto a southern Texas beach.

There, this science teacher and her class collect seawater samples to understand how human actions affect local water.

Garay has also partnered with a teacher in Alaska and another in Georgia whose students take similar measurements of their coastal waters. A few times each year, these teachers arrange a videoconference between their three classrooms. This allows their students to communicate their findings — yet another key practice of science.

For the students “Completing a project like this is more than ‘I did my homework,’“ Garay says. “They’re buying into this process of doing authentic research. They’re learning the process of science by doing it.”

It’s a point other science educators echo.

In the same way that learning a list of French words is not the same as having a conversation in French, Singer says, learning a list of scientific terms and concepts is not doing science.

“Sometimes, you do just have to learn what the words mean,” Singer says. “But that’s not doing science; it’s just getting enough background info [so] that you can join in the conversation.”

scientific method problem solving examples in real life

Even the youngest students can take part in the conversation, notes Deborah Smith, at Pennsylvania State University in State College. She teamed up with a kindergarten teacher to develop a unit about seeds.

Rather than reading to the children or showing them pictures in a book, Smith and the other teacher convened a “scientific conference.” They broke the class into small groups and gave each group a collection of small items. These included seeds, pebbles and shells. Then the students were asked to explain why they thought each item was — or was not — a seed.

“The kids disagreed about almost every object we showed them,” Smith says. Some argued that all seeds have to be black. Or hard. Or have a certain shape.

That spontaneous discussion and debate was exactly what Smith had hoped for.

“One of the things we explained early on is that scientists have all kinds of ideas and that they often disagree,” Smith says. “But they also listen to what people say, look at their evidence and think about their ideas. That’s what scientists do.” By talking and sharing ideas — and yes, sometimes arguing —people may learn things they couldn’t resolve on their own.

How scientists use the practices of science

Talking and sharing — or communicating ideas — recently played an important role in Singer’s own research. She tried to figure out which gene mutation caused an unusual flower type in pea plants. She and her college students weren’t having much success in the lab.

Then, they traveled to Vienna, Austria, for an international conference on plants. They went to a presentation about flower mutations in Arabidopsis , a weedy plant that serves as the equivalent to a lab rat for plant scientists. And it was at this scientific presentation that Singer had her “aha” moment.

“Just listening to the talk, suddenly, in my head, it clicked: That could be our mutant,” she says. It was only when she heard another team of scientists describe their results that her own studies could move ahead, she now says. If she had not gone to that foreign meeting or if those scientists had not shared their work, Singer might not have been able to make her own breakthrough, identifying the gene mutation she was looking for.

Schweingruber says that showing students the practices of science can help them to better understand how science actually works — and bring some of the excitement of science into classrooms.

“What scientists do is really fun, exciting and really human,” she says. “You interact with people a lot and have a chance to be creative. That can be your school experience, too.”

Power words

philosopher A person who studies wisdom or enlightenment.

linear In a straight line.

hypothesis A testable idea.

variable A part of a scientific experiment that is allowed to change in order to test a hypothesis.

ethical Following agreed-upon rules of conduct.

gene A tiny part of a chromosome, made up of molecules of DNA. Genes play a role in determining traits such as the shape of a leaf or the color of an animal’s fur.

mutation A change in a gene.

control A factor in an experiment that remains unchanged.

loading

IMAGES

  1. Scientific Method: Definition and Examples

    scientific method problem solving examples in real life

  2. Example of problem using scientific method

    scientific method problem solving examples in real life

  3. the scientific method problem

    scientific method problem solving examples in real life

  4. Scientific Method Examples Worksheet

    scientific method problem solving examples in real life

  5. Scientific Method

    scientific method problem solving examples in real life

  6. PPT

    scientific method problem solving examples in real life

VIDEO

  1. This Technique can solve your problem! #shaleenshrotriya #businesscoach #solution #coaching

  2. Surprising Tools for Home DIY Projects

  3. 10th class video Trigonometry of solving problems☺ esay#maths sum#tips right#angle#tricks

  4. what is problem

  5. Understanding Angles: Types, Real-Life Examples, and Animated Illustrations#education#geometry#exam

  6. Solving a Real-Life Problem with Quadratic Equations

COMMENTS

  1. A Guide to Using the Scientific Method in Everyday Life

    The scientific method—the process used by scientists to understand the natural world—has the merit of investigating natural phenomena in a rigorous manner. Working from hypotheses, scientists draw conclusions based on empirical data. These data are validated on large-scale numbers and take into consideration the intrinsic variability of the real world.

  2. How to Use the Scientific Method in Everyday Life

    The scientific method is a procedure consisting of a series of steps with the goal of problem-solving and information-gathering. The scientific method begins with the recognition of a problem and a clear elaboration or description of the problem itself. A process of experimentation and data collection then follows. The final steps consist of ...

  3. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  4. 15 Scientific Method Examples (2024)

    The first step in the scientific method is to identify and observe a phenomenon that requires explanation. This can involve asking open-ended questions, making detailed observations using our senses or tools, or exploring natural patterns, which are sources to develop hypotheses. 2. Formulation of a Hypothesis.

  5. Solving Everyday Problems with the Scientific Method

    Thinking Like a Scientist. This book describes how one can use The Scientific Method to solve everyday problems including medical ailments, health issues, money management, traveling, shopping, cooking, household chores, etc. It illustrates how to exploit the information collected from our five senses, how to solve problems when no information ...

  6. Using the Scientific Method in Everyday Life

    The solution to almost any problem you will encounter in life is to observe, analyze, experiment and re-evaluate based on what you find until you come to a solution. Practice, practice, practice using the steps of the scientific method and see what results you get. Every single discovery in our history, every leap forward in science or ...

  7. Scientific Method Examples and the 6 Key Steps

    With our list of scientific method examples, you can easily follow along with the six steps and understand the process you may be struggling with. ... consider the following examples of simple experiments you can try yourself in everyday life. Example #1: Freezing Water. ... and if so, how widespread the problem is. Construct Hypothesis: ...

  8. Solving Everyday Problems with the Scientific Method

    Through this way, The Scientific Method can help readers solve problems in both familiar and unfamiliar situations. Containing real-life examples of how various problems are solved — for instance, how some observant patients cure their own illnesses when medical experts have failed — this book will train readers to observe what others may ...

  9. What is the Scientific Method: How does it work and why is it important

    Article. Research Process. The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA.

  10. 1.2 The Scientific Methods

    As mentioned previously, physicists use a variety of models including equations, physical models, computer simulations, etc. For example, three-dimensional models are often commonly used in chemistry and physics to model molecules. Properties other than appearance or location are usually modelled using mathematics, where functions are used to show how these properties relate to one another.

  11. 1.1.6: Scientific Problem Solving

    The scientific method, as developed by Bacon and others, involves several steps: Ask a question - identify the problem to be considered. Make observations - gather data that pertains to the question. Propose an explanation (a hypothesis) for the observations. Make new observations to test the hypothesis further.

  12. Scientific Method: Definition and Examples

    The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis, and conducting scientific experiments. Scientific inquiry starts with an observation followed by the formulation of a question about what has been ...

  13. Solving Everyday Problems with the Scientific Method: Thinking Like a

    Through this way, The Scientific Method can help readers solve problems in both familiar and unfamiliar situations. Containing real-life examples of how various problems are solved — for instance, how some observant patients cure their own illnesses when medical experts have failed — this book will train readers to observe what others may ...

  14. Scientific method

    The scientific method is critical to the development of scientific theories, which explain empirical (experiential) laws in a scientifically rational manner. In a typical application of the scientific method, a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the ...

  15. Scientific Method & Observation

    The scientific method does include observation. The steps of the scientific method include: Observation. Question. Hypothesis. Experiment. Conclusion. These steps can be modified to include other ...

  16. Science In Everyday Life: 50 Examples Showing How Science Impacts Our

    Through various scientific methods, materials such as paper, plastic, glass, and metal can be recycled and used for the production of new products. Furthermore, advancements in waste management technologies, such as waste-to-energy systems, enable the conversion of waste materials into renewable energy sources.

  17. The Scientific Method: What Is It?

    The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step ...

  18. The scientific method (article)

    At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction.

  19. How Can the Scientific Method Solve Real-World Problems?

    Students read short stories about how scientists used the scientific method to solve real problems. In the first case, Dr. Eijkman used observation to notice that chickens who ate polished rice became sick with beriberi. He developed an experiment to determine what was causing the illness. Eijkman discovered the that rice did not have a vitamin ...

  20. Solving Everyday Problems with the Scientific Method

    As such, everyday problems would benefit by employing the scientific method. We will study how the scientific method can be used in daily life. Example. Let us take a look at the wet foot problem discussed in Chapter 1. The father noticed that his daughter stepped only the left foot into the puddle of water. As a result, only the sock and the ...

  21. 1.2: Scientific Approach for Solving Problems

    In doing so, they are using the scientific method. 1.2: Scientific Approach for Solving Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and ...

  22. Science Hacks: Scientific Solutions To Everyday Problems

    Place a wooden spoon across your pot to prevent boil over. This age-old technique can help prevent water in a pot from boiling over, or at least delay the boiling over, so you have enough time to turn the stove down. This works in two ways; first, the spoon laying across the open boiling pot of water helps pop many of the bubbles that form once ...

  23. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  24. Using the Scientific Method to Solve Problems

    The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes. ... Using the Scientific Method to Solve Problems How the Scientific Method and Reasoning Can Help Simplify Processes and ...

  25. Problems with 'the scientific method'

    gene A tiny part of a chromosome, made up of molecules of DNA. Genes play a role in determining traits such as the shape of a leaf or the color of an animal's fur. mutation A change in a gene. control A factor in an experiment that remains unchanged. In Connecticut, first-graders load up toy cars with different amounts of mass, or stuff, and ...

  26. SWOT Analysis With SWOT Templates and Examples

    For example, only accept precise, verifiable statements such as, "Cost advantage of $30/ton in sourcing raw material x," rather than, "Better value for money." Remember to apply your learnings at the right level in your organization. For example, at a product or product-line level, rather than at the much vaguer whole-company level.