Pilot Study in Research: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A pilot study, also known as a feasibility study, is a small-scale preliminary study conducted before the main research to check the feasibility or improve the research design.

Pilot studies can be very important before conducting a full-scale research project, helping design the research methods and protocol.

How Does it Work?

Pilot studies are a fundamental stage of the research process. They can help identify design issues and evaluate a study’s feasibility, practicality, resources, time, and cost before the main research is conducted.

It involves selecting a few people and trying out the study on them. It is possible to save time and, in some cases, money by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e., unusual things), confusion in the information given to participants, or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling.”

This enables researchers to predict an appropriate sample size, budget accordingly, and improve the study design before performing a full-scale project.

Pilot studies also provide researchers with preliminary data to gain insight into the potential results of their proposed experiment.

However, pilot studies should not be used to test hypotheses since the appropriate power and sample size are not calculated. Rather, pilot studies should be used to assess the feasibility of participant recruitment or study design.

By conducting a pilot study, researchers will be better prepared to face the challenges that might arise in the larger study. They will be more confident with the instruments they will use for data collection.

Multiple pilot studies may be needed in some studies, and qualitative and/or quantitative methods may be used.

To avoid bias, pilot studies are usually carried out on individuals who are as similar as possible to the target population but not on those who will be a part of the final sample.

Feedback from participants in the pilot study can be used to improve the experience for participants in the main study. This might include reducing the burden on participants, improving instructions, or identifying potential ethical issues.

Experiment Pilot Study

In a pilot study with an experimental design , you would want to ensure that your measures of these variables are reliable and valid.

You would also want to check that you can effectively manipulate your independent variables and that you can control for potential confounding variables.

A pilot study allows the research team to gain experience and training, which can be particularly beneficial if new experimental techniques or procedures are used.

Questionnaire Pilot Study

It is important to conduct a questionnaire pilot study for the following reasons:
  • Check that respondents understand the terminology used in the questionnaire.
  • Check that emotive questions are not used, as they make people defensive and could invalidate their answers.
  • Check that leading questions have not been used as they could bias the respondent’s answer.
  • Ensure that the questionnaire can be completed in a reasonable amount of time. If it’s too long, respondents may lose interest or not have enough time to complete it, which could affect the response rate and the data quality.

By identifying and addressing issues in the pilot study, researchers can reduce errors and risks in the main study. This increases the reliability and validity of the main study’s results.

Assessing the practicality and feasibility of the main study

Testing the efficacy of research instruments

Identifying and addressing any weaknesses or logistical problems

Collecting preliminary data

Estimating the time and costs required for the project

Determining what resources are needed for the study

Identifying the necessity to modify procedures that do not elicit useful data

Adding credibility and dependability to the study

Pretesting the interview format

Enabling researchers to develop consistent practices and familiarize themselves with the procedures in the protocol

Addressing safety issues and management problems

Limitations

Require extra costs, time, and resources.

Do not guarantee the success of the main study.

Contamination (ie: if data from the pilot study or pilot participants are included in the main study results).

Funding bodies may be reluctant to fund a further study if the pilot study results are published.

Do not have the power to assess treatment effects due to small sample size.

  • Viscocanalostomy: A Pilot Study (Carassa, Bettin, Fiori, & Brancato, 1998)
  • WHO International Pilot Study of Schizophrenia (Sartorius, Shapiro, Kimura, & Barrett, 1972)
  • Stephen LaBerge of Stanford University ran a series of experiments in the 80s that investigated lucid dreaming. In 1985, he performed a pilot study that demonstrated that time perception is the same as during wakefulness. Specifically, he had participants go into a state of lucid dreaming and count out ten seconds, signaling the start and end with pre-determined eye movements measured with the EOG.
  • Negative Word-of-Mouth by Dissatisfied Consumers: A Pilot Study (Richins, 1983)
  • A pilot study and randomized controlled trial of the mindful self‐compassion program (Neff & Germer, 2013)
  • Pilot study of secondary prevention of posttraumatic stress disorder with propranolol (Pitman et al., 2002)
  • In unstructured observations, the researcher records all relevant behavior without a system. There may be too much to record, and the behaviors recorded may not necessarily be the most important, so the approach is usually used as a pilot study to see what type of behaviors would be recorded.
  • Perspectives of the use of smartphones in travel behavior studies: Findings from a literature review and a pilot study (Gadziński, 2018)

Further Information

  • Lancaster, G. A., Dodd, S., & Williamson, P. R. (2004). Design and analysis of pilot studies: recommendations for good practice. Journal of evaluation in clinical practice, 10 (2), 307-312.
  • Thabane, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., … & Goldsmith, C. H. (2010). A tutorial on pilot studies: the what, why and how. BMC Medical Research Methodology, 10 (1), 1-10.
  • Moore, C. G., Carter, R. E., Nietert, P. J., & Stewart, P. W. (2011). Recommendations for planning pilot studies in clinical and translational research. Clinical and translational science, 4 (5), 332-337.

Carassa, R. G., Bettin, P., Fiori, M., & Brancato, R. (1998). Viscocanalostomy: a pilot study. European journal of ophthalmology, 8 (2), 57-61.

Gadziński, J. (2018). Perspectives of the use of smartphones in travel behaviour studies: Findings from a literature review and a pilot study. Transportation Research Part C: Emerging Technologies, 88 , 74-86.

In J. (2017). Introduction of a pilot study. Korean Journal of Anesthesiology, 70 (6), 601–605. https://doi.org/10.4097/kjae.2017.70.6.601

LaBerge, S., LaMarca, K., & Baird, B. (2018). Pre-sleep treatment with galantamine stimulates lucid dreaming: A double-blind, placebo-controlled, crossover study. PLoS One, 13 (8), e0201246.

Leon, A. C., Davis, L. L., & Kraemer, H. C. (2011). The role and interpretation of pilot studies in clinical research. Journal of psychiatric research, 45 (5), 626–629. https://doi.org/10.1016/j.jpsychires.2010.10.008

Malmqvist, J., Hellberg, K., Möllås, G., Rose, R., & Shevlin, M. (2019). Conducting the Pilot Study: A Neglected Part of the Research Process? Methodological Findings Supporting the Importance of Piloting in Qualitative Research Studies. International Journal of Qualitative Methods. https://doi.org/10.1177/1609406919878341

Neff, K. D., & Germer, C. K. (2013). A pilot study and randomized controlled trial of the mindful self‐compassion program. Journal of Clinical Psychology, 69 (1), 28-44.

Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., … & Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological psychiatry, 51 (2), 189-192.

Richins, M. L. (1983). Negative word-of-mouth by dissatisfied consumers: A pilot study. Journal of Marketing, 47 (1), 68-78.

Sartorius, N., Shapiro, R., Kimura, M., & Barrett, K. (1972). WHO International Pilot Study of Schizophrenia1. Psychological medicine, 2 (4), 422-425.

Teijlingen, E. R; V. Hundley (2001). The importance of pilot studies, Social research UPDATE, (35)

Print Friendly, PDF & Email

  • Open access
  • Published: 06 January 2010

A tutorial on pilot studies: the what, why and how

  • Lehana Thabane 1 , 2 ,
  • Jinhui Ma 1 , 2 ,
  • Rong Chu 1 , 2 ,
  • Ji Cheng 1 , 2 ,
  • Afisi Ismaila 1 , 3 ,
  • Lorena P Rios 1 , 2 ,
  • Reid Robson 3 ,
  • Marroon Thabane 1 , 4 ,
  • Lora Giangregorio 5 &
  • Charles H Goldsmith 1 , 2  

BMC Medical Research Methodology volume  10 , Article number:  1 ( 2010 ) Cite this article

355k Accesses

1586 Citations

104 Altmetric

Metrics details

A Correction to this article was published on 11 March 2023

This article has been updated

Pilot studies for phase III trials - which are comparative randomized trials designed to provide preliminary evidence on the clinical efficacy of a drug or intervention - are routinely performed in many clinical areas. Also commonly know as "feasibility" or "vanguard" studies, they are designed to assess the safety of treatment or interventions; to assess recruitment potential; to assess the feasibility of international collaboration or coordination for multicentre trials; to increase clinical experience with the study medication or intervention for the phase III trials. They are the best way to assess feasibility of a large, expensive full-scale study, and in fact are an almost essential pre-requisite. Conducting a pilot prior to the main study can enhance the likelihood of success of the main study and potentially help to avoid doomed main studies. The objective of this paper is to provide a detailed examination of the key aspects of pilot studies for phase III trials including: 1) the general reasons for conducting a pilot study; 2) the relationships between pilot studies, proof-of-concept studies, and adaptive designs; 3) the challenges of and misconceptions about pilot studies; 4) the criteria for evaluating the success of a pilot study; 5) frequently asked questions about pilot studies; 7) some ethical aspects related to pilot studies; and 8) some suggestions on how to report the results of pilot investigations using the CONSORT format.

1. Introduction

The Concise Oxford Thesaurus [ 1 ] defines a pilot project or study as an experimental, exploratory, test, preliminary, trial or try out investigation. Epidemiology and statistics dictionaries provide similar definitions of a pilot study as a small scale

" ... test of the methods and procedures to be used on a larger scale if the pilot study demonstrates that the methods and procedures can work" [ 2 ];

"...investigation designed to test the feasibility of methods and procedures for later use on a large scale or to search for possible effects and associations that may be worth following up in a subsequent larger study" [ 3 ].

Table 1 provides a summary of definitions found on the Internet. A closer look at these definitions reveals that they are similar to the ones above in that a pilot study is synonymous with a feasibility study intended to guide the planning of a large-scale investigation. Pilot studies are sometimes referred to as "vanguard trials" (i.e. pre-studies) intended to assess the safety of treatment or interventions; to assess recruitment potential; to assess the feasibility of international collaboration or coordination for multicentre trials; to evaluate surrogate marker data in diverse patient cohorts; to increase clinical experience with the study medication or intervention, and identify the optimal dose of treatments for the phase III trials [ 4 ]. As suggested by an African proverb from the Ashanti people in Ghana " You never test the depth of a river with both feet ", the main goal of pilot studies is to assess feasibility so as to avoid potentially disastrous consequences of embarking on a large study - which could potentially "drown" the whole research effort.

Feasibility studies are routinely performed in many clinical areas. It is fair to say that every major clinical trial had to start with some piloting or a small scale investigation to assess the feasibility of conducting a larger scale study: critical care [ 5 ], diabetes management intervention trials [ 6 ], cardiovascular trials [ 7 ], primary healthcare [ 8 ], to mention a few.

Despite their noted importance, the reality is that pilot studies receive little or no attention in scientific research training. Few epidemiology or research textbooks cover the topic with the necessary detail. In fact, we are not aware of any textbook that dedicates a chapter on this issue - many just mention it in passing or provide a cursory coverage of the topic. The objective of this paper is to provide a detailed examination of the key aspects of pilot studies. In the next section, we narrow the focus of our definition of a pilot to phase III trials. Section 3 covers the general reasons for conducting a pilot study. Section 4 deals with the relationships between pilot studies, proof-of-concept studies, and adaptive designs, while section 5 addresses the challenges of pilot studies. Evaluation of a pilot study (i.e. how to determine if a pilot study was successful) is covered in Section 6. We deal with several frequently asked questions about pilot studies in Section 7 using a "question-and-answer" approach. Section 8 covers some ethical aspects related to pilot studies; and in Section 9, we follow the CONSORT format [ 9 ] to offer some suggestions on how to report the results of pilot investigations.

2. Narrowing the focus: Pilot studies for randomized studies

Pilot studies can be conducted in both quantitative and qualitative studies. Adopting a similar approach to Lancaster et al . [ 10 ], we focus on quantitative pilot studies - particularly those done prior to full-scale phase III trials. Phase I trials are non-randomized studies designed to investigate the pharmacokinetics of a drug (i.e. how a drug is distributed and metabolized in the body) including finding a dose that can be tolerated with minimal toxicity. Phase II trials provide preliminary evidence on the clinical efficacy of a drug or intervention. They may or may not be randomized. Phase III trials are randomized studies comparing two or more drugs or intervention strategies to assess efficacy and safety. Phase IV trials, usually done after registration or marketing of a drug, are non-randomized surveillance studies to document experiences (e.g. side-effects, interactions with other drugs, etc) with using the drug in practice.

For the purposes of this paper, our approach to utilizing pilot studies relies on the model for complex interventions advocated by the British Medical Research Council - which explicitly recommends the use of feasibility studies prior to Phase III clinical trials, but stresses the iterative nature of the processes of development, feasibility and piloting, evaluation and implementation [ 11 ].

3. Reasons for Conducting Pilot Studies

Van Teijlingen et al . [ 12 ] and van Teijlingen and Hundley [ 13 ] provide a summary of the reasons for performing a pilot study. In general, the rationale for a pilot study can be grouped under several broad classifications - process, resources, management and scientific (see also http://www.childrens-mercy.org/stats/plan/pilot.asp for a different classification):

Process: This assesses the feasibility of the steps that need to take place as part of the main study. Examples include determining recruitment rates, retention rates, etc.

Resources: This deals with assessing time and budget problems that can occur during the main study. The idea is to collect some pilot data on such things as the length of time to mail or fill out all the survey forms.

Management: This covers potential human and data optimization problems such as personnel and data management issues at participating centres.

Scientific: This deals with the assessment of treatment safety, determination of dose levels and response, and estimation of treatment effect and its variance.

Table 2 summarizes this classification with specific examples.

4. Relationships between Pilot Studies, Proof-of-Concept Studies, and Adaptive Designs

A proof-of-concept (PoC) study is defined as a clinical trial carried out to determine if a treatment (drug) is biologically active or inactive [ 14 ]. PoC studies usually use surrogate markers as endpoints. In general, they are phase I/II studies - which, as noted above, investigate the safety profile, dose level and response to new drugs [ 15 ]. Thus, although designed to inform the planning of phase III trials for registration or licensing of new drugs, PoC studies may not necessarily fit our restricted definition of pilot studies aimed at assessing feasibility of phase III trials as outlined in Section 2.

An adaptive trial design refers to a design that allows modifications to be made to a trial's design or statistical procedures during its conduct, with the purpose of efficiently identifying clinical benefits/risks of new drugs or to increase the probability of success of clinical development [ 16 ]. The adaptations can be prospective (e.g. stopping a trial early due to safety or futility or efficacy at interim analysis); concurrent (e.g. changes in eligibility criteria, hypotheses or study endpoints) or retrospective (e.g. changes to statistical analysis plan prior to locking database or revealing treatment codes to trial investigators or patients). Piloting is normally built into adaptive trial designs by determining a priori decision rules to guide the adaptations based on cumulative data. For example, data from interim analyses could be used to refine sample size calculations [ 17 , 18 ]. This approach is routinely used in internal pilot studies - which are primarily designed to inform sample size calculation for the main study, with recalculation of the sample size as the key adaptation. Unlike other phase III pilots, an internal pilot investigation does not usually address any other feasibility aspects - because it is essentially part of the main study [ 10 , 19 , 20 ]..

Nonetheless, we need to emphasize that whether or not a study is a pilot, depends on its objectives. An adaptive method is used as a strategy to reach that objective. Both a pilot and a non-pilot could be adaptive.

5. Challenges of and Common Misconceptions about Pilot Studies

Pilot studies can be very informative, not only to the researchers conducting them but also to others doing similar work. However, many of them never get published, often because of the way the results are presented [ 13 ]. Quite often the emphasis is wrongly placed on statistical significance, not on feasibility - which is the main focus of the pilot study. Our experience in reviewing submissions to a research ethics board also shows that most of the pilot projects are not well designed: i.e. there are no clear feasibility objectives; no clear analytic plans; and certainly no clear criteria for success of feasibility.

In many cases, pilot studies are conducted to generate data for sample size calculations. This seems especially sensible in situations where there are no data from previous studies to inform this process. However, it can be dangerous to use pilot studies to estimate treatment effects, as such estimates may be unrealistic/biased because of the limited sample sizes. Therefore if not used cautiously, results of pilot studies can potentially mislead sample size or power calculations [ 21 ] -- particularly if the pilot study was done to see if there is likely to be a treatment effect in the main study. In section 6, we provide guidance on how to proceed with caution in this regard.

There are also several misconceptions about pilot studies. Below are some of the common reasons that researchers have put forth for calling their study a pilot.

The first common reason is that a pilot study is a small single-centre study. For example, researchers often state lack of resources for a large multi-centre study as a reason for doing a pilot. The second common reason is that a pilot investigation is a small study that is similar in size to someone else's published study. In reviewing submissions to a research ethics board, we have come across sentiments such as

So-and-so did a similar study with 6 patients and got statistical significance - ours uses 12 patients (double the size)!

We did a similar pilot before (and it was published!)

The third most common reason is that a pilot is a small study done by a student or an intern - which can be completed quickly and does not require funding. Specific arguments include

I have funding for 10 patients only;

I have limited seed (start-up) funding;

This is just a student project!

My supervisor (boss) told me to do it as a pilot .

None of the above arguments qualifies as sound reasons for calling a study a pilot. A study should only be conducted if the results will be informative; studies conducted for the reasons above may result in findings of limited utility, which would be a waste of the researchers' and participants' efforts. The focus of a pilot study should be on assessment of feasibility, unless it was powered appropriately to assess statistical significance. Further, there is a vast number of poorly designed and reported studies. Assessment of the quality of a published report may be helpful to guide decisions of whether the report should be used to guide planning or designing of new studies. Finally, if a trainee or researcher is assigned a project as a pilot it is important to discuss how the results will inform the planning of the main study. In addition, clearly defined feasibility objectives and rationale to justify piloting should be provided.

Sample Size for Pilot Studies

In general, sample size calculations may not be required for some pilot studies. It is important that the sample for a pilot be representative of the target study population. It should also be based on the same inclusion/exclusion criteria as the main study. As a rule of thumb, a pilot study should be large enough to provide useful information about the aspects that are being assessed for feasibility. Note that PoC studies require sample size estimation based on surrogate markers [ 22 ], but they are usually not powered to detect meaningful differences in clinically important endpoints. The sample used in the pilot may be included in the main study, but caution is needed to ensure the key features of the main study are preserved in the pilot (e.g. blinding in randomized controlled trials). We recommend if any pooling of pilot and main study data is considered, this should be planned beforehand, described clearly in the protocol with clear discussion of the statistical consequences and methods. The goal is to avoid or minimize the potential bias that may occur due to multiple testing issues or any other opportunistic actions by investigators. In general, pooling when done appropriately can increase the efficiency of the main study [ 23 ].

As noted earlier, a carefully designed pilot study may be used to generate information for sample size calculations. Two approaches may be helpful to optimize information from a pilot study in this context: First, consider eliciting qualitative data to supplement the quantitative information obtained in the pilot. For example, consider having some discussions with clinicians using the approach suggested by Lenth [ 24 ] to illicit additional information on possible effect size and variance estimates. Second, consider creating a sample size table for various values of the effect or variance estimates to acknowledge the uncertainty surrounding the pilot estimates.

In some cases, one could use a confidence interval [CI] approach to estimate the sample size required to establish feasibility. For example, suppose we had a pilot trial designed primarily to determine adherence rates to the standardized risk assessment form to enhance venous thromboprophylaxis in hospitalized patients. Suppose it was also decided a priori that the criterion for success would be: the main trial would be ' feasibl e' if the risk assessment form is completed for ≥ 70% of eligible hospitalized patients.

6. How to Interpret the Results of a Pilot Study: Criteria for Success

It is always important to state the criteria for success of a pilot study. The criteria should be based on the primary feasibility objectives. These provide the basis for interpreting the results of the pilot study and determining whether it is feasible to proceed to the main study. In general, the outcome of a pilot study can be one of the following: (i) Stop - main study not feasible; (ii) Continue, but modify protocol - feasible with modifications; (iii) Continue without modifications, but monitor closely - feasible with close monitoring and (iv) Continue without modifications - feasible as is.

For example, the Prophylaxis of Thromboembolism in Critical Care Trial (PROTECT) was designed to assess the feasibility of a large-scale trial with the following criteria for determining success [ 25 ]:

98.5% of patients had to receive study drug within 12 hours of randomization;

91.7% of patients had to receive every scheduled dose of the study drug in a blinded manner;

90% or more of patients had to have lower limb compression ultrasounds performed at the specified times; and

> 90% of necessary dose adjustments had to have been made appropriately in response to pre-defined laboratory criteria .

In a second example, the PeriOperative Epidural Trial (POET) Pilot Study was designed to assess the feasibility of a large, multicentre trial with the following criteria for determining success [ 26 ]:

one subject per centre per week (i.e., 200 subjects from four centres over 50 weeks) can be recruited ;

at least 70% of all eligible patients can be recruited ;

no more than 5% of all recruited subjects crossed over from one modality to the other; and

complete follow-up in at least 95% of all recruited subjects .

7. Frequently asked questions about pilot studies

In this Section, we offer our thoughts on some of the frequently asked questions about pilot studies. These could be helpful to not only clinicians and trainees, but to anyone who is interested in health research.

Can I publish the results of a pilot study?

- Yes, every attempt should be made to publish.

Why is it important to publish the results of pilot studies?

- To provide information about feasibility to the research community to save resources being unnecessarily spent on studies that may not be feasible. Further, having such information can help researchers to avoid duplication of efforts in assessing feasibility.

- Finally, researchers have an ethical and scientific obligation to attempt publishing the results of every research endeavor. However, our focus should be on feasibility goals. Emphasis should not be placed on statistical significance when pilot studies are not powered to detect minimal clinically important differences. Such studies typically do not show statistically significant results - remember that underpowered studies (with no statistically significant results) are inconclusive, not negative since "no evidence of effect" is not "evidence of no effect" [ 27 ].

Can I combine data from a pilot with data from the main study?

- Yes, provided the sampling frame and methodologies are the same. This can increase the efficiency of the main study - see Section 5.

Can I combine the results of a pilot with the results of another study or in a meta-analysis?

- Yes, provided the sampling frame and methodologies are the same.

- No, if the main study is reported and it includes the pilot study.

Can the results of the pilot study be valid on their own, without existence of the main study

- Yes, if the results show that it is not feasible to proceed to the main study or there is insufficient funding.

Can I apply for funding for a pilot study?

- Yes. Like any grant, it is important to justify the need for piloting.

- The pilot has to be placed in the context of the main study.

Can I randomize patients in a pilot study?

- Yes. For a phase III pilot study, one of the goals could be to assess how a randomization procedure might work in the main study or whether the idea of randomization might be acceptable to patients [ 10 ]. In general, it is always best for a pilot to maintain the same design as the main study.

How can I use the information from a pilot to estimate the sample size?

- Use with caution, as results from pilot studies can potentially mislead sample size calculations.

- Consider supplementing the information with qualitative discussions with clinicians - see section 5; and

- Create a sample size table to acknowledge the uncertainty of the pilot information - see section 5.

Can I use the results of a pilot study to treat my patients?

- Not a good idea!

- Pilot studies are primarily for assessing feasibility.

What can I do with a failed or bad pilot study?

- No study is a complete failure; it can always be used as bad example! However, it is worth making clear that a pilot study that shows the main study is not likely to be feasible is not a failed (pilot) study. In fact, it is a success - because you avoided wasting scarce resources on a study destined for failure!

8. Ethical Aspects of Pilot Studies

Halpern et al . [ 28 ] stated that conducting underpowered trials is unethical. However, they proposed that underpowered trials are ethical in two situations: (i) small trials of interventions for rare diseases -- which require documenting explicit plans for including results with those of similar trials in a prospective meta-analysis; (ii) early-phase trials in the development of drugs or devices - provided they are adequately powered for defined purposes other than randomized treatment comparisons. Pilot studies of phase III trials (dealing with common diseases) are not addressed in their proposal. It is therefore prudent to ask: Is it ethical to conduct a study whose feasibility can not be guaranteed (i.e. with a high probability of success)?

It seems unethical to consider running a phase III study without having sufficient data or information about the feasibility. In fact, most granting agencies often require data on feasibility as part of their assessment of the scientific validity for funding decisions.

There is however one important ethical aspect about pilot studies that has received little or no attention from researchers, research ethics boards and ethicists alike. This pertains to the issue of the obligation that researchers have to patients or participants in a trial to disclose the feasibility nature of pilot studies. This is essential given that some pilot studies may not lead to further studies. A review of the commonly cited research ethics guidelines - the Nuremburg Code [ 29 ], Helsinki Declaration [ 30 ], the Belmont Report [ 31 ], ICH Good Clinical Practice [ 32 ], and the International Ethical Guidelines for Biomedical Research Involving Human Subjects [ 33 ] - shows that pilot studies are not addressed in any of these guidelines. Canadian researchers are also encouraged to follow the Tri-Council Policy Statement (TCPS) [ 34 ] - it too does not address how pilot studies need to be approached. It seems to us that given the special nature of feasibility or pilot studies, the disclosure of their purpose to study participants requires special wording - that informs them of the definition of a pilot study, the feasibility objectives of the study, and also clearly defines the criteria for success of feasibility. To fully inform participants, we suggest using the following wording in the consent form:

" The overall purpose of this pilot study is to assess the feasibility of conducting a large study to [state primary objective of the main study]. A feasibility or pilot study is a study that... [state a general definition of a feasibility study]. The specific feasibility objectives of this study are ... [state the specific feasibility objectives of the pilot study]. We will determine that it is feasible to carry on the main study if ... [state the criteria for success of feasibility] ."

9. Recommendation for Reporting the Results of Pilot Studies

Adopted from the CONSORT Statement [ 9 ], Table 3 provides a checklist of items to consider including in a report of a pilot study.

Title and abstract

Item #1: the title or abstract should indicate that the study is a "pilot" or "feasibility".

As a number one summary of the contents of any report, it is important for the title to clearly indicate that the report is for a pilot or feasibility study. This would also be helpful to other researchers during electronic information search about feasibility issues. Our quick search of PUBMED [on July 13, 2009], using the terms "pilot" OR "feasibility" OR "proof-of-concept" for revealed 24423 (16%) hits of studies that had these terms in the title or abstract compared with 149365 hits that had these terms anywhere in the text.

Item #2: Scientific background for the main study and explanation of rationale for assessing feasibility through piloting

The rationale for initiating a pilot should be based on the need to assess feasibility for the main study. Thus, the background of the main study should clearly describe what is known or not known about important feasibility aspects to provide context for piloting.

Item #3: Participants and setting of the study

The description of the inclusion-exclusion or eligibility criteria for participants should be the same as in the main study. The settings and locations where the data were collected should also be clearly described.

Item #4: Interventions

Precise details of the interventions intended for each group and how and when they were actually administered (if applicable) - state clearly if any aspects of the intervention are assessed for feasibility.

Item #5: Objectives

State the specific scientific primary and secondary objectives and hypotheses for the main study and the specific feasibility objectives. It is important to clearly indicate the feasibility objectives as the primary focus for the pilot.

Item #6: Outcomes

Clearly define primary and secondary outcome measures for the main study. Then, clearly define the feasibility outcomes and how they were operationalized - these should include key elements such as recruitment rates, consent rates, completion rates, variance estimates, etc. In some cases, a pilot study may be conducted with the aim to determine a suitable (clinical or surrogate) endpoint for the main study. In such a case, one may not be able to define the primary outcome of the main study until the pilot is finished. However, it is important that determining the primary outcome of the main study be clearly stated as part of feasibility outcomes.

Item #7: Sample Size

Describe how sample size was determined. If the pilot is a proof-of-concept study, is the sample size calculated based on primary/key surrogate marker(s)? In general if the pilot is for a phase III study, there may be no need for a formal sample size calculation. However, the confidence interval approach may be used to calculate and justify the sample size based on key feasibility objective(s).

Item #8: Feasibility criteria

Clearly describe the criteria for assessing success of feasibility - these should be based on the feasibility objectives.

Item #9: Statistical Analysis

Describe the statistical methods for the analysis of primary and secondary feasibility outcomes.

Item #10: Ethical Aspects

State whether the study received research ethics approval. Describe how informed consent was handled - given the feasibility nature of the study.

Item #11: Participant Flow

Describe the flow of participants through each stage of the study (use of a flow-diagram is strongly recommended -- see CONSORT [ 9 ] for a template). Describe protocol deviations from pilot study as planned with reasons for deviations. State the number of exclusions at each stage and corresponding reasons for exclusions.

Item #12: Recruitment

Report the dates defining the periods of recruitment and follow-up.

Item #13: Baseline Data

Report the baseline demographic and clinical characteristics of the participants.

Item #14: Outcomes and Estimation

For each primary and secondary feasibility outcomes, report the point estimate of effect and its precision ( e.g ., 95% CI) - if applicable.

Item # 15: Interpretation

Interpretation of the results should focus on feasibility, taking into account the stated criteria for success of feasibility, study hypotheses, sources of potential bias or imprecision (given the feasibility nature of the study) and the dangers associated with multiplicity - repeated testing on multiple outcomes.

Item #16: Generalizability

Discuss the generalizability (external validity) of the feasibility aspects observed in the study. State clearly what modifications in the design of the main study (if any) would be necessary to make it feasible.

Item #17: Overall evidence of feasibility

Discuss the general results in the context of overall evidence of feasibility. It is important that the focus be on feasibility.

9. Conclusions

Pilot or vanguard studies provide a good opportunity to assess feasibility of large full-scale studies. Pilot studies are the best way to assess feasibility of a large expensive full-scale study, and in fact are an almost essential pre-requisite. Conducting a pilot prior to the main study can enhance the likelihood of success of the main study and potentially help to avoid doomed main studies. Pilot studies should be well designed with clear feasibility objectives, clear analytic plans, and explicit criteria for determining success of feasibility. They should be used cautiously for determining treatment effects and variance estimates for power or sample size calculations. Finally, they should be scrutinized the same way as full scale studies, and every attempt should be taken to publish the results in peer-reviewed journals.

Change history

11 march 2023.

A Correction to this paper has been published: https://doi.org/10.1186/s12874-023-01880-1

Waite M: Concise Oxford Thesaurus. 2002, Oxford, England: Oxford University Press, 2

Google Scholar  

Last JM, editor: A Dictionary of Epidemiology. 2001, Oxford University Press, 4

Everitt B: Medical Statistics from A to Z: A Guide for Clinicians and Medical Students. 2006, Cambridge University Press: Cambridge, 2

Book   Google Scholar  

Tavel JA, Fosdick L, ESPRIT Vanguard Group. ESPRIT Executive Committee: Closeout of four phase II Vanguard trials and patient rollover into a large international phase III HIV clinical endpoint trial. Control Clin Trials. 2001, 22: 42-48. 10.1016/S0197-2456(00)00114-8.

Article   CAS   PubMed   Google Scholar  

Arnold DM, Burns KE, Adhikari NK, Kho ME, Meade MO, Cook DJ: The design and interpretation of pilot trials in clinical research in critical care. Crit Care Med. 2009, 37 (Suppl 1): 69-74. 10.1097/CCM.0b013e3181920e33.

Article   Google Scholar  

Computerization of Medical Practice for the Enhancement of Therapeutic Effectiveness. Last accessed August 8, 2009, [ http://www.compete-study.com/index.htm ]

Heart Outcomes Prevention Evaluation Study. Last accessed August 8, 2009, [ http://www.ccc.mcmaster.ca/hope.htm ]

Cardiovascular Health Awareness Program. Last accessed August 8, 2009, [ http://www.chapprogram.ca/resources.html ]

Moher D, Schulz KF, Altman DG, CONSORT Group (Consolidated Standards of Reporting Trials): The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. J Am Podiatr Med Assoc. 2001, 91: 437-442.

Lancaster GA, Dodd S, Williamson PR: Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. 2004, 10: 307-12. 10.1111/j..2002.384.doc.x.

Article   PubMed   Google Scholar  

Craig N, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M: Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ. 2008, 337: a1655-10.1136/bmj.a1655.

Article   PubMed   PubMed Central   Google Scholar  

Van Teijlingen ER, Rennie AM, Hundley V, Graham W: The importance of conducting and reporting pilot studies: the example of the Scottish Births Survey. J Adv Nurs. 2001, 34: 289-295. 10.1046/j.1365-2648.2001.01757.x.

Van Teijlingen ER, Hundley V: The Importance of Pilot Studies. Social Research Update. 2001, 35-[ http://sru.soc.surrey.ac.uk/SRU35.html ]

Lawrence Gould A: Timing of futility analyses for 'proof of concept' trials. Stat Med. 2005, 24: 1815-1835. 10.1002/sim.2087.

Fardon T, Haggart K, Lee DK, Lipworth BJ: A proof of concept study to evaluate stepping down the dose of fluticasone in combination with salmeterol and tiotropium in severe persistent asthma. Respir Med. 2007, 101: 1218-1228. 10.1016/j.rmed.2006.11.001.

Chow SC, Chang M: Adaptive design methods in clinical trials - a review. Orphanet J Rare Dis. 2008, 3: 11-10.1186/1750-1172-3-11.

Gould AL: Planning and revising the sample size for a trial. Stat Med. 1995, 14: 1039-1051. 10.1002/sim.4780140922.

Coffey CS, Muller KE: Properties of internal pilots with the univariate approach to repeated measures. Stat Med. 2003, 22: 2469-2485. 10.1002/sim.1466.

Zucker DM, Wittes JT, Schabenberger O, Brittain E: Internal pilot studies II: comparison of various procedures. Statistics in Medicine. 1999, 18: 3493-3509. 10.1002/(SICI)1097-0258(19991230)18:24<3493::AID-SIM302>3.0.CO;2-2.

Kieser M, Friede T: Re-calculating the sample size in internal pilot designs with control of the type I error rate. Statistics in Medicine. 2000, 19: 901-911. 10.1002/(SICI)1097-0258(20000415)19:7<901::AID-SIM405>3.0.CO;2-L.

Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA: Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006, 63: 484-489. 10.1001/archpsyc.63.5.484.

Yin Y: Sample size calculation for a proof of concept study. J Biopharm Stat. 2002, 12: 267-276. 10.1081/BIP-120015748.

Wittes J, Brittain E: The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med. 1990, 9: 65-71. 10.1002/sim.4780090113.

Lenth R: Some Practical Guidelines for Effective Sample Size Determination. The American Statistician. 2001, 55: 187-193. 10.1198/000313001317098149.

Cook DJ, Rocker G, Meade M, Guyatt G, Geerts W, Anderson D, Skrobik Y, Hebert P, Albert M, Cooper J, Bates S, Caco C, Finfer S, Fowler R, Freitag A, Granton J, Jones G, Langevin S, Mehta S, Pagliarello G, Poirier G, Rabbat C, Schiff D, Griffith L, Crowther M, PROTECT Investigators. Canadian Critical Care Trials Group: Prophylaxis of Thromboembolism in Critical Care (PROTECT) Trial: a pilot study. J Crit Care. 2005, 20: 364-372. 10.1016/j.jcrc.2005.09.010.

Choi PT, Beattie WS, Bryson GL, Paul JE, Yang H: Effects of neuraxial blockade may be difficult to study using large randomized controlled trials: the PeriOperative Epidural Trial (POET) Pilot Study. PLoS One. 2009, 4 (2): e4644-10.1371/journal.pone.0004644.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Altman DG, Bland JM: Absence of evidence is not evidence of absence. BMJ. 1995, 311: 485-

Halpern SD, Karlawish JH, Berlin JA: The continuing unethical conduct of underpowered clinical trials. JAMA. 2002, 288: 358-362. 10.1001/jama.288.3.358.

The Nuremberg Code, Research ethics guideline 2005. Last accessed August 8, 2009, [ http://www.hhs.gov/ohrp/references/nurcode.htm ]

The Declaration of Helsinki, Research ethics guideline. Last accessed December 22, 2009, [ http://www.wma.net/en/30publications/10policies/b3/index.html ]

The Belmont Report, Research ethics guideline. Last accessed August 8, 2009, [ http://ohsr.od.nih.gov/guidelines/belmont.html ]

The ICH Harmonized Tripartite Guideline-Guideline for Good Clinical Practice. Last accessed August 8, 2009, [ http://www.gcppl.org.pl/ma_struktura/docs/ich_gcp.pdf ]

The International Ethical Guidelines for Biomedical Research Involving Human Subjects. Last accessed August 8, 2009, [ http://www.fhi.org/training/fr/Retc/pdf_files/cioms.pdf ]

Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, Government of Canada. Last accessed August 8, 2009, [ http://www.pre.ethics.gc.ca/english/policystatement/policystatement.cfm ]

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/10/1/prepub

Download references

Acknowledgements

Dr Lehana Thabane is clinical trials mentor for the Canadian Institutes of Health Research. We thank the reviewers for insightful comments and suggestions which led to improvements in the manuscript.

Author information

Authors and affiliations.

Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada

Lehana Thabane, Jinhui Ma, Rong Chu, Ji Cheng, Afisi Ismaila, Lorena P Rios, Marroon Thabane & Charles H Goldsmith

Biostatistics Unit, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada

Lehana Thabane, Jinhui Ma, Rong Chu, Ji Cheng, Lorena P Rios & Charles H Goldsmith

Department of Medical Affairs, GlaxoSmithKline Inc., Mississauga, ON, Canada

Afisi Ismaila & Reid Robson

Department of Medicine, Division of Gastroenterology, McMaster University, Hamilton, ON, Canada

Marroon Thabane

Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada

Lora Giangregorio

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Lehana Thabane .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

LT drafted the manuscript. All authors reviewed several versions of the manuscript, read and approved the final version.

The original online version of this article was revised: the authors would like to correct the number of sample size in the fourth paragraph under the heading Sample Size for Pilot Studies from “75 patients” to “289 patients”.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Thabane, L., Ma, J., Chu, R. et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol 10 , 1 (2010). https://doi.org/10.1186/1471-2288-10-1

Download citation

Received : 09 August 2009

Accepted : 06 January 2010

Published : 06 January 2010

DOI : https://doi.org/10.1186/1471-2288-10-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Pilot Study
  • Sample Size Calculation
  • Research Ethic Board
  • Adaptive Design

BMC Medical Research Methodology

ISSN: 1471-2288

importance of pilot study in qualitative research

Enago Academy

Why Is a Pilot Study Important in Research?

' src=

Are you working on a new research project ? We know that you are excited to start, but before you dive in, make sure your study is feasible. You don’t want to end up having to process too many samples at once or realize you forgot to add an essential question to your questionnaire.

What is a Pilot Study?

You can determine the feasibility of your research design, with a pilot study before you start. This is a preliminary, small-scale “rehearsal” in which you test the methods you plan to use for your research project. You will use the results to guide the methodology of your large-scale investigation. Pilot studies should be performed for both qualitative and quantitative studies. Here, we discuss the importance of the pilot study and how it will save you time, frustration and resources.

“ You never test the depth of a river with both feet ” – African proverb

Components of a Pilot Study

Whether your research is a clinical trial of a medical treatment or a survey in the form of a questionnaire, you want your study to be informative and add value to your research field. Things to consider in your pilot study include:

  • Sample size and selection. Your data needs to be representative of the target study population. You should use statistical methods to estimate the feasibility of your sample size.
  • Determine the criteria for a successful pilot study based on the objectives of your study. How will your pilot study address these criteria?
  • When recruiting subjects or collecting samples ensure that the process is practical and manageable.
  • Always test the measurement instrument . This could be a questionnaire, equipment, or methods used. Is it realistic and workable? How can it be improved?
  • Data entry and analysis . Run the trial data through your proposed statistical analysis to see whether your proposed analysis is appropriate for your data set.
  • Create a flow chart of the process.

How to Conduct a Pilot Study

Conducting a pilot study is an essential step in many research projects. Here’s a general guide on how to conduct a pilot study:

Step 1: Define Objectives

Inspect what specific aspects of your main study do you want to test or evaluate in your pilot study.

Step 2: Evaluate Sample Size

Decide on an appropriate sample size for your pilot study. This can be smaller than your main study but should still be large enough to provide meaningful feedback.

Step 3: Select Participants

Choose participants who are similar to those you’ll include in the main study. Ensure they match the demographics and characteristics of your target population.

Step 4: Prepare Materials

Develop or gather all the materials needed for the study, such as surveys, questionnaires, protocols, etc.

Step 5: Explain the Purpose of the Study

Briefly explain the purpose and implementation method of the pilot study to participants. Pay attention to the study duration to help you refine your timeline for the main study.

Step 6: Gather Feedback

Gather feedback from participants through surveys, interviews, or discussions. Ask about their understanding of the questions, clarity of instructions, time taken, etc.

 Step 7: Analyze Results

Analyze the collected data and identify any trends or patterns. Take note of any unexpected issues, confusion, or problems that arise during the pilot.

Step 8: Report Findings

Write a brief report detailing the process, results, and any changes made.

Based on the results observed in the pilot study, make necessary adjustments to your study design, materials, procedures, etc. Furthermore, ensure you are following ethical guidelines for research, even in a pilot study.

Ready to test your understanding on conducting a pilot study? Take our short quiz today!

Fill the Details to Check Your Score

clock.png

Importance of Pilot Study in Research

Pilot studies should be routinely incorporated into research design s because they:

  • Help define the research question
  • Test the proposed study design and process. This could alert you to issues which may negatively affect your project.
  • Educate yourself on different techniques related to your study.
  • Test the safety of the medical treatment in preclinical trials on a small number of participants. This is an essential step in clinical trials.
  • Determine the feasibility of your study, so you don’t waste resources and time.
  • Provide preliminary data that you can use to improve your chances for funding and convince stakeholders that you have the necessary skills and expertise to successfully carry out the research.

Are Pilot Studies Always Necessary?

We recommend pilot studies for all research. Scientific research does not always go as planned; therefore, you should optimize the process to minimize unforeseen events. Why risk disastrous and expensive mistakes that could have been discovered and corrected in a pilot study?

An Essential Component for Good Research Design

Pilot work not only gives you a chance to determine whether your project is feasible but also an opportunity to publish its results. You have an ethical and scientific obligation to get your information out to assist other researchers in making the most of their resources.

A successful pilot study does not ensure the success of a research project. However, it does help you assess your approach and practice the necessary techniques required for your project. It will give you an indication of whether your project will work. Would you start a research project without a pilot study? Let us know in the comments section below.

' src=

But it depends on the nature of the research, I suppose.

Awesome document

Good document

I totally agree with this article that pilot study helps the researcher be sure how feasible his research idea is. And is well worth the time, as it saves future time wastage.

Great article, it is always wise to carry out that test before putting out the Main stuff. It saves you time and future embarrasment.

I think that pilot study is a great way to avoid mistakes on a large scale. You can’t go wrong doing this cause there will always be some error that will arise in scientific researches.

Rate this article Cancel Reply

Your email address will not be published.

importance of pilot study in qualitative research

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

importance of pilot study in qualitative research

  • AI in Academia

Disclosing the Use of Generative AI: Best practices for authors in manuscript preparation

The rapid proliferation of generative and other AI-based tools in research writing has ignited an…

Intersectionality in Academia: Dealing with diverse perspectives

Meritocracy and Diversity in Science: Increasing inclusivity in STEM education

Avoiding the AI Trap: Pitfalls of relying on ChatGPT for PhD applications

importance of pilot study in qualitative research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

importance of pilot study in qualitative research

As a researcher, what do you consider most when choosing an image manipulation detector?

importance of pilot study in qualitative research

Journals By Subject

  • Proceedings

Information

importance of pilot study in qualitative research

Pilot Study, a Neglected Part of Qualitative and Quantitative Research Process: Evidence from Selected PhD Thesis and Dissertations

Juliet Njeri Muasya

Department of Educational Communication, Technology and Pedagogical Studies, Faculty of Education, University of Nairobi, Nairobi, Kenya

Peter Kyalo Mulwa

Add to Mendeley

importance of pilot study in qualitative research

Conducting a pilot study is an important step in both qualitative and quantitative research process. Pilot study enable researchers to evaluate research methods and in particular research instruments with the aim of enhancing reliability and validity of data to be collected from the main study. Pilot study help researchers to detect flaws which lead to adequate and appropriate adjustments of the research instruments. Findings presented in this paper are drawn from an in-depth analysis using a documentary guide of randomly selected PhD thesis and dissertations from one public university in Kenya. The aim of this desk study was to examine ways in which PhD students/graduates use findings from pilot studies and in particular for purposes of improving the validity and reliability of research instruments. The study revealed that PhD students/graduates ignore pilot studies or give it minimal attention. Out of the seven students/graduates only 2 discussed pilot study in a stand-alone section, while others integrated it in the sub-sections of reliability and validity. Although two of the students/graduates mentioned the purpose of pilot study, they however, were not specific on the research instruments being piloted. Four of the students/graduates did not report how they analyzed data from the pilot study, while two indicated that they analyzed data but details on how it was done are missing. This study concludes that PhD students/graduates neglect or give general information about pilot studies in their thesis and dissertations. The students/graduates do not show how data analyzed from the pilot studies was used to revise, review or improve the research methodology and in particular research instruments. Findings from this study confirms that pilot study is a ‘neglected part of the research process’. The study recommends that researchers especially post graduate students should be sensitized on the importance of taking pilot studies seriously. In addition, supervisors should provide effective and adequate guidance to their PhD and Masters students on how to conduct, and appropriately use findings from the pilot study.

Pilot Study, Pre-Test, Qualitative, Quantative Research, PhD Dissertations, Thesis

Juliet Njeri Muasya, Peter Kyalo Mulwa. (2023). Pilot Study, a Neglected Part of Qualitative and Quantitative Research Process: Evidence from Selected PhD Thesis and Dissertations. Higher Education Research , 8 (4), 115-123. https://doi.org/10.11648/j.her.20230804.11

importance of pilot study in qualitative research

Juliet Njeri Muasya; Peter Kyalo Mulwa. Pilot Study, a Neglected Part of Qualitative and Quantitative Research Process: Evidence from Selected PhD Thesis and Dissertations. High. Educ. Res. 2023 , 8 (4), 115-123. doi: 10.11648/j.her.20230804.11

Juliet Njeri Muasya, Peter Kyalo Mulwa. Pilot Study, a Neglected Part of Qualitative and Quantitative Research Process: Evidence from Selected PhD Thesis and Dissertations. High Educ Res . 2023;8(4):115-123. doi: 10.11648/j.her.20230804.11

Cite This Article

  • Author Information

Verification Code/

importance of pilot study in qualitative research

The verification code is required.

Verification code is not valid.

importance of pilot study in qualitative research

Science Publishing Group (SciencePG) is an Open Access publisher, with more than 300 online, peer-reviewed journals covering a wide range of academic disciplines.

Learn More About SciencePG

importance of pilot study in qualitative research

  • Special Issues
  • AcademicEvents
  • ScholarProfiles
  • For Authors
  • For Reviewers
  • For Editors
  • For Conference Organizers
  • For Librarians
  • Article Processing Charges
  • Special Issues Guidelines
  • Editorial Process
  • Peer Review at SciencePG
  • Open Access
  • Ethical Guidelines

Important Link

  • Manuscript Submission
  • Propose a Special Issue
  • Join the Editorial Board
  • Become a Reviewer

The importance of pilot studies

Affiliation.

  • 1 Department of Public Health, University of Aberdeen. [email protected]
  • PMID: 12216297
  • DOI: 10.7748/ns2002.06.16.40.33.c3214

The term 'pilot studies' refers to mini versions of a full-scale study (also called 'feasibility' studies), as well as the specific pre-testing of a particular research instrument such as a questionnaire or interview schedule. Pilot studies are a crucial element of a good study design. Conducting a pilot study does not guarantee success in the main study, but it does increase the likelihood of success. Pilot studies fulfill a range of important functions and can provide valuable insights for other researchers. There is a need for more discussion among researchers of both the process and outcomes of pilot studies.

Publication types

  • Data Collection / methods
  • Interviews as Topic
  • Nursing Research / methods*
  • Nursing Research / standards*
  • Pilot Projects*
  • Reproducibility of Results
  • Research Design / standards*
  • Surveys and Questionnaires

IMAGES

  1. How To Do A Pilot Study In Research

    importance of pilot study in qualitative research

  2. Pilot Study in Research: Definition & Examples

    importance of pilot study in qualitative research

  3. (PDF) The Pilot Study in Qualitative Inquiry

    importance of pilot study in qualitative research

  4. Pilot Study: Purpose, Reasons, and Steps to Conduct It

    importance of pilot study in qualitative research

  5. Qualitative Research

    importance of pilot study in qualitative research

  6. purpose of pilot study

    importance of pilot study in qualitative research

VIDEO

  1. Importance of Pilot TRAINING and EDUCATION

  2. The Importance of Aeromedical Psychiatry for Aviation Safety

  3. Ensuring Content Validity through Qualitative Approaches |Dr Muhammad Sarwar

  4. 10 Lines on Importance of Pilot || Essay on Importance of Pilot in English || Importance of Pilot

  5. Case Study: Qualitative Approach to Analysis

  6. What is the importance of a research or thesis title?

COMMENTS

  1. Conducting the Pilot Study: A Neglected Part of the Research Process

    Additionally, while methodological texts recommend the use of pilot studies in qualitative research, there is a lack of reported research focusing on how to conduct such pilot studies. We argue that our methodological findings may contribute to greater awareness of the important role that a pilot study may have for full-scale qualitative ...

  2. Illuminating the Role of Reflexivity Within Qualitative Pilot Studies

    Relating this role to that of the pilot study in qualitative research raises parallels. With the pilot study acting as a mechanism to guide the main research, opportunities arise for the researcher, as the pilot, to make adjustments to enhance the research, ensuring its safe passage to completion. ... The pilot study's importance and function ...

  3. (PDF) Piloting for Interviews in Qualitative Research

    This article discusses the importance of pilot study, the methods undertaken and the lessons learnt throughout the process. ... It employs a qualitative research design where a series of semi ...

  4. Doing A Pilot Study: Why Is It Essential?

    A pilot study is one of the essential stages in a research project. This paper aims to describe the importance of and steps involved in executing a pilot study by using an example of a descriptive study in primary care. The process of testing the feasibility of the project proposal, recruitment of subjects, research tool and data analysis was ...

  5. Pilot Study in Research: Definition & Examples

    Advantages. Limitations. Examples. A pilot study, also known as a feasibility study, is a small-scale preliminary study conducted before the main research to check the feasibility or improve the research design. Pilot studies can be very important before conducting a full-scale research project, helping design the research methods and protocol.

  6. Conducting the Pilot Study: A Neglected Part of the Research Process

    the Importance of Piloting in Qualitative Research Studies Johan Malmqvist1,2, Kristina Hellberg2, Gunvie Mo¨lla˚s1, Richard Rose3, ... An effective implementation is an important part of a pilot study, irrespective of the type of pilot study or if it is within qualitative or quantitative research. There are several critical

  7. Why undertake a pilot in a qualitative PhD study? Lessons ...

    Conclusion Sharing experiences of and lessons learned in a pilot study enhances personal development, improves researchers' confidence and competence, and contributes to the understanding of research. Implications for practice Pilots can be used effectively in qualitative studies to refine the final design, and provide the researcher with ...

  8. A tutorial on pilot studies: the what, why and how

    2. Narrowing the focus: Pilot studies for randomized studies. Pilot studies can be conducted in both quantitative and qualitative studies. Adopting a similar approach to Lancaster et al.[], we focus on quantitative pilot studies - particularly those done prior to full-scale phase III trialsPhase I trials are non-randomized studies designed to investigate the pharmacokinetics of a drug (i.e ...

  9. The Value of a Qualitative Pilot Study in a Multi-Phase Mixed Methods

    This article discusses the value of pilot studies in qualitative research in general and as a part of a multiphase mixed methods research. The qualitative pilot study was valuable in helping me to refine the research protocols, pre-empt possible challenges and increase my training and confidence in conducting qualitative research.

  10. The Role and Interpretation of Pilot Studies in Clinical Research

    The purpose of conducting a pilot study is to examine the feasibility of an approach that is intended to be used in a larger scale study. The roles and limitations of pilot studies are described here using a clinical trial as an example. A pilot study can be used to evaluate the feasibility of recruitment, randomization, retention, assessment ...

  11. Guidelines for Designing and Evaluating Feasibility Pilot Studies

    Pilot studies are a necessary first step to assess the feasibility of methods and procedures to be used in a larger study. Some consider pilot studies to be a subset of feasibility studies (), while others regard feasibility studies as a subset of pilot studies.As a result, the terms have been used interchangeably ().Pilot studies have been used to estimate effect sizes to determine the sample ...

  12. (PDF) The Pilot Study in Qualitative Inquiry

    A detailed and properly conducted pilot study is important to ensure good quality qualitative research results [11]. It should be viewed as a very important part of the research design process [29 ...

  13. Pilot Study in Qualitative Research: The Roles and Values

    A pilot or preliminary study is referred to a small-scale of a complete survey or a pretest for a particular research instrument such as a questionnaire or interview guide. Pilot studies could be ...

  14. A tutorial on pilot studies: the what, why and how

    Pilot studies can be conducted in both quantitative and qualitative studies. Adopting a similar approach to Lancaster et al.[], we focus on quantitative pilot studies - particularly those done prior to full-scale phase III trialsPhase I trials are non-randomized studies designed to investigate the pharmacokinetics of a drug (i.e. how a drug is distributed and metabolized in the body) including ...

  15. Conducting the Pilot Study: A Neglected Part of the Research Process

    Additionally, while methodological texts recommend the use of pilot studies in qualitative research, there is a lack of reported research focusing on how to conduct such pilot studies. ... The importance of pilot studies, how to write them and what they mean (Editorial). International Journal of Osteopathic Medicine, 23, 2-3. doi:10.1016/j ...

  16. (PDF) The Importance of Pilot Studies

    The importance of pilot studies. The term pilot study is used in two different. ways in social science research. It can refer. to so-called feasibility studies which are. "small scale version [s ...

  17. Why Is a Pilot Study Important in Research?

    Conducting a pilot study is an essential step in many research projects. Here's a general guide on how to conduct a pilot study: Step 1: Define Objectives. Inspect what specific aspects of your main study do you want to test or evaluate in your pilot study. Step 2: Evaluate Sample Size. Decide on an appropriate sample size for your pilot study.

  18. The Pilot Study in Qualitative Inquiry:

    This article discusses the importance of a pilot study in undertaking phenomenological qualitative inquiry for culturally competent research. The pilot work was conducted in preparation for a dissertation on Korean-American family dementia caregiving. The definition and useful functions of pilot studies in qualitative inquiry are particularly ...

  19. The Potential Uses of Pilot Study in Qualitative Research

    Pilot study is a sm all-scale study conducted prior to a main. study to assess the feasibility of conducting the main st udy. It. helps the researcher esp ecially novice researcher to have som e ...

  20. Pilot Study, a Neglected Part of Qualitative and Quantitative Research

    Conducting a pilot study is an important step in both qualitative and quantitative research process. Pilot study enable researchers to evaluate research methods and in particular research instruments with the aim of enhancing reliability and validity of data to be collected from the main study. Pilot study help researchers to detect flaws which lead to adequate and appropriate adjustments of ...

  21. Introduction of a pilot study

    A pilot study is the first step of the entire research protocol and is often a smaller-sized study assisting in planning and modification of the main study [, ]. More specifically, in large-scale clinical studies, the pilot or small-scale study often precedes the main trial to analyze its validity. Before a pilot study begins, researchers must ...

  22. The importance of pilot studies

    Abstract. The term 'pilot studies' refers to mini versions of a full-scale study (also called 'feasibility' studies), as well as the specific pre-testing of a particular research instrument such as a questionnaire or interview schedule. Pilot studies are a crucial element of a good study design. Conducting a pilot study does not guarantee ...

  23. (PDF) Conducting the Pilot Study: A Neglected Part of the Research

    important role that a pilot study may have for full-scale qualitative research projects, for example, in case study research where semi-structured qualitative interviews are used.