how to design research questions

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Question: Types and Examples 

research quetsion

The first step in any research project is framing the research question. It can be considered the core of any systematic investigation as the research outcomes are tied to asking the right questions. Thus, this primary interrogation point sets the pace for your research as it helps collect relevant and insightful information that ultimately influences your work.   

Typically, the research question guides the stages of inquiry, analysis, and reporting. Depending on the use of quantifiable or quantitative data, research questions are broadly categorized into quantitative or qualitative research questions. Both types of research questions can be used independently or together, considering the overall focus and objectives of your research.  

What is a research question?

A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion. 

Designing the research question is a dynamic process where the researcher can change or refine the research question as they review related literature and develop a framework for the study. Depending on the scale of your research, the study can include single or multiple research questions. 

A good research question has the following features: 

  • It is relevant to the chosen field of study. 
  • The question posed is arguable and open for debate, requiring synthesizing and analysis of ideas. 
  • It is focused and concisely framed. 
  • A feasible solution is possible within the given practical constraint and timeframe. 

A poorly formulated research question poses several risks. 1   

  • Researchers can adopt an erroneous design. 
  • It can create confusion and hinder the thought process, including developing a clear protocol.  
  • It can jeopardize publication efforts.  
  • It causes difficulty in determining the relevance of the study findings.  
  • It causes difficulty in whether the study fulfils the inclusion criteria for systematic review and meta-analysis. This creates challenges in determining whether additional studies or data collection is needed to answer the question.  
  • Readers may fail to understand the objective of the study. This reduces the likelihood of the study being cited by others. 

Now that you know “What is a research question?”, let’s look at the different types of research questions. 

Types of research questions

Depending on the type of research to be done, research questions can be classified broadly into quantitative, qualitative, or mixed-methods studies. Knowing the type of research helps determine the best type of research question that reflects the direction and epistemological underpinnings of your research. 

The structure and wording of quantitative 2 and qualitative research 3 questions differ significantly. The quantitative study looks at causal relationships, whereas the qualitative study aims at exploring a phenomenon. 

  • Quantitative research questions:  
  • Seeks to investigate social, familial, or educational experiences or processes in a particular context and/or location.  
  • Answers ‘how,’ ‘what,’ or ‘why’ questions. 
  • Investigates connections, relations, or comparisons between independent and dependent variables. 

Quantitative research questions can be further categorized into descriptive, comparative, and relationship, as explained in the Table below. 

  • Qualitative research questions  

Qualitative research questions are adaptable, non-directional, and more flexible. It concerns broad areas of research or more specific areas of study to discover, explain, or explore a phenomenon. These are further classified as follows: 

  • Mixed-methods studies  

Mixed-methods studies use both quantitative and qualitative research questions to answer your research question. Mixed methods provide a complete picture than standalone quantitative or qualitative research, as it integrates the benefits of both methods. Mixed methods research is often used in multidisciplinary settings and complex situational or societal research, especially in the behavioral, health, and social science fields. 

What makes a good research question

A good research question should be clear and focused to guide your research. It should synthesize multiple sources to present your unique argument, and should ideally be something that you are interested in. But avoid questions that can be answered in a few factual statements. The following are the main attributes of a good research question. 

  • Specific: The research question should not be a fishing expedition performed in the hopes that some new information will be found that will benefit the researcher. The central research question should work with your research problem to keep your work focused. If using multiple questions, they should all tie back to the central aim. 
  • Measurable: The research question must be answerable using quantitative and/or qualitative data or from scholarly sources to develop your research question. If such data is impossible to access, it is better to rethink your question. 
  • Attainable: Ensure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific. 
  • You have the expertise 
  • You have the equipment and resources 
  • Realistic: Developing your research question should be based on initial reading about your topic. It should focus on addressing a problem or gap in the existing knowledge in your field or discipline. 
  • Based on some sort of rational physics 
  • Can be done in a reasonable time frame 
  • Timely: The research question should contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on. 
  • Novel 
  • Based on current technologies. 
  • Important to answer current problems or concerns. 
  • Lead to new directions. 
  • Important: Your question should have some aspect of originality. Incremental research is as important as exploring disruptive technologies. For example, you can focus on a specific location or explore a new angle. 
  • Meaningful whether the answer is “Yes” or “No.” Closed-ended, yes/no questions are too simple to work as good research questions. Such questions do not provide enough scope for robust investigation and discussion. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation before providing an answer. 

Steps for developing a good research question

The importance of research questions cannot be understated. When drafting a research question, use the following frameworks to guide the components of your question to ease the process. 4  

  • Determine the requirements: Before constructing a good research question, set your research requirements. What is the purpose? Is it descriptive, comparative, or explorative research? Determining the research aim will help you choose the most appropriate topic and word your question appropriately. 
  • Select a broad research topic: Identify a broader subject area of interest that requires investigation. Techniques such as brainstorming or concept mapping can help identify relevant connections and themes within a broad research topic. For example, how to learn and help students learn. 
  • Perform preliminary investigation: Preliminary research is needed to obtain up-to-date and relevant knowledge on your topic. It also helps identify issues currently being discussed from which information gaps can be identified. 
  • Narrow your focus: Narrow the scope and focus of your research to a specific niche. This involves focusing on gaps in existing knowledge or recent literature or extending or complementing the findings of existing literature. Another approach involves constructing strong research questions that challenge your views or knowledge of the area of study (Example: Is learning consistent with the existing learning theory and research). 
  • Identify the research problem: Once the research question has been framed, one should evaluate it. This is to realize the importance of the research questions and if there is a need for more revising (Example: How do your beliefs on learning theory and research impact your instructional practices). 

How to write a research question

Those struggling to understand how to write a research question, these simple steps can help you simplify the process of writing a research question. 

Sample Research Questions

The following are some bad and good research question examples 

  • Example 1 
  • Example 2 

References:  

  • Thabane, L., Thomas, T., Ye, C., & Paul, J. (2009). Posing the research question: not so simple.  Canadian Journal of Anesthesia/Journal canadien d’anesthésie ,  56 (1), 71-79. 
  • Rutberg, S., & Bouikidis, C. D. (2018). Focusing on the fundamentals: A simplistic differentiation between qualitative and quantitative research.  Nephrology Nursing Journal ,  45 (2), 209-213. 
  • Kyngäs, H. (2020). Qualitative research and content analysis.  The application of content analysis in nursing science research , 3-11. 
  • Mattick, K., Johnston, J., & de la Croix, A. (2018). How to… write a good research question.  The clinical teacher ,  15 (2), 104-108. 
  • Fandino, W. (2019). Formulating a good research question: Pearls and pitfalls.  Indian Journal of Anaesthesia ,  63 (8), 611. 
  • Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: a key to evidence-based decisions.  ACP journal club ,  123 (3), A12-A13 

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Transitive and Intransitive Verbs in the World of Research

Language and grammar rules for academic writing, you may also like, mla works cited page: format, template & examples, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence, phd qualifying exam: tips for success , quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements , 9 steps to publish a research paper, what are the different types of research papers, how to make translating academic papers less challenging, 6 tips for post-doc researchers to take their....

We use cookies and similar technologies to improve your website experience and help us understand how you use our website. By continuing to use this website, you consent to the usage of cookies. Learn more about our Privacy Statement and Cookie Policy .

  • Our Mission
  • Code of Conduct
  • The Consultants
  • Hours and Locations
  • Apply to Become a Consultant
  • Make an Appointment
  • Face-to-Face Appointments
  • Zoom Appointments
  • Written Feedback Appointments
  • Support for Writers with Disabilities
  • Policies and Restrictions
  • Upcoming Workshops
  • Class Workshops
  • Meet the Consultants
  • Writing Guides and Tools
  • Schedule an appointment! Login or Register
  • Graduate Students
  • ESOL Students

How to Write a Research Question

What is a research question? A research question is the question around which you center your research. It should be:

  • clear : it provides enough specifics that one’s audience can easily understand its purpose without needing additional explanation.
  • focused : it is narrow enough that it can be answered thoroughly in the space the writing task allows.
  • concise : it is expressed in the fewest possible words.
  • complex : it is not answerable with a simple “yes” or “no,” but rather requires synthesis and analysis of ideas and sources prior to composition of an answer.
  • arguable : its potential answers are open to debate rather than accepted facts.

You should ask a question about an issue that you are genuinely curious and/or passionate about.

The question you ask should be developed for the discipline you are studying. A question appropriate for Biology, for instance, is different from an appropriate one in Political Science or Sociology. If you are developing your question for a course other than first-year composition, you may want to discuss your ideas for a research question with your professor.

Why is a research question essential to the research process? Research questions help writers focus their research by providing a path through the research and writing process. The specificity of a well-developed research question helps writers avoid the “all-about” paper and work toward supporting a specific, arguable thesis.

Steps to developing a research question:

  • Choose an interesting general topic. Most professional researchers focus on topics they are genuinely interested in studying. Writers should choose a broad topic about which they genuinely would like to know more. An example of a general topic might be “Slavery in the American South” or “Films of the 1930s.”
  • Do some preliminary research on your general topic. Do a few quick searches in current periodicals and journals on your topic to see what’s already been done and to help you narrow your focus. What issues are scholars and researchers discussing, when it comes to your topic? What questions occur to you as you read these articles?
  • Consider your audience. For most college papers, your audience will be academic, but always keep your audience in mind when narrowing your topic and developing your question. Would that particular audience be interested in the question you are developing?
  • Start asking questions. Taking into consideration all of the above, start asking yourself open-ended “how” and “why” questions about your general topic. For example, “Why were slave narratives effective tools in working toward the abolishment of slavery?” or “How did the films of the 1930s reflect or respond to the conditions of the Great Depression?”
  • Is your research question clear? With so much research available on any given topic, research questions must be as clear as possible in order to be effective in helping the writer direct his or her research.
  • Is your research question focused? Research questions must be specific enough to be well covered in the space available.
  • Is your research question complex? Research questions should not be answerable with a simple “yes” or “no” or by easily-found facts.  They should, instead, require both research and analysis on the part of the writer. They often begin with “How” or “Why.”
  • Begin your research . After you’ve come up with a question, think about the possible paths your research could take. What sources should you consult as you seek answers to your question? What research process will ensure that you find a variety of perspectives and responses to your question?

Sample Research Questions

Unclear: How should social networking sites address the harm they cause? Clear: What action should social networking sites like MySpace and Facebook take to protect users’ personal information and privacy? The unclear version of this question doesn’t specify which social networking sites or suggest what kind of harm the sites might be causing. It also assumes that this “harm” is proven and/or accepted. The clearer version specifies sites (MySpace and Facebook), the type of potential harm (privacy issues), and who may be experiencing that harm (users). A strong research question should never leave room for ambiguity or interpretation. Unfocused: What is the effect on the environment from global warming? Focused: What is the most significant effect of glacial melting on the lives of penguins in Antarctica?

The unfocused research question is so broad that it couldn’t be adequately answered in a book-length piece, let alone a standard college-level paper. The focused version narrows down to a specific effect of global warming (glacial melting), a specific place (Antarctica), and a specific animal that is affected (penguins). It also requires the writer to take a stance on which effect has the greatest impact on the affected animal. When in doubt, make a research question as narrow and focused as possible.

Too simple: How are doctors addressing diabetes in the U.S.? Appropriately Complex:   What main environmental, behavioral, and genetic factors predict whether Americans will develop diabetes, and how can these commonalities be used to aid the medical community in prevention of the disease?

The simple version of this question can be looked up online and answered in a few factual sentences; it leaves no room for analysis. The more complex version is written in two parts; it is thought provoking and requires both significant investigation and evaluation from the writer. As a general rule of thumb, if a quick Google search can answer a research question, it’s likely not very effective.

Last updated 8/8/2018

George Mason University Logo

The Writing Center

4400 University Drive, 2G8 Fairfax, VA 22030

Quick Links

  • Register with us

© Copyright 2024 George Mason University . All Rights Reserved. Privacy Statement | Accessibility

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on 30 October 2022 by Shona McCombes . Revised on 12 December 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, research questions quiz, frequently asked questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Using your research problem to develop your research question

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Prevent plagiarism, run a free check.

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Feasible and specific, complex and arguable, relevant and original.

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

An essay isn’t just a loose collection of facts and ideas. Instead, it should be centered on an overarching argument (summarised in your thesis statement ) that every part of the essay relates to.

The way you structure your essay is crucial to presenting your argument coherently. A well-structured essay helps your reader follow the logic of your ideas and understand your overall point.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, December 12). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved 27 May 2024, from https://www.scribbr.co.uk/the-research-process/research-question/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a research proposal | examples & templates, how to write a results section | tips & examples, what is a research methodology | steps & tips.

  • News & Highlights

Search

  • Publications and Documents
  • Postgraduate Education
  • Browse Our Courses
  • C/T Research Academy
  • K12 Investigator Training
  • Harvard Catalyst On-Demand
  • Translational Innovator
  • SMART IRB Reliance Request
  • Biostatistics Consulting
  • Regulatory Support
  • Pilot Funding
  • Informatics Program
  • Community Engagement
  • Diversity Inclusion
  • Research Enrollment and Diversity
  • Harvard Catalyst Profiles

Harvard Catalyst Logo

Creating a Good Research Question

  • Advice & Growth
  • Process in Practice

Successful translation of research begins with a strong question. How do you get started? How do good research questions evolve? And where do you find inspiration to generate good questions in the first place?  It’s helpful to understand existing frameworks, guidelines, and standards, as well as hear from researchers who utilize these strategies in their own work.

In the fall and winter of 2020, Naomi Fisher, MD, conducted 10 interviews with clinical and translational researchers at Harvard University and affiliated academic healthcare centers, with the purpose of capturing their experiences developing good research questions. The researchers featured in this project represent various specialties, drawn from every stage of their careers. Below you will find clips from their interviews and additional resources that highlight how to get started, as well as helpful frameworks and factors to consider. Additionally, visit the Advice & Growth section to hear candid advice and explore the Process in Practice section to hear how researchers have applied these recommendations to their published research.

  • Naomi Fisher, MD , is associate professor of medicine at Harvard Medical School (HMS), and clinical staff at Brigham and Women’s Hospital (BWH). Fisher is founder and director of Hypertension Services and the Hypertension Specialty Clinic at the BWH, where she is a renowned endocrinologist. She serves as a faculty director for communication-related Boundary-Crossing Skills for Research Careers webinar sessions and the Writing and Communication Center .
  • Christopher Gibbons, MD , is associate professor of neurology at HMS, and clinical staff at Beth Israel Deaconess Medical Center (BIDMC) and Joslin Diabetes Center. Gibbons’ research focus is on peripheral and autonomic neuropathies.
  • Clare Tempany-Afdhal, MD , is professor of radiology at HMS and the Ferenc Jolesz Chair of Research, Radiology at BWH. Her major areas of research are MR imaging of the pelvis and image- guided therapy.
  • David Sykes, MD, PhD , is assistant professor of medicine at Massachusetts General Hospital (MGH), he is also principal investigator at the Sykes Lab at MGH. His special interest area is rare hematologic conditions.
  • Elliot Israel, MD , is professor of medicine at HMS, director of the Respiratory Therapy Department, the director of clinical research in the Pulmonary and Critical Care Medical Division and associate physician at BWH. Israel’s research interests include therapeutic interventions to alter asthmatic airway hyperactivity and the role of arachidonic acid metabolites in airway narrowing.
  • Jonathan Williams, MD, MMSc , is assistant professor of medicine at HMS, and associate physician at BWH. He focuses on endocrinology, specifically unravelling the intricate relationship between genetics and environment with respect to susceptibility to cardiometabolic disease.
  • Junichi Tokuda, PhD , is associate professor of radiology at HMS, and is a research scientist at the Department of Radiology, BWH. Tokuda is particularly interested in technologies to support image-guided “closed-loop” interventions. He also serves as a principal investigator leading several projects funded by the National Institutes of Health and industry.
  • Osama Rahma, MD , is assistant professor of medicine at HMS and clinical staff member in medical oncology at Dana-Farber Cancer Institute (DFCI). Rhama is currently a principal investigator at the Center for Immuno-Oncology and Gastroenterology Cancer Center at DFCI. His research focus is on drug development of combinational immune therapeutics.
  • Sharmila Dorbala, MD, MPH , is professor of radiology at HMS and clinical staff at BWH in cardiovascular medicine and radiology. She is also the president of the American Society of Nuclear Medicine. Dorbala’s specialty is using nuclear medicine for cardiovascular discoveries.
  • Subha Ramani, PhD, MBBS, MMed , is associate professor of medicine at HMS, as well as associate physician in the Division of General Internal Medicine and Primary Care at BWH. Ramani’s scholarly interests focus on innovative approaches to teaching, learning and assessment of clinical trainees, faculty development in teaching, and qualitative research methods in medical education.
  • Ursula Kaiser, MD , is professor at HMS and chief of the Division of Endocrinology, Diabetes and Hypertension, and senior physician at BWH. Kaiser’s research focuses on understanding the molecular mechanisms by which pulsatile gonadotropin-releasing hormone regulates the expression of luteinizing hormone and follicle-stimulating hormone genes.

Insights on Creating a Good Research Question

Junichi Tokuda, PhD

Play Junichi Tokuda video

Ursula Kaiser, MD

Play Ursula Kaiser video

Start Successfully: Build the Foundation of a Good Research Question

Jonathan Williams, MD, MMSc

Start Successfully Resources

Ideation in Device Development: Finding Clinical Need Josh Tolkoff, MS A lecture explaining the critical importance of identifying a compelling clinical need before embarking on a research project. Play Ideation in Device Development video .

Radical Innovation Jeff Karp, PhD This ThinkResearch podcast episode focuses on one researcher’s approach using radical simplicity to break down big problems and questions. Play Radical Innovation .

Using Healthcare Data: How can Researchers Come up with Interesting Questions? Anupam Jena, MD, PhD Another ThinkResearch podcast episode addresses how to discover good research questions by using a backward design approach which involves analyzing big data and allowing the research question to unfold from findings. Play Using Healthcare Data .

Important Factors: Consider Feasibility and Novelty

Sharmila Dorbala, MD, MPH

Refining Your Research Question 

Play video of Clare Tempany-Afdhal

Elliot Israel, MD

Play Elliott Israel video

Frameworks and Structure: Evaluate Research Questions Using Tools and Techniques

Frameworks and Structure Resources

Designing Clinical Research Hulley et al. A comprehensive and practical guide to clinical research, including the FINER framework for evaluating research questions. Learn more about the book .

Translational Medicine Library Guide Queens University Library An introduction to popular frameworks for research questions, including FINER and PICO. Review translational medicine guide .

Asking a Good T3/T4 Question  Niteesh K. Choudhry, MD, PhD This video explains the PICO framework in practice as participants in a workshop propose research questions that compare interventions. Play Asking a Good T3/T4 Question video

Introduction to Designing & Conducting Mixed Methods Research An online course that provides a deeper dive into mixed methods’ research questions and methodologies. Learn more about the course

Network and Support: Find the Collaborators and Stakeholders to Help Evaluate Research Questions

Chris Gibbons, MD,

Network & Support Resource

Bench-to-bedside, Bedside-to-bench Christopher Gibbons, MD In this lecture, Gibbons shares his experience of bringing research from bench to bedside, and from bedside to bench. His talk highlights the formation and evolution of research questions based on clinical need. Play Bench-to-bedside. 

Grad Coach

Research Question 101 📖

Everything you need to know to write a high-quality research question

By: Derek Jansen (MBA) | Reviewed By: Dr. Eunice Rautenbach | October 2023

If you’ve landed on this page, you’re probably asking yourself, “ What is a research question? ”. Well, you’ve come to the right place. In this post, we’ll explain what a research question is , how it’s differen t from a research aim, and how to craft a high-quality research question that sets you up for success.

Research Question 101

What is a research question.

  • Research questions vs research aims
  • The 4 types of research questions
  • How to write a research question
  • Frequently asked questions
  • Examples of research questions

As the name suggests, the research question is the core question (or set of questions) that your study will (attempt to) answer .

In many ways, a research question is akin to a target in archery . Without a clear target, you won’t know where to concentrate your efforts and focus. Essentially, your research question acts as the guiding light throughout your project and informs every choice you make along the way.

Let’s look at some examples:

What impact does social media usage have on the mental health of teenagers in New York?
How does the introduction of a minimum wage affect employment levels in small businesses in outer London?
How does the portrayal of women in 19th-century American literature reflect the societal attitudes of the time?
What are the long-term effects of intermittent fasting on heart health in adults?

As you can see in these examples, research questions are clear, specific questions that can be feasibly answered within a study. These are important attributes and we’ll discuss each of them in more detail a little later . If you’d like to see more examples of research questions, you can find our RQ mega-list here .

Free Webinar: How To Find A Dissertation Research Topic

Research Questions vs Research Aims

At this point, you might be asking yourself, “ How is a research question different from a research aim? ”. Within any given study, the research aim and research question (or questions) are tightly intertwined , but they are separate things . Let’s unpack that a little.

A research aim is typically broader in nature and outlines what you hope to achieve with your research. It doesn’t ask a specific question but rather gives a summary of what you intend to explore.

The research question, on the other hand, is much more focused . It’s the specific query you’re setting out to answer. It narrows down the research aim into a detailed, researchable question that will guide your study’s methods and analysis.

Let’s look at an example:

Research Aim: To explore the effects of climate change on marine life in Southern Africa.
Research Question: How does ocean acidification caused by climate change affect the reproduction rates of coral reefs?

As you can see, the research aim gives you a general focus , while the research question details exactly what you want to find out.

Need a helping hand?

how to design research questions

Types of research questions

Now that we’ve defined what a research question is, let’s look at the different types of research questions that you might come across. Broadly speaking, there are (at least) four different types of research questions – descriptive , comparative , relational , and explanatory . 

Descriptive questions ask what is happening. In other words, they seek to describe a phenomena or situation . An example of a descriptive research question could be something like “What types of exercise do high-performing UK executives engage in?”. This would likely be a bit too basic to form an interesting study, but as you can see, the research question is just focused on the what – in other words, it just describes the situation.

Comparative research questions , on the other hand, look to understand the way in which two or more things differ , or how they’re similar. An example of a comparative research question might be something like “How do exercise preferences vary between middle-aged men across three American cities?”. As you can see, this question seeks to compare the differences (or similarities) in behaviour between different groups.

Next up, we’ve got exploratory research questions , which ask why or how is something happening. While the other types of questions we looked at focused on the what, exploratory research questions are interested in the why and how . As an example, an exploratory research question might ask something like “Why have bee populations declined in Germany over the last 5 years?”. As you can, this question is aimed squarely at the why, rather than the what.

Last but not least, we have relational research questions . As the name suggests, these types of research questions seek to explore the relationships between variables . Here, an example could be something like “What is the relationship between X and Y” or “Does A have an impact on B”. As you can see, these types of research questions are interested in understanding how constructs or variables are connected , and perhaps, whether one thing causes another.

Of course, depending on how fine-grained you want to get, you can argue that there are many more types of research questions , but these four categories give you a broad idea of the different flavours that exist out there. It’s also worth pointing out that a research question doesn’t need to fit perfectly into one category – in many cases, a research question might overlap into more than just one category and that’s okay.

The key takeaway here is that research questions can take many different forms , and it’s useful to understand the nature of your research question so that you can align your research methodology accordingly.

Free Webinar: Research Methodology 101

How To Write A Research Question

As we alluded earlier, a well-crafted research question needs to possess very specific attributes, including focus , clarity and feasibility . But that’s not all – a rock-solid research question also needs to be rooted and aligned . Let’s look at each of these.

A strong research question typically has a single focus. So, don’t try to cram multiple questions into one research question; rather split them up into separate questions (or even subquestions), each with their own specific focus. As a rule of thumb, narrow beats broad when it comes to research questions.

Clear and specific

A good research question is clear and specific, not vague and broad. State clearly exactly what you want to find out so that any reader can quickly understand what you’re looking to achieve with your study. Along the same vein, try to avoid using bulky language and jargon – aim for clarity.

Unfortunately, even a super tantalising and thought-provoking research question has little value if you cannot feasibly answer it. So, think about the methodological implications of your research question while you’re crafting it. Most importantly, make sure that you know exactly what data you’ll need (primary or secondary) and how you’ll analyse that data.

A good research question (and a research topic, more broadly) should be rooted in a clear research gap and research problem . Without a well-defined research gap, you risk wasting your effort pursuing a question that’s already been adequately answered (and agreed upon) by the research community. A well-argued research gap lays at the heart of a valuable study, so make sure you have your gap clearly articulated and that your research question directly links to it.

As we mentioned earlier, your research aim and research question are (or at least, should be) tightly linked. So, make sure that your research question (or set of questions) aligns with your research aim . If not, you’ll need to revise one of the two to achieve this.

FAQ: Research Questions

Research question faqs, how many research questions should i have, what should i avoid when writing a research question, can a research question be a statement.

Typically, a research question is phrased as a question, not a statement. A question clearly indicates what you’re setting out to discover.

Can a research question be too broad or too narrow?

Yes. A question that’s too broad makes your research unfocused, while a question that’s too narrow limits the scope of your study.

Here’s an example of a research question that’s too broad:

“Why is mental health important?”

Conversely, here’s an example of a research question that’s likely too narrow:

“What is the impact of sleep deprivation on the exam scores of 19-year-old males in London studying maths at The Open University?”

Can I change my research question during the research process?

How do i know if my research question is good.

A good research question is focused, specific, practical, rooted in a research gap, and aligned with the research aim. If your question meets these criteria, it’s likely a strong question.

Is a research question similar to a hypothesis?

Not quite. A hypothesis is a testable statement that predicts an outcome, while a research question is a query that you’re trying to answer through your study. Naturally, there can be linkages between a study’s research questions and hypothesis, but they serve different functions.

How are research questions and research objectives related?

The research question is a focused and specific query that your study aims to answer. It’s the central issue you’re investigating. The research objective, on the other hand, outlines the steps you’ll take to answer your research question. Research objectives are often more action-oriented and can be broken down into smaller tasks that guide your research process. In a sense, they’re something of a roadmap that helps you answer your research question.

Need some inspiration?

If you’d like to see more examples of research questions, check out our research question mega list here .  Alternatively, if you’d like 1-on-1 help developing a high-quality research question, consider our private coaching service .

how to design research questions

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research constructs: construct validity and reliability

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Enago Academy

How to Develop a Good Research Question? — Types & Examples

' src=

Cecilia is living through a tough situation in her research life. Figuring out where to begin, how to start her research study, and how to pose the right question for her research quest, is driving her insane. Well, questions, if not asked correctly, have a tendency to spiral us!

Image Source: https://phdcomics.com/

Questions lead everyone to answers. Research is a quest to find answers. Not the vague questions that Cecilia means to answer, but definitely more focused questions that define your research. Therefore, asking appropriate question becomes an important matter of discussion.

A well begun research process requires a strong research question. It directs the research investigation and provides a clear goal to focus on. Understanding the characteristics of comprising a good research question will generate new ideas and help you discover new methods in research.

In this article, we are aiming to help researchers understand what is a research question and how to write one with examples.

Table of Contents

What Is a Research Question?

A good research question defines your study and helps you seek an answer to your research. Moreover, a clear research question guides the research paper or thesis to define exactly what you want to find out, giving your work its objective. Learning to write a research question is the beginning to any thesis, dissertation , or research paper. Furthermore, the question addresses issues or problems which is answered through analysis and interpretation of data.

Why Is a Research Question Important?

A strong research question guides the design of a study. Moreover, it helps determine the type of research and identify specific objectives. Research questions state the specific issue you are addressing and focus on outcomes of the research for individuals to learn. Therefore, it helps break up the study into easy steps to complete the objectives and answer the initial question.

Types of Research Questions

Research questions can be categorized into different types, depending on the type of research you want to undergo. Furthermore, knowing the type of research will help a researcher determine the best type of research question to use.

1. Qualitative Research Question

Qualitative questions concern broad areas or more specific areas of research. However, unlike quantitative questions, qualitative research questions are adaptable, non-directional and more flexible. Qualitative research question focus on discovering, explaining, elucidating, and exploring.

i. Exploratory Questions

This form of question looks to understand something without influencing the results. The objective of exploratory questions is to learn more about a topic without attributing bias or preconceived notions to it.

Research Question Example: Asking how a chemical is used or perceptions around a certain topic.

ii. Predictive Questions

Predictive research questions are defined as survey questions that automatically predict the best possible response options based on text of the question. Moreover, these questions seek to understand the intent or future outcome surrounding a topic.

Research Question Example: Asking why a consumer behaves in a certain way or chooses a certain option over other.

iii. Interpretive Questions

This type of research question allows the study of people in the natural setting. The questions help understand how a group makes sense of shared experiences with regards to various phenomena. These studies gather feedback on a group’s behavior without affecting the outcome.

Research Question Example: How do you feel about AI assisting publishing process in your research?

2. Quantitative Research Question

Quantitative questions prove or disprove a researcher’s hypothesis through descriptions, comparisons, and relationships. These questions are beneficial when choosing a research topic or when posing follow-up questions that garner more information.

i. Descriptive Questions

It is the most basic type of quantitative research question and it seeks to explain when, where, why, or how something occurred. Moreover, they use data and statistics to describe an event or phenomenon.

Research Question Example: How many generations of genes influence a future generation?

ii. Comparative Questions

Sometimes it’s beneficial to compare one occurrence with another. Therefore, comparative questions are helpful when studying groups with dependent variables.

Example: Do men and women have comparable metabolisms?

iii. Relationship-Based Questions

This type of research question answers influence of one variable on another. Therefore, experimental studies use this type of research questions are majorly.

Example: How is drought condition affect a region’s probability for wildfires.  

How to Write a Good Research Question?

good research question

1. Select a Topic

The first step towards writing a good research question is to choose a broad topic of research. You could choose a research topic that interests you, because the complete research will progress further from the research question. Therefore, make sure to choose a topic that you are passionate about, to make your research study more enjoyable.

2. Conduct Preliminary Research

After finalizing the topic, read and know about what research studies are conducted in the field so far. Furthermore, this will help you find articles that talk about the topics that are yet to be explored. You could explore the topics that the earlier research has not studied.

3. Consider Your Audience

The most important aspect of writing a good research question is to find out if there is audience interested to know the answer to the question you are proposing. Moreover, determining your audience will assist you in refining your research question, and focus on aspects that relate to defined groups.

4. Generate Potential Questions

The best way to generate potential questions is to ask open ended questions. Questioning broader topics will allow you to narrow down to specific questions. Identifying the gaps in literature could also give you topics to write the research question. Moreover, you could also challenge the existing assumptions or use personal experiences to redefine issues in research.

5. Review Your Questions

Once you have listed few of your questions, evaluate them to find out if they are effective research questions. Moreover while reviewing, go through the finer details of the question and its probable outcome, and find out if the question meets the research question criteria.

6. Construct Your Research Question

There are two frameworks to construct your research question. The first one being PICOT framework , which stands for:

  • Population or problem
  • Intervention or indicator being studied
  • Comparison group
  • Outcome of interest
  • Time frame of the study.

The second framework is PEO , which stands for:

  • Population being studied
  • Exposure to preexisting conditions
  • Outcome of interest.

Research Question Examples

  • How might the discovery of a genetic basis for alcoholism impact triage processes in medical facilities?
  • How do ecological systems respond to chronic anthropological disturbance?
  • What are demographic consequences of ecological interactions?
  • What roles do fungi play in wildfire recovery?
  • How do feedbacks reinforce patterns of genetic divergence on the landscape?
  • What educational strategies help encourage safe driving in young adults?
  • What makes a grocery store easy for shoppers to navigate?
  • What genetic factors predict if someone will develop hypothyroidism?
  • Does contemporary evolution along the gradients of global change alter ecosystems function?

How did you write your first research question ? What were the steps you followed to create a strong research question? Do write to us or comment below.

Frequently Asked Questions

Research questions guide the focus and direction of a research study. Here are common types of research questions: 1. Qualitative research question: Qualitative questions concern broad areas or more specific areas of research. However, unlike quantitative questions, qualitative research questions are adaptable, non-directional and more flexible. Different types of qualitative research questions are: i. Exploratory questions ii. Predictive questions iii. Interpretive questions 2. Quantitative Research Question: Quantitative questions prove or disprove a researcher’s hypothesis through descriptions, comparisons, and relationships. These questions are beneficial when choosing a research topic or when posing follow-up questions that garner more information. Different types of quantitative research questions are: i. Descriptive questions ii. Comparative questions iii. Relationship-based questions

Qualitative research questions aim to explore the richness and depth of participants' experiences and perspectives. They should guide your research and allow for in-depth exploration of the phenomenon under investigation. After identifying the research topic and the purpose of your research: • Begin with Broad Inquiry: Start with a general research question that captures the main focus of your study. This question should be open-ended and allow for exploration. • Break Down the Main Question: Identify specific aspects or dimensions related to the main research question that you want to investigate. • Formulate Sub-questions: Create sub-questions that delve deeper into each specific aspect or dimension identified in the previous step. • Ensure Open-endedness: Make sure your research questions are open-ended and allow for varied responses and perspectives. Avoid questions that can be answered with a simple "yes" or "no." Encourage participants to share their experiences, opinions, and perceptions in their own words. • Refine and Review: Review your research questions to ensure they align with your research purpose, topic, and objectives. Seek feedback from your research advisor or peers to refine and improve your research questions.

Developing research questions requires careful consideration of the research topic, objectives, and the type of study you intend to conduct. Here are the steps to help you develop effective research questions: 1. Select a Topic 2. Conduct Preliminary Research 3. Consider Your Audience 4. Generate Potential Questions 5. Review Your Questions 6. Construct Your Research Question Based on PICOT or PEO Framework

There are two frameworks to construct your research question. The first one being PICOT framework, which stands for: • Population or problem • Intervention or indicator being studied • Comparison group • Outcome of interest • Time frame of the study The second framework is PEO, which stands for: • Population being studied • Exposure to preexisting conditions • Outcome of interest

' src=

A tad helpful

Had trouble coming up with a good research question for my MSc proposal. This is very much helpful.

This is a well elaborated writing on research questions development. I found it very helpful.

Rate this article Cancel Reply

Your email address will not be published.

how to design research questions

Enago Academy's Most Popular Articles

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

Gender Bias in Science Funding

  • Diversity and Inclusion

The Silent Struggle: Confronting gender bias in science funding

In the 1990s, Dr. Katalin Kariko’s pioneering mRNA research seemed destined for obscurity, doomed by…

Setting Rationale in Research: Cracking the code for excelling at research

Research Problem Statement — Find out how to write an impactful one!

Experimental Research Design — 6 mistakes you should never make!

how to design research questions

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to design research questions

As a researcher, what do you consider most when choosing an image manipulation detector?

  • Privacy Policy

Research Method

Home » Research Questions – Types, Examples and Writing Guide

Research Questions – Types, Examples and Writing Guide

Table of Contents

Research Questions

Research Questions

Definition:

Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

Types of Research Questions

Types of Research Questions are as follows:

Descriptive Research Questions

These aim to describe a particular phenomenon, group, or situation. For example:

  • What are the characteristics of the target population?
  • What is the prevalence of a particular disease in a specific region?

Exploratory Research Questions

These aim to explore a new area of research or generate new ideas or hypotheses. For example:

  • What are the potential causes of a particular phenomenon?
  • What are the possible outcomes of a specific intervention?

Explanatory Research Questions

These aim to understand the relationship between two or more variables or to explain why a particular phenomenon occurs. For example:

  • What is the effect of a specific drug on the symptoms of a particular disease?
  • What are the factors that contribute to employee turnover in a particular industry?

Predictive Research Questions

These aim to predict a future outcome or trend based on existing data or trends. For example :

  • What will be the future demand for a particular product or service?
  • What will be the future prevalence of a particular disease?

Evaluative Research Questions

These aim to evaluate the effectiveness of a particular intervention or program. For example:

  • What is the impact of a specific educational program on student learning outcomes?
  • What is the effectiveness of a particular policy or program in achieving its intended goals?

How to Choose Research Questions

Choosing research questions is an essential part of the research process and involves careful consideration of the research problem, objectives, and design. Here are some steps to consider when choosing research questions:

  • Identify the research problem: Start by identifying the problem or issue that you want to study. This could be a gap in the literature, a social or economic issue, or a practical problem that needs to be addressed.
  • Conduct a literature review: Conducting a literature review can help you identify existing research in your area of interest and can help you formulate research questions that address gaps or limitations in the existing literature.
  • Define the research objectives : Clearly define the objectives of your research. What do you want to achieve with your study? What specific questions do you want to answer?
  • Consider the research design : Consider the research design that you plan to use. This will help you determine the appropriate types of research questions to ask. For example, if you plan to use a qualitative approach, you may want to focus on exploratory or descriptive research questions.
  • Ensure that the research questions are clear and answerable: Your research questions should be clear and specific, and should be answerable with the data that you plan to collect. Avoid asking questions that are too broad or vague.
  • Get feedback : Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, feasible, and meaningful.

How to Write Research Questions

Guide for Writing Research Questions:

  • Start with a clear statement of the research problem: Begin by stating the problem or issue that your research aims to address. This will help you to formulate focused research questions.
  • Use clear language : Write your research questions in clear and concise language that is easy to understand. Avoid using jargon or technical terms that may be unfamiliar to your readers.
  • Be specific: Your research questions should be specific and focused. Avoid broad questions that are difficult to answer. For example, instead of asking “What is the impact of climate change on the environment?” ask “What are the effects of rising sea levels on coastal ecosystems?”
  • Use appropriate question types: Choose the appropriate question types based on the research design and objectives. For example, if you are conducting a qualitative study, you may want to use open-ended questions that allow participants to provide detailed responses.
  • Consider the feasibility of your questions : Ensure that your research questions are feasible and can be answered with the resources available. Consider the data sources and methods of data collection when writing your questions.
  • Seek feedback: Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, appropriate, and meaningful.

Examples of Research Questions

Some Examples of Research Questions with Research Titles:

Research Title: The Impact of Social Media on Mental Health

  • Research Question : What is the relationship between social media use and mental health, and how does this impact individuals’ well-being?

Research Title: Factors Influencing Academic Success in High School

  • Research Question: What are the primary factors that influence academic success in high school, and how do they contribute to student achievement?

Research Title: The Effects of Exercise on Physical and Mental Health

  • Research Question: What is the relationship between exercise and physical and mental health, and how can exercise be used as a tool to improve overall well-being?

Research Title: Understanding the Factors that Influence Consumer Purchasing Decisions

  • Research Question : What are the key factors that influence consumer purchasing decisions, and how do these factors vary across different demographics and products?

Research Title: The Impact of Technology on Communication

  • Research Question : How has technology impacted communication patterns, and what are the effects of these changes on interpersonal relationships and society as a whole?

Research Title: Investigating the Relationship between Parenting Styles and Child Development

  • Research Question: What is the relationship between different parenting styles and child development outcomes, and how do these outcomes vary across different ages and developmental stages?

Research Title: The Effectiveness of Cognitive-Behavioral Therapy in Treating Anxiety Disorders

  • Research Question: How effective is cognitive-behavioral therapy in treating anxiety disorders, and what factors contribute to its success or failure in different patients?

Research Title: The Impact of Climate Change on Biodiversity

  • Research Question : How is climate change affecting global biodiversity, and what can be done to mitigate the negative effects on natural ecosystems?

Research Title: Exploring the Relationship between Cultural Diversity and Workplace Productivity

  • Research Question : How does cultural diversity impact workplace productivity, and what strategies can be employed to maximize the benefits of a diverse workforce?

Research Title: The Role of Artificial Intelligence in Healthcare

  • Research Question: How can artificial intelligence be leveraged to improve healthcare outcomes, and what are the potential risks and ethical concerns associated with its use?

Applications of Research Questions

Here are some of the key applications of research questions:

  • Defining the scope of the study : Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.
  • Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the relationship between variables. Hypotheses provide a clear and focused direction for the study.
  • Designing the study : Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results.
  • Collecting data : Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments.
  • Analyzing data : Research questions guide the analysis of data, including the selection of appropriate statistical tests and the interpretation of results.
  • Communicating results : Research questions help researchers to communicate the results of their study in a clear and concise manner. The research questions provide a framework for discussing the findings and drawing conclusions.

Characteristics of Research Questions

Characteristics of Research Questions are as follows:

  • Clear and Specific : A good research question should be clear and specific. It should clearly state what the research is trying to investigate and what kind of data is required.
  • Relevant : The research question should be relevant to the study and should address a current issue or problem in the field of research.
  • Testable : The research question should be testable through empirical evidence. It should be possible to collect data to answer the research question.
  • Concise : The research question should be concise and focused. It should not be too broad or too narrow.
  • Feasible : The research question should be feasible to answer within the constraints of the research design, time frame, and available resources.
  • Original : The research question should be original and should contribute to the existing knowledge in the field of research.
  • Significant : The research question should have significance and importance to the field of research. It should have the potential to provide new insights and knowledge to the field.
  • Ethical : The research question should be ethical and should not cause harm to any individuals or groups involved in the study.

Purpose of Research Questions

Research questions are the foundation of any research study as they guide the research process and provide a clear direction to the researcher. The purpose of research questions is to identify the scope and boundaries of the study, and to establish the goals and objectives of the research.

The main purpose of research questions is to help the researcher to focus on the specific area or problem that needs to be investigated. They enable the researcher to develop a research design, select the appropriate methods and tools for data collection and analysis, and to organize the results in a meaningful way.

Research questions also help to establish the relevance and significance of the study. They define the research problem, and determine the research methodology that will be used to address the problem. Research questions also help to determine the type of data that will be collected, and how it will be analyzed and interpreted.

Finally, research questions provide a framework for evaluating the results of the research. They help to establish the validity and reliability of the data, and provide a basis for drawing conclusions and making recommendations based on the findings of the study.

Advantages of Research Questions

There are several advantages of research questions in the research process, including:

  • Focus : Research questions help to focus the research by providing a clear direction for the study. They define the specific area of investigation and provide a framework for the research design.
  • Clarity : Research questions help to clarify the purpose and objectives of the study, which can make it easier for the researcher to communicate the research aims to others.
  • Relevance : Research questions help to ensure that the study is relevant and meaningful. By asking relevant and important questions, the researcher can ensure that the study will contribute to the existing body of knowledge and address important issues.
  • Consistency : Research questions help to ensure consistency in the research process by providing a framework for the development of the research design, data collection, and analysis.
  • Measurability : Research questions help to ensure that the study is measurable by defining the specific variables and outcomes that will be measured.
  • Replication : Research questions help to ensure that the study can be replicated by providing a clear and detailed description of the research aims, methods, and outcomes. This makes it easier for other researchers to replicate the study and verify the results.

Limitations of Research Questions

Limitations of Research Questions are as follows:

  • Subjectivity : Research questions are often subjective and can be influenced by personal biases and perspectives of the researcher. This can lead to a limited understanding of the research problem and may affect the validity and reliability of the study.
  • Inadequate scope : Research questions that are too narrow in scope may limit the breadth of the study, while questions that are too broad may make it difficult to focus on specific research objectives.
  • Unanswerable questions : Some research questions may not be answerable due to the lack of available data or limitations in research methods. In such cases, the research question may need to be rephrased or modified to make it more answerable.
  • Lack of clarity : Research questions that are poorly worded or ambiguous can lead to confusion and misinterpretation. This can result in incomplete or inaccurate data, which may compromise the validity of the study.
  • Difficulty in measuring variables : Some research questions may involve variables that are difficult to measure or quantify, making it challenging to draw meaningful conclusions from the data.
  • Lack of generalizability: Research questions that are too specific or limited in scope may not be generalizable to other contexts or populations. This can limit the applicability of the study’s findings and restrict its broader implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Indian Assoc Pediatr Surg
  • v.24(1); Jan-Mar 2019

Formulation of Research Question – Stepwise Approach

Simmi k. ratan.

Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India

1 Department of Community Medicine, North Delhi Municipal Corporation Medical College, New Delhi, India

2 Department of Pediatric Surgery, Batra Hospital and Research Centre, New Delhi, India

Formulation of research question (RQ) is an essentiality before starting any research. It aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. It is, therefore, pertinent to formulate a good RQ. The present paper aims to discuss the process of formulation of RQ with stepwise approach. The characteristics of good RQ are expressed by acronym “FINERMAPS” expanded as feasible, interesting, novel, ethical, relevant, manageable, appropriate, potential value, publishability, and systematic. A RQ can address different formats depending on the aspect to be evaluated. Based on this, there can be different types of RQ such as based on the existence of the phenomenon, description and classification, composition, relationship, comparative, and causality. To develop a RQ, one needs to begin by identifying the subject of interest and then do preliminary research on that subject. The researcher then defines what still needs to be known in that particular subject and assesses the implied questions. After narrowing the focus and scope of the research subject, researcher frames a RQ and then evaluates it. Thus, conception to formulation of RQ is very systematic process and has to be performed meticulously as research guided by such question can have wider impact in the field of social and health research by leading to formulation of policies for the benefit of larger population.

I NTRODUCTION

A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem.[ 1 , 2 , 3 , 4 ] RQ identifies the problem to be studied and guides to the methodology. It leads to building up of an appropriate hypothesis (Hs). Hence, RQ aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. A good RQ helps support a focused arguable thesis and construction of a logical argument. Hence, formulation of a good RQ is undoubtedly one of the first critical steps in the research process, especially in the field of social and health research, where the systematic generation of knowledge that can be used to promote, restore, maintain, and/or protect health of individuals and populations.[ 1 , 3 , 4 ] Basically, the research can be classified as action, applied, basic, clinical, empirical, administrative, theoretical, or qualitative or quantitative research, depending on its purpose.[ 2 ]

Research plays an important role in developing clinical practices and instituting new health policies. Hence, there is a need for a logical scientific approach as research has an important goal of generating new claims.[ 1 ]

C HARACTERISTICS OF G OOD R ESEARCH Q UESTION

“The most successful research topics are narrowly focused and carefully defined but are important parts of a broad-ranging, complex problem.”

A good RQ is an asset as it:

  • Details the problem statement
  • Further describes and refines the issue under study
  • Adds focus to the problem statement
  • Guides data collection and analysis
  • Sets context of research.

Hence, while writing RQ, it is important to see if it is relevant to the existing time frame and conditions. For example, the impact of “odd-even” vehicle formula in decreasing the level of air particulate pollution in various districts of Delhi.

A good research is represented by acronym FINERMAPS[ 5 ]

Interesting.

  • Appropriate
  • Potential value and publishability
  • Systematic.

Feasibility means that it is within the ability of the investigator to carry out. It should be backed by an appropriate number of subjects and methodology as well as time and funds to reach the conclusions. One needs to be realistic about the scope and scale of the project. One has to have access to the people, gadgets, documents, statistics, etc. One should be able to relate the concepts of the RQ to the observations, phenomena, indicators, or variables that one can access. One should be clear that the collection of data and the proceedings of project can be completed within the limited time and resources available to the investigator. Sometimes, a RQ appears feasible, but when fieldwork or study gets started, it proves otherwise. In this situation, it is important to write up the problems honestly and to reflect on what has been learned. One should try to discuss with more experienced colleagues or the supervisor so as to develop a contingency plan to anticipate possible problems while working on a RQ and find possible solutions in such situations.

This is essential that one has a real grounded interest in one's RQ and one can explore this and back it up with academic and intellectual debate. This interest will motivate one to keep going with RQ.

The question should not simply copy questions investigated by other workers but should have scope to be investigated. It may aim at confirming or refuting the already established findings, establish new facts, or find new aspects of the established facts. It should show imagination of the researcher. Above all, the question has to be simple and clear. The complexity of a question can frequently hide unclear thoughts and lead to a confused research process. A very elaborate RQ, or a question which is not differentiated into different parts, may hide concepts that are contradictory or not relevant. This needs to be clear and thought-through. Having one key question with several subcomponents will guide your research.

This is the foremost requirement of any RQ and is mandatory to get clearance from appropriate authorities before stating research on the question. Further, the RQ should be such that it minimizes the risk of harm to the participants in the research, protect the privacy and maintain their confidentiality, and provide the participants right to withdraw from research. It should also guide in avoiding deceptive practices in research.

The question should of academic and intellectual interest to people in the field you have chosen to study. The question preferably should arise from issues raised in the current situation, literature, or in practice. It should establish a clear purpose for the research in relation to the chosen field. For example, filling a gap in knowledge, analyzing academic assumptions or professional practice, monitoring a development in practice, comparing different approaches, or testing theories within a specific population are some of the relevant RQs.

Manageable (M): It has the similar essence as of feasibility but mainly means that the following research can be managed by the researcher.

Appropriate (A): RQ should be appropriate logically and scientifically for the community and institution.

Potential value and publishability (P): The study can make significant health impact in clinical and community practices. Therefore, research should aim for significant economic impact to reduce unnecessary or excessive costs. Furthermore, the proposed study should exist within a clinical, consumer, or policy-making context that is amenable to evidence-based change. Above all, a good RQ must address a topic that has clear implications for resolving important dilemmas in health and health-care decisions made by one or more stakeholder groups.

Systematic (S): Research is structured with specified steps to be taken in a specified sequence in accordance with the well-defined set of rules though it does not rule out creative thinking.

Example of RQ: Would the topical skin application of oil as a skin barrier reduces hypothermia in preterm infants? This question fulfills the criteria of a good RQ, that is, feasible, interesting, novel, ethical, and relevant.

Types of research question

A RQ can address different formats depending on the aspect to be evaluated.[ 6 ] For example:

  • Existence: This is designed to uphold the existence of a particular phenomenon or to rule out rival explanation, for example, can neonates perceive pain?
  • Description and classification: This type of question encompasses statement of uniqueness, for example, what are characteristics and types of neuropathic bladders?
  • Composition: It calls for breakdown of whole into components, for example, what are stages of reflux nephropathy?
  • Relationship: Evaluate relation between variables, for example, association between tumor rupture and recurrence rates in Wilm's tumor
  • Descriptive—comparative: Expected that researcher will ensure that all is same between groups except issue in question, for example, Are germ cell tumors occurring in gonads more aggressive than those occurring in extragonadal sites?
  • Causality: Does deletion of p53 leads to worse outcome in patients with neuroblastoma?
  • Causality—comparative: Such questions frequently aim to see effect of two rival treatments, for example, does adding surgical resection improves survival rate outcome in children with neuroblastoma than with chemotherapy alone?
  • Causality–Comparative interactions: Does immunotherapy leads to better survival outcome in neuroblastoma Stage IV S than with chemotherapy in the setting of adverse genetic profile than without it? (Does X cause more changes in Y than those caused by Z under certain condition and not under other conditions).

How to develop a research question

  • Begin by identifying a broader subject of interest that lends itself to investigate, for example, hormone levels among hypospadias
  • Do preliminary research on the general topic to find out what research has already been done and what literature already exists.[ 7 ] Therefore, one should begin with “information gaps” (What do you already know about the problem? For example, studies with results on testosterone levels among hypospadias
  • What do you still need to know? (e.g., levels of other reproductive hormones among hypospadias)
  • What are the implied questions: The need to know about a problem will lead to few implied questions. Each general question should lead to more specific questions (e.g., how hormone levels differ among isolated hypospadias with respect to that in normal population)
  • Narrow the scope and focus of research (e.g., assessment of reproductive hormone levels among isolated hypospadias and hypospadias those with associated anomalies)
  • Is RQ clear? With so much research available on any given topic, RQs must be as clear as possible in order to be effective in helping the writer direct his or her research
  • Is the RQ focused? RQs must be specific enough to be well covered in the space available
  • Is the RQ complex? RQs should not be answerable with a simple “yes” or “no” or by easily found facts. They should, instead, require both research and analysis on the part of the writer
  • Is the RQ one that is of interest to the researcher and potentially useful to others? Is it a new issue or problem that needs to be solved or is it attempting to shed light on previously researched topic
  • Is the RQ researchable? Consider the available time frame and the required resources. Is the methodology to conduct the research feasible?
  • Is the RQ measurable and will the process produce data that can be supported or contradicted?
  • Is the RQ too broad or too narrow?
  • Create Hs: After formulating RQ, think where research is likely to be progressing? What kind of argument is likely to be made/supported? What would it mean if the research disputed the planned argument? At this step, one can well be on the way to have a focus for the research and construction of a thesis. Hs consists of more specific predictions about the nature and direction of the relationship between two variables. It is a predictive statement about the outcome of the research, dictate the method, and design of the research[ 1 ]
  • Understand implications of your research: This is important for application: whether one achieves to fill gap in knowledge and how the results of the research have practical implications, for example, to develop health policies or improve educational policies.[ 1 , 8 ]

Brainstorm/Concept map for formulating research question

  • First, identify what types of studies have been done in the past?
  • Is there a unique area that is yet to be investigated or is there a particular question that may be worth replicating?
  • Begin to narrow the topic by asking open-ended “how” and “why” questions
  • Evaluate the question
  • Develop a Hypothesis (Hs)
  • Write down the RQ.

Writing down the research question

  • State the question in your own words
  • Write down the RQ as completely as possible.

For example, Evaluation of reproductive hormonal profile in children presenting with isolated hypospadias)

  • Divide your question into concepts. Narrow to two or three concepts (reproductive hormonal profile, isolated hypospadias, compare with normal/not isolated hypospadias–implied)
  • Specify the population to be studied (children with isolated hypospadias)
  • Refer to the exposure or intervention to be investigated, if any
  • Reflect the outcome of interest (hormonal profile).

Another example of a research question

Would the topical skin application of oil as a skin barrier reduces hypothermia in preterm infants? Apart from fulfilling the criteria of a good RQ, that is, feasible, interesting, novel, ethical, and relevant, it also details about the intervention done (topical skin application of oil), rationale of intervention (as a skin barrier), population to be studied (preterm infants), and outcome (reduces hypothermia).

Other important points to be heeded to while framing research question

  • Make reference to a population when a relationship is expected among a certain type of subjects
  • RQs and Hs should be made as specific as possible
  • Avoid words or terms that do not add to the meaning of RQs and Hs
  • Stick to what will be studied, not implications
  • Name the variables in the order in which they occur/will be measured
  • Avoid the words significant/”prove”
  • Avoid using two different terms to refer to the same variable.

Some of the other problems and their possible solutions have been discussed in Table 1 .

Potential problems and solutions while making research question

An external file that holds a picture, illustration, etc.
Object name is JIAPS-24-15-g001.jpg

G OING B EYOND F ORMULATION OF R ESEARCH Q UESTION–THE P ATH A HEAD

Once RQ is formulated, a Hs can be developed. Hs means transformation of a RQ into an operational analog.[ 1 ] It means a statement as to what prediction one makes about the phenomenon to be examined.[ 4 ] More often, for case–control trial, null Hs is generated which is later accepted or refuted.

A strong Hs should have following characteristics:

  • Give insight into a RQ
  • Are testable and measurable by the proposed experiments
  • Have logical basis
  • Follows the most likely outcome, not the exceptional outcome.

E XAMPLES OF R ESEARCH Q UESTION AND H YPOTHESIS

Research question-1.

  • Does reduced gap between the two segments of the esophagus in patients of esophageal atresia reduces the mortality and morbidity of such patients?

Hypothesis-1

  • Reduced gap between the two segments of the esophagus in patients of esophageal atresia reduces the mortality and morbidity of such patients
  • In pediatric patients with esophageal atresia, gap of <2 cm between two segments of the esophagus and proper mobilization of proximal pouch reduces the morbidity and mortality among such patients.

Research question-2

  • Does application of mitomycin C improves the outcome in patient of corrosive esophageal strictures?

Hypothesis-2

In patients aged 2–9 years with corrosive esophageal strictures, 34 applications of mitomycin C in dosage of 0.4 mg/ml for 5 min over a period of 6 months improve the outcome in terms of symptomatic and radiological relief. Some other examples of good and bad RQs have been shown in Table 2 .

Examples of few bad (left-hand side column) and few good (right-hand side) research questions

An external file that holds a picture, illustration, etc.
Object name is JIAPS-24-15-g002.jpg

R ESEARCH Q UESTION AND S TUDY D ESIGN

RQ determines study design, for example, the question aimed to find the incidence of a disease in population will lead to conducting a survey; to find risk factors for a disease will need case–control study or a cohort study. RQ may also culminate into clinical trial.[ 9 , 10 ] For example, effect of administration of folic acid tablet in the perinatal period in decreasing incidence of neural tube defect. Accordingly, Hs is framed.

Appropriate statistical calculations are instituted to generate sample size. The subject inclusion, exclusion criteria and time frame of research are carefully defined. The detailed subject information sheet and pro forma are carefully defined. Moreover, research is set off few examples of research methodology guided by RQ:

  • Incidence of anorectal malformations among adolescent females (hospital-based survey)
  • Risk factors for the development of spontaneous pneumoperitoneum in pediatric patients (case–control design and cohort study)
  • Effect of technique of extramucosal ureteric reimplantation without the creation of submucosal tunnel for the preservation of upper tract in bladder exstrophy (clinical trial).

The results of the research are then be available for wider applications for health and social life

C ONCLUSION

A good RQ needs thorough literature search and deep insight into the specific area/problem to be investigated. A RQ has to be focused yet simple. Research guided by such question can have wider impact in the field of social and health research by leading to formulation of policies for the benefit of larger population.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

R EFERENCES

how to design research questions

Writing about Design

Principles and tips for design-oriented research.

Writing about Design

How to define a research question or a design problem

Introduction.

Many texts state that identifying a good research question (or, equivalently, a design problem) is important for research. Wikipedia, for example, starts (as of writing this text, at least) with the following two sentences:

“A research question is ‘a question that a research project sets out to answer’. Choosing a research question is an essential element of both quantitative and qualitative research.” (Wikipedia, 2020)

However, finding a good research question (RQ) can be a painful experience. It may feel impossible to understand what are the criteria for a good RQ, how a good RQ can be found, and to notice when there are problems with some RQ candidate.

In this text, I will address the pains described above. I start by presenting a scenario of a project that has problems with its RQ. The analysis of that scenario allows me then to describe how to turn the situation described in the scenario for a better research or design project.

Scenario of a problematic project

Let us consider a scenario that you are starting a new research or design project. You have already an idea: your work will be related to communication with instant messaging (IM). Because you are a design-minded person, you are planning to design and develop a new IM feature: a possibility to send predefined replies on a mobile IM app. Your idea is that this feature will allow the user to communicate quickly with others in difficult situations where the they can only connect with others through their mobile phone. Your plan is to supply the mobile IM app with messages like “I’m late by 10 minutes but see you soon”, “I can’t answer back now but will do that later today”, and so on.

Therefore, your plan involves designing such an app, maybe first by sketching it and then illustrating its interaction with a prototyping software like Figma or Adobe XD. You may also decide to make your design functional by programming it and letting a selected number of participants to use it. These kinds of activities will let you demonstrate your skills as a designer-researcher.

Although predefined messages for a mobile IM app can be a topic of a great study, there are some problems with this project that require you to think more about it before you start. As the project is currently defined, it is difficult to provide convincing answers to these challenges:

  • Challenge 1: Why would this be a relevant topic for research or design? Good studies address topics that may interest also other people than the author only. The current research topic, however, does not do that self-evidently yet: it lacks an explanation why it would make sense to equip mobile IM apps with predefined replies. There is only a guess that this could be useful in some situations, but this may not convince the reader about the ingenuity of this project.
  • Challenge 2: How do you demonstrate that your solution is particularly good? For an outsider who will see the project’s outcome, it may not be clear why your final design would be the best one among the other possible designs. If you propose one interaction design for such a feature, what makes that a good one? In other words, the project lacks a yardstick by which its quality should be measured.
  • Challenge 3: How does this project lead to learning or new knowledge? Even if you can show that the topic is relevant (point 1) and that the solution works well (2), the solution may feel too “particularized” – not usable in any other design context. This is an important matter in applied research fields like design and human–computer interaction, because these fields require some form of generalizability from their studies. Findings of a study should result in some kind of knowledge, such as skills, sensitivity to important matters, design solutions or patterns, etc. that could be used also at a later time in other projects, preferably by other people too.

All these problems relate to a problem that this study does not have a RQ yet . Identifying a good research question will help clarify all the above matters, as we will see below.

Adding a research question / design problem

RQs are of many kinds, and they are closely tied to the intended finding of the study: what contribution  should the study deliver. A contribution can be, for example, a solution to a problem or creation of novel information or knowledge. Novel information, in turn, can be a new theory, model or hypothesis, analysis that offers deeper understanding, identification of an unattended problem, description about poorly understood phenomenon, a new viewpoint, or many other things.

The researcher or thesis author usually has a lot of freedom in choosing the exact type of contribution that they want to make. This can feel difficult to the author: there may be no-one telling what they should study. In a way, in such a situation, the thesis/article author is the client of their own research: they both define what needs to be done, and then accomplish that work. Some starting points for narrowing down the space of possibilities is offered here.

Most importantly, the RQ needs to be focused on a topic that the author genuinely does not know, and which is important to find out on the path to the intended contribution. In our scenario about a mobile IM app’s predefined replies, there are currently too many alternatives for an intended contribution, and an outsider would not be able to know which one of them to expect:

  • Demonstration that mobile IM apps will be better to use when they have this new feature.
  • Report on the ways by which people would use the new feature, if their mobile IM apps would have such a feature.
  • Requirements analysis for the specific design and detailed features by which the feature should be designed.
  • Analysis of the situations where the feature would be most needed, and user groups who would most often be in such situations.

All of these are valid contributions, and the author can choose to focus on any one of them. This depends also on the author’s personal interests. This gives a possibility for formulating a RQ for the project. It is important to notice that each one of the possible contributions listed above calls for a different corresponding RQ:

RQ1: Do predefined replies in mobile IM apps improve their usability?

RQ2: How will users start using the predefined replies in mobile IM apps?

RQ3: How should the interaction in the IM app be designed, and what kind of predefined replies need to be offered to the users?

RQ4: When are predefined replies in IM apps needed?

This list of four RQs, matched with the four possible contributions, shows why the scenario presented in the beginning of this text was problematic. Only after asking these kinds of questions one is able to seek to answer to the earlier-presented three challenges in the end of the previous section. Also, each of the RQs needs a different research or design method, and its own kind of background research.

The choice and fine-tuning of the research question / design problem

Which one of the above RQs should our hypothetical researcher/designer choose? Lists of basic requisites for good RQs have been presented in many websites. They can help identify RQs that will still need refinement. Monash University offers the following kind of helpful list:

  • Clear and focused.  In other words, the question should clearly state what the writer needs to do.
  • Not too broad and not too narrow.  The question should have an appropriate scope. If the question is too broad it will not be possible to answer it thoroughly within the word limit. If it is too narrow you will not have enough to write about and you will struggle to develop a strong argument.
  • Not too easy to answer.  For example, the question should require more than a simple yes or no answer.
  • Not too difficult to answer.  You must be able to answer the question thoroughly within the given timeframe and word limit.
  • Researchable.  You must have access to a suitable amount of quality research materials, such as academic books and refereed journal articles.
  • Analytical rather than descriptive.  In other words, your research question should allow you to produce an analysis of an issue or problem rather than a simple description of it.

If a study meets the above criteria, it has a good chance of avoiding a problem of presenting a “non-contribution” : A laboriously produced finding that nonetheless does not provide new, interesting information. The points 3 and 6 above particularly guard against such studies: they warn the readers from focusing their efforts on something that is already known (3) and only describing what was done or what observations were made, instead of analysing them in more detail (6).

In fine-tuning a possible RQ, it is important to situate it to the right scope. The first possible RQ that comes to one’s mind is often too broad and needs to be narrowed. RQ4 above (“ When are predefined replies in IM apps most needed? ”), for example, is a very relevant question, but it is probably too broad.

Why is RQ4 too broad? The reason is that RQs are usually considered very literally. If you leave an aspect in your RQ unspecified, then it means that you intend that your RQ and your findings will be generalisable (i.e., applicable) to all the possible contexts and cases that your RQ can be applied to. Consider the following diagram:

With a question “ When are predefined replies in IM apps most needed?”, you are asking a question that covers both leisure-oriented and work-oriented IM apps which can be of very different kinds. Some of the IM apps are mobile-oriented (such as WhatsApp) and others are desktop-oriented (such as Slack or Teams). Unless you specify your RQ more narrowly, your findings should be applicable to all these kinds of apps. Also, RQ4 is unspecific also about the people that you are thinking as communication partners. It may be impossible for you to make a study so broad that it applies to all of these cases.

Therefore, a more manageable-sized scoping could be something like this:

RQ4 (version 2): In which away-from-desktop leisure life situations are predefined replies in IM apps most needed?

Furthermore, you can also narrow down your focus theoretically. In our example scenario, the researcher/designer can decide, for example, that they will consider predefined IM replies from the viewpoint of “face-work” in social interaction. By adopting this viewpoint, the researcher/designer can decide that they will design the IM’s replies with a goal that they help the user to maintain an active, positive image in the eyes of others. When they start designing the reply feature, they can now ask much more specific questions. For example: how could my design help a user in doing face-work in cases where they are in a hurry and can only send a short and blunt message to another person? How could the predefined replies help in situations where the users would not have time to answer but they know they should? Ultimately, would the predefined replies make it easier for users to do face-work in computer-mediated communications (CMC)?

You can therefore further specify RQ4 into this:

RQ4 (version 3): In which away-from-desktop leisure life situations are predefined replies in IM apps most needed when it is important to react quickly to arriving messages?

As you may notice, it is possible to scope the RQ too narrowly so that it starts to be close to absurd. But if that does not become a problem, the choice of methods (i.e., the research design ) becomes much easier to do.

The benefit of theoretically narrowed-down RQs (in this case, building on the concept of face-work in RQ4 version 3) have the benefit that they point you to useful background literature. Non-theoretical RQs (e.g., RQ4 version 2), in contrast, require that you identify the relevant literature more independently, relying on your own judgment. In the present case, you can base your thinking about IM apps’ on sociological research on interpersonal interaction and self-presentation (e.g., Goffman 1967) and its earlier applications to CMC (Nardi et al., 2000; Salovaara et al., 2011). Such a literature provides the starting points for deeper design considerations. Deeper considerations, in turn, increase the contribution of the research, and make it interesting for the readers.

As said, the first RQ that one comes to think of is not necessarily the best and final one. The RQ may need to be adapted (and also can be adapted) over the course of the research. In qualitative research this is very typical, and the same applies to exploratory design projects that proceed through small design experiments (i.e., through their own smaller RQs).

This text promised to address the pains that definition of a RQ or a design problem may pose for a student or a researcher. The main points of the answer may be summarized as follows:

  • The search for a good RQ is a negotiation process between three objectives : what is personally motivating, what is realistically possible to do (e.g., that the work can be built on some earlier literature and there is a method that can answer to the RQ), and what motivates its relevance (i.e., can it lead to interesting findings).
  • The search for a RQ or a design problem is a process and not a task that must be fixed immediately . It is, however, good to get started somewhere, since a RQ gives a lot of focus for future activities: what to read and what methods to choose, for example.

With the presentation of the scenario and its analysis, I sought to demonstrate why and how choosing an additional analytical viewpoint can be a useful strategy. With it, a project whose meaningfulness may be otherwise questionable for an outsider can become interesting when its underpinnings and assumptions are explicated. That helps ensure that the reader will appreciate the work that the author has done with their research.

In the problematization of the scenario, I presented the three challenges related to it. I can now offer possible answers to them, by highlighting why a RQ can serve as a tool for finding them:  

  • Why would this be a relevant topic for research or design? Choice of a RQ often requires some amount of background research that helps the researcher/designer to understand how much about the problem has already been solved by others. This awareness helps shape the RQ to focus on a topic where information is not yet known and more information is needed for a high-quality outcome.
  • How do you demonstrate that your solution is particularly good? By having a question, it is possible to analyse what are the right methods for answering it. The quality of executing these becomes then evaluatable. The focus on a particular question also will permit that the author compromises optimality in other, less central outcomes. For example, if smoothness of interaction is in the focus, then it is easy to explain why long-term robustness and durability of a prototype may not be critical.
  • How does this project lead to learning or new knowledge? Presentation of the results or findings allows the researcher/design to devote their Discussion section (see the IMRaD article format ) to topics that would have been impossible to predict before the study. That will demonstrate that the project has generated novel understanding: it has generated knowledge that can be considered insightful.

If and when the researcher/designer pursues further in design and research, the experience of thinking about RQs and design problems accumulates. As one reads literature , the ability to consider different research questions becomes better too. Similarly, as one carries out projects with different RQs and problems, and notices how adjusting them along the way helps shape one’s work, the experience similarly grows. Eventually, one may even learn to enjoy the analytical process of identifying a good research question.

As a suggestion for further reading, Carsten Sørensen’s text  (2002) about writing and planning an article in information systems research field is a highly recommended one. It combines the question of choosing the RQ with the question on how to write a paper about it.

Goffman, E. (1967). On face-work: An analysis of ritual elements in social interaction. Psychiatry , 18 (3), 213–231.  https://doi.org/10.1080/00332747.1955.11023008

Nardi, B. A., Whittaker, S., & Bradner, E. (2000). Interaction and outeraction: Instant messaging in action. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW 2000) (pp. 79–88). New York, NY: ACM Press. https://doi.org/10.1145/358916.358975

Salovaara, A., Lindqvist, A., Hasu, T., & Häkkilä, J. (2011). The phone rings but the user doesn’t answer: unavailability in mobile communication. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI 2011) (pp. 503–512). New York, NY: ACM Press. https://doi.org/10.1145/2037373.2037448

Sørensen, C. (2002): This is Not an Article — Just Some Food for Thoughts on How to Write One. Working Paper. Department of Information Systems, The London School of Economics and Political Science. No. 121.

Wikipedia (2020). Research question. Retrieved from https://en.wikipedia.org/wiki/Research_question (30 November 2020).

One thought on “ How to define a research question or a design problem ”

Pingback: From table of contents to a finished text | Writing about Design

Comments are closed.

Examples

Research Question

Ai generator.

how to design research questions

A research question serves as the foundation of any academic study, driving the investigation and framing the scope of inquiry. It focuses the research efforts, ensuring that the study addresses pertinent issues systematically. Crafting a strong research question is essential as it directs the methodology, data collection, and analysis, ultimately shaping the study’s conclusions and contributions to the field.

What is a Research Question?

A research question is the central query that guides a study, focusing on a specific problem or issue. It defines the purpose and direction of the research, influencing the methodology and analysis. A well-crafted research question ensures the study remains relevant, systematic, and contributes valuable insights to the field.

Types of Research Questions

Research questions are a crucial part of any research project. They guide the direction and focus of the study. Here are the main types of research questions:

1. Descriptive Research Questions

These questions aim to describe the characteristics or functions of a specific phenomenon or group. They often begin with “what,” “who,” “where,” “when,” or “how.”

  • What are the common symptoms of depression in teenagers?

2. Comparative Research Questions

These questions compare two or more groups or variables to identify differences or similarities.

  • How do the academic performances of students in private schools compare to those in public schools?

3. Correlational Research Questions

These questions seek to identify the relationships between two or more variables. They often use terms like “relationship,” “association,” or “correlation.”

  • Is there a relationship between social media usage and self-esteem among adolescents?

4. Causal Research Questions

These questions aim to determine whether one variable causes or influences another. They are often used in experimental research.

  • Does a new teaching method improve student engagement in the classroom?

5. Exploratory Research Questions

These questions are used when the researcher is exploring a new area or seeking to understand a complex phenomenon. They are often open-ended.

  • What factors contribute to the success of start-up companies in the tech industry?

6. Predictive Research Questions

These questions aim to predict future occurrences based on current or past data. They often use terms like “predict,” “forecast,” or “expect.”

  • Can high school GPA predict college success?

7. Evaluative Research Questions

These questions assess the effectiveness or impact of a program, intervention, or policy .

  • How effective is the new community outreach program in reducing homelessness?

8. Ethnographic Research Questions

These questions are used in qualitative research to understand cultural phenomena from the perspective of the participants.

  • How do cultural beliefs influence healthcare practices in rural communities?

9. Case Study Research Questions

These questions focus on an in-depth analysis of a specific case, event, or instance.

  • What were the critical factors that led to the failure of Company X?

10. Phenomenological Research Questions

These questions explore the lived experiences of individuals to understand a particular phenomenon.

  • What is the experience of living with chronic pain?

Research Question Format

A well-formulated research question is essential for guiding your study effectively. Follow this format to ensure clarity and precision:

  • Begin with a broad subject area.
  • Example: “Education technology”
  • Define a specific aspect or variable.
  • Example: “Impact of digital tools”
  • Decide if you are describing, comparing, or investigating relationships.
  • Example: “Effectiveness”
  • Identify who or what is being studied.
  • Example: “High school students”
  • Formulate the complete question.
  • Example: “How effective are digital tools in enhancing the learning experience of high school students?”
Sample Format: “How [specific aspect] affects [target population] in [context]?” Example: “How does the use of digital tools affect the academic performance of high school students in urban areas?”

Research Question Examples

Research questions in business.

  • “What are the primary factors influencing customer loyalty in the retail industry?”
  • “How does employee satisfaction differ between remote work and in-office work environments in tech companies?”
  • “What is the relationship between social media marketing and brand awareness among small businesses?”
  • “How does implementing a four-day workweek impact productivity in consulting firms?”
  • “What are the emerging trends in consumer behavior post-COVID-19 in the e-commerce sector?”
  • “Why do some startups succeed in attracting venture capital while others do not?”
  • “How effective is corporate social responsibility in enhancing brand reputation for multinational companies?”
  • “How do decision-making processes in family-owned businesses differ from those in publicly traded companies?”
  • “What strategies do successful entrepreneurs use to scale their businesses in competitive markets?”
  • “How does supply chain management affect the operational efficiency of manufacturing firms?”

Research Questions in Education

  • “What are the most common challenges faced by first-year teachers in urban schools?”
  • “How do student achievement levels differ between traditional classrooms and blended learning environments?”
  • “What is the relationship between parental involvement and student academic performance in elementary schools?”
  • “How does the implementation of project-based learning affect critical thinking skills in middle school students?”
  • “What are the emerging trends in the use of artificial intelligence in education?”
  • “Why do some students perform better in standardized tests than others despite similar instructional methods?”
  • “How effective is the flipped classroom model in improving student engagement and learning outcomes in high school science classes?”
  • “How do teachers’ professional development programs impact teaching practices and student outcomes in rural schools?”
  • “What strategies can be employed to reduce the dropout rate among high school students in low-income areas?”
  • “How does classroom size affect the quality of teaching and learning in elementary schools?”

Research Questions in Health Care

  • “What are the most common barriers to accessing mental health services in rural areas?”
  • “How does patient satisfaction differ between telemedicine and in-person consultations in primary care?”
  • “What is the relationship between diet and the incidence of type 2 diabetes in adults?”
  • “How does regular physical activity influence the recovery rate of patients with cardiovascular diseases?”
  • “What are the emerging trends in the use of wearable technology for health monitoring?”
  • “Why do some patients adhere to their medication regimen while others do not despite similar health conditions?”
  • “How effective are community-based health interventions in reducing obesity rates among children?”
  • “How do interdisciplinary team meetings impact patient care in hospitals?”
  • “What strategies can be implemented to reduce the spread of infectious diseases in healthcare settings?”
  • “How does nurse staffing level affect patient outcomes in intensive care units?”

Research Questions in Computer Science

  • “What are the key features of successful machine learning algorithms used in natural language processing?”
  • “How does the performance of quantum computing compare to classical computing in solving complex optimization problems?”
  • “What is the relationship between software development methodologies and project success rates in large enterprises?”
  • “How does the implementation of cybersecurity protocols impact the frequency of data breaches in financial institutions?”
  • “What are the emerging trends in blockchain technology applications beyond cryptocurrency?”
  • “Why do certain neural network architectures outperform others in image recognition tasks?”
  • “How effective are different code review practices in reducing bugs in open-source software projects?”
  • “How do agile development practices influence team productivity and product quality in software startups?”
  • “What strategies can improve the scalability of distributed systems in cloud computing environments?”
  • “How does the choice of programming language affect the performance and maintainability of enterprise-level software applications?”

Research Questions in Psychology

  • “What are the most common symptoms of anxiety disorders among adolescents?”
  • “How does the level of job satisfaction differ between remote workers and in-office workers?”
  • “What is the relationship between social media use and self-esteem in teenagers?”
  • “How does cognitive-behavioral therapy (CBT) affect the severity of depression symptoms in adults?”
  • “What are the emerging trends in the treatment of post-traumatic stress disorder (PTSD)?”
  • “Why do some individuals develop resilience in the face of adversity while others do not?”
  • “How effective are mindfulness-based interventions in reducing stress levels among college students?”
  • “How does group therapy influence the social skills development of children with autism spectrum disorder?”
  • “What strategies can improve the early diagnosis of bipolar disorder in young adults?”
  • “How do sleep patterns affect cognitive functioning and academic performance in high school students?”

More Research Question Examples

Research question examples for students.

  • “What are the primary study habits of high-achieving college students?”
  • “How do academic performances differ between students who participate in extracurricular activities and those who do not?”
  • “What is the relationship between time management skills and academic success in high school students?”
  • “How does the use of technology in the classroom affect students’ engagement and learning outcomes?”
  • “What are the emerging trends in online learning platforms for high school students?”
  • “Why do some students excel in standardized tests while others struggle despite similar study efforts?”
  • “How effective are peer tutoring programs in improving students’ understanding of complex subjects?”
  • “How do different teaching methods impact the learning process of students with learning disabilities?”
  • “What strategies can help reduce test anxiety among middle school students?”
  • “How does participation in group projects affect the development of collaboration skills in university students?”

Research Question Examples for College Students

  • “What are the most common stressors faced by college students during final exams?”
  • “How does academic performance differ between students who live on campus and those who commute?”
  • “What is the relationship between part-time employment and GPA among college students?”
  • “How does participation in study abroad programs impact cultural awareness and academic performance?”
  • “What are the emerging trends in college students’ use of social media for academic purposes?”
  • “Why do some college students engage in academic dishonesty despite awareness of the consequences?”
  • “How effective are university mental health services in addressing students’ mental health issues?”
  • “How do different learning styles affect the academic success of college students in online courses?”
  • “What strategies can be employed to improve retention rates among first-year college students?”
  • “How does participation in extracurricular activities influence leadership skills development in college students?”

Research Question Examples in Statistics

  • “What are the most common statistical methods used in medical research?”
  • “How does the accuracy of machine learning models compare to traditional statistical methods in predicting housing prices?”
  • “What is the relationship between sample size and the power of a statistical test in clinical trials?”
  • “How does the use of random sampling affect the validity of survey results in social science research?”
  • “What are the emerging trends in the application of Bayesian statistics in data science?”
  • “Why do some datasets require transformation before applying linear regression models?”
  • “How effective are bootstrapping techniques in estimating the confidence intervals of small sample data?”
  • “How do different imputation methods impact the results of analyses with missing data?”
  • “What strategies can improve the interpretation of interaction effects in multiple regression analysis?”
  • “How does the choice of statistical software affect the efficiency of data analysis in academic research?”

Research Question Examples in Socialogy

  • “What are the primary social factors contributing to urban poverty in major cities?”
  • “How does the level of social integration differ between immigrants and native-born citizens in urban areas?”
  • “What is the relationship between educational attainment and social mobility in different socioeconomic classes?”
  • “How does exposure to social media influence political participation among young adults?”
  • “What are the emerging trends in family structures and their impact on child development?”
  • “Why do certain communities exhibit higher levels of civic engagement than others?”
  • “How effective are community policing strategies in reducing crime rates in diverse neighborhoods?”
  • “How do socialization processes differ in single-parent households compared to two-parent households?”
  • “What strategies can be implemented to reduce racial disparities in higher education enrollment?”
  • “How does the implementation of public housing policies affect the quality of life for low-income families?”

Research Question Examples in Biology

  • “What are the primary characteristics of the various stages of mitosis in eukaryotic cells?”
  • “How do the reproductive strategies of amphibians compare to those of reptiles?”
  • “What is the relationship between genetic diversity and the resilience of plant species to climate change?”
  • “How does the presence of pollutants in freshwater ecosystems impact the growth and development of aquatic organisms?”
  • “What are the emerging trends in the use of CRISPR technology for gene editing in agricultural crops?”
  • “Why do certain bacteria develop antibiotic resistance more rapidly than others?”
  • “How effective are different conservation strategies in protecting endangered species?”
  • “How do various environmental factors influence the process of photosynthesis in marine algae?”
  • “What strategies can enhance the effectiveness of reforestation programs in tropical rainforests?”
  • “How does the method of seed dispersal affect the spatial distribution and genetic diversity of plant populations?”

Research Question Examples in History

  • “What were the key social and economic factors that led to the Industrial Revolution in Britain?”
  • “How did the political systems of ancient Athens and ancient Sparta differ in terms of governance and citizen participation?”
  • “What is the relationship between the Renaissance and the subsequent scientific revolution in Europe?”
  • “How did the Treaty of Versailles contribute to the rise of Adolf Hitler and the onset of World War II?”
  • “What are the emerging perspectives on the causes and impacts of the American Civil Rights Movement?”
  • “Why did the Roman Empire decline and eventually fall despite its extensive power and reach?”
  • “How effective were the New Deal programs in alleviating the effects of the Great Depression in the United States?”
  • “How did the processes of colonization and decolonization affect the political landscape of Africa in the 20th century?”
  • “What strategies did the suffragette movement use to secure voting rights for women in the early 20th century?”
  • “How did the logistics and strategies of the D-Day invasion contribute to the Allied victory in World War II?”

Importance of Research Questions

Research questions are fundamental to the success and integrity of any study. Their importance can be highlighted through several key aspects:

  • Research questions provide a clear focus and direction for the study, ensuring that the researcher remains on track.
  • Example: “How does online learning impact student engagement in higher education?”
  • They establish the boundaries of the research, determining what will be included or excluded.
  • Example: “What are the effects of air pollution on respiratory health in urban areas?”
  • Research questions dictate the choice of research design, methodology, and data collection techniques.
  • Example: “What is the relationship between physical activity and mental health in adolescents?”
  • They make the objectives of the research explicit, providing clarity and precision to the study’s goals.
  • Example: “Why do some startups succeed in securing venture capital while others fail?”
  • Well-crafted research questions emphasize the significance and relevance of the study, justifying its importance.
  • Example: “How effective are public health campaigns in increasing vaccination rates among young adults?”
  • They enable a systematic approach to inquiry, ensuring that the study is coherent and logically structured.
  • Example: “What are the social and economic impacts of remote work on urban communities?”
  • Research questions offer a framework for analyzing and interpreting data, guiding the researcher in making sense of the findings.
  • Example: “How does social media usage affect self-esteem among teenagers?”
  • By addressing specific gaps or exploring new areas, research questions ensure that the study contributes meaningfully to the existing body of knowledge.
  • Example: “What are the emerging trends in the use of artificial intelligence in healthcare?”
  • Clear and precise research questions increase the credibility and reliability of the research by providing a focused approach.
  • Example: “How do educational interventions impact literacy rates in low-income communities?”
  • They help in clearly communicating the purpose and findings of the research to others, including stakeholders, peers, and the broader academic community.
  • Example: “What strategies are most effective in reducing youth unemployment in developing countries?”

Research Question vs. Hypothesis

Chracteristics of research questions.

Chracteristics of Research Questions

Research questions are fundamental to the research process as they guide the direction and focus of a study. Here are the key characteristics of effective research questions:

1. Clear and Specific

  • The question should be clearly articulated and specific enough to be understood without ambiguity.
  • Example: “What are the effects of social media on teenagers’ mental health?” rather than “How does social media affect people?”

2. Focused and Researchable

  • The question should be narrow enough to be answerable through research and data collection.
  • Example: “How does participation in extracurricular activities impact academic performance in high school students?” rather than “How do activities affect school performance?”

3. Complex and Analytical

  • The question should require more than a simple yes or no answer and should invite analysis and discussion.
  • Example: “What factors contribute to the success of renewable energy initiatives in urban areas?” rather than “Is renewable energy successful?”

4. Relevant and Significant

  • The question should address an important issue or problem in the field of study and contribute to knowledge or practice.
  • Example: “How does climate change affect agricultural productivity in developing countries?” rather than “What is climate change?”

5. Feasible and Practical

  • The question should be feasible to answer within the constraints of time, resources, and access to information.
  • Example: “What are the challenges faced by remote workers in the tech industry during the COVID-19 pandemic?” rather than “What are the challenges of remote work?”

6. Original and Novel

  • The question should offer a new perspective or explore an area that has not been extensively studied.
  • Example: “How do virtual reality technologies influence empathy in healthcare training?” rather than “What is virtual reality?”
  • The question should be framed in a way that ensures the research can be conducted ethically.
  • Example: “What are the impacts of privacy laws on consumer data protection in the digital age?” rather than “How can we collect personal data more effectively?”

8. Open-Ended

  • The question should encourage detailed responses and exploration, rather than limiting answers to a simple yes or no.
  • Example: “In what ways do cultural differences affect communication styles in multinational companies?” rather than “Do cultural differences affect communication?”

9. Aligned with Research Goals

  • The question should align with the overall objectives of the research project or study.
  • Example: “How do early childhood education programs influence long-term academic achievement?” if the goal is to understand educational impacts.

10. Based on Prior Research

  • The question should build on existing literature and research, identifying gaps or new angles to explore.
  • Example: “What strategies have proven effective in reducing urban air pollution in European cities?” after reviewing current studies on air pollution strategies.

Benefits of Research Question

Research questions are fundamental to the research process and offer numerous benefits, which include the following:

1. Guides the Research Process

A well-defined research question provides a clear focus and direction for your study. It helps in determining what data to collect, how to collect it, and how to analyze it.

Benefit: Ensures that the research stays on track and addresses the specific issue at hand.

2. Clarifies the Purpose of the Study

Research questions help to articulate the purpose and objectives of the study. They make it clear what the researcher intends to explore, describe, compare, or test.

Benefit: Helps in communicating the goals and significance of the research to others, including stakeholders and funding bodies.

3. Determines the Research Design

The type of research question informs the research design, including the choice of methodology, data collection methods, and analysis techniques.

Benefit: Ensures that the chosen research design is appropriate for answering the specific research question, enhancing the validity and reliability of the results.

4. Enhances Literature Review

A well-crafted research question provides a framework for conducting a thorough literature review. It helps in identifying relevant studies, theories, and gaps in existing knowledge.

Benefit: Facilitates a comprehensive understanding of the topic and ensures that the research is grounded in existing literature.

5. Focuses Data Collection

Research questions help in identifying the specific data needed to answer them. This focus prevents the collection of unnecessary data and ensures that all collected data is relevant to the study.

Benefit: Increases the efficiency of data collection and analysis, saving time and resources.

6. Improves Data Analysis

Having a clear research question aids in the selection of appropriate data analysis methods. It helps in determining how the data will be analyzed to draw meaningful conclusions.

Benefit: Enhances the accuracy and relevance of the findings, making them more impactful.

7. Facilitates Hypothesis Formation

In quantitative research, research questions often lead to the development of hypotheses that can be tested statistically.

Benefit: Provides a basis for hypothesis testing, which is essential for establishing cause-and-effect relationships.

8. Supports Result Interpretation

Research questions provide a lens through which the results of the study can be interpreted. They help in understanding what the findings mean in the context of the research objectives.

Benefit: Ensures that the conclusions drawn from the research are aligned with the original aims and objectives.

9. Enhances Reporting and Presentation

A clear research question makes it easier to organize and present the research findings. It helps in structuring the research report or presentation logically.

Benefit: Improves the clarity and coherence of the research report, making it more accessible and understandable to the audience.

10. Encourages Critical Thinking

Formulating research questions requires critical thinking and a deep understanding of the subject matter. It encourages researchers to think deeply about what they want to investigate and why.

Benefit: Promotes a more thoughtful and analytical approach to research, leading to more robust and meaningful findings.

How to Write a Research Question

Crafting a strong research question is crucial for guiding your study effectively. Follow these steps to write a clear and focused research question:

Identify a Broad Topic:

Start with a general area of interest that you are passionate about or that is relevant to your field. Example: “Climate change”

Conduct Preliminary Research:

Explore existing literature and studies to understand the current state of knowledge and identify gaps. Example: “Impact of climate change on agriculture”

Narrow Down the Topic:

Focus on a specific aspect or issue within the broad topic to make the research question more manageable. Example: “Effect of climate change on crop yields”

Consider the Scope:

Ensure the question is neither too broad nor too narrow. It should be specific enough to be answerable but broad enough to allow for thorough exploration. Example: “How does climate change affect corn crop yields in the Midwest United States?”

Determine the Research Type:

Decide whether your research will be descriptive, comparative, relational, or causal, as this will shape your question. Example: “How does climate change affect corn crop yields in the Midwest United States over the past decade?”

Formulate the Question:

Write a clear, concise question that specifies the variables, population, and context. Example: “What is the impact of increasing temperatures and changing precipitation patterns on corn crop yields in the Midwest United States from 2010 to 2020?”

Ensure Feasibility:

Make sure the question can be answered within the constraints of your resources, time, and data availability. Example: “How have corn crop yields in the Midwest United States been affected by climate change-related temperature increases and precipitation changes between 2010 and 2020?”

Review and Refine:

Evaluate the question for clarity, focus, and relevance. Revise as necessary to ensure it is well-defined and researchable. Example: “What are the specific impacts of temperature increases and changes in precipitation patterns on corn crop yields in the Midwest United States from 2010 to 2020?”

What is a research question?

A research question is a specific query guiding a study’s focus and objectives, shaping its methodology and analysis.

Why is a research question important?

It provides direction, defines scope, ensures relevance, and guides the methodology of the research.

How do you formulate a research question?

Identify a topic, narrow it down, conduct preliminary research, and ensure it is clear, focused, and researchable.

What makes a good research question?

Clarity, specificity, feasibility, relevance, and the ability to guide the research effectively.

Can a research question change?

Yes, it can evolve based on initial findings, further literature review, and the research process.

What is the difference between a research question and a hypothesis?

A research question guides the study; a hypothesis is a testable prediction about the relationship between variables.

How specific should a research question be?

It should be specific enough to provide clear direction but broad enough to allow for comprehensive investigation.

What are examples of good research questions?

Examples include: “How does social media affect academic performance?” and “What are the impacts of climate change on agriculture?”

Can a research question be too broad?

Yes, a too broad question can make the research unfocused and challenging to address comprehensively.

What role does a research question play in literature reviews?

It helps identify relevant studies, guides the search for literature, and frames the review’s focus.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Integrations

What's new?

Prototype Testing

Live Website Testing

Feedback Surveys

Interview Studies

Card Sorting

Tree Testing

In-Product Prompts

Participant Management

Automated Reports

Templates Gallery

Choose from our library of pre-built mazes to copy, customize, and share with your own users

Browse all templates

Financial Services

Tech & Software

Product Designers

Product Managers

User Researchers

By use case

Concept & Idea Validation

Wireframe & Usability Test

Content & Copy Testing

Feedback & Satisfaction

Content Hub

Educational resources for product, research and design teams

Explore all resources

Question Bank

Research Maturity Model

Guides & Reports

Help Center

Future of User Research Report

The Optimal Path Podcast

The best user research questions and how to ask them

User Research

Sep 1, 2022

The best user research questions and how to ask them

To get the right insights, you need to ask the right questions. Here’s the best user research questions to start gathering feedback right away.

Lorelei Bowman

Lorelei Bowman

Content Editor at Maze

Knowing the right user research questions to ask is vital to the success of your UX research. Research is an invaluable source of input for product development, but before you can get started, you need to make sure the questions lined up will get the insights you need, without influencing the data.

Think of this article as your guide to all-things user research questions: what to ask, how to ask it, and how to create your own questions. Let’s get started.

What kind of user research questions are there?

The kind of questions you ask will depend on your research goals—are you looking to gather user feedback, or find out if a particular feature is (or would be) useful? Are you trying to discover what problems bother your user, or whether they’d prefer one solution over another?

Before planning your questions and diving head-first into research, look at your overarching research plan and objectives. Consider this on a project-by-project basis, as your end questions will be drastically different depending on where you are in the product development process . For instance, if you’re in early product discovery , you may want to discover user intent and pain points. Or, if you’re working on a high-fidelity prototype, you might want to see how users interact with the prototype, and how easy it is to use. Asking questions at different stages of your process is a big part of continuous product discovery and ensuring your product remains the best it can be.

💡 If you’re looking to understand the types of question format used in surveys or user questionnaires, take a look at our guide on how to write survey questions .

User research questions can be categorized in many ways—by objective, research scenario, or point in the product journey, to name a few. Since different questions may apply in multiple situations, we’re going to consider questions organized by their research focus.

Questions for user research can typically be categorized three ways:

  • Questions about the problem e.g., what are users’ pain points, what task are they trying to complete, what solution do they want
  • Questions about the people e.g., who they are, how they use products, what they want to accomplish, how likely are they to use the product
  • Questions about the product e.g., how users’ feel about content or design, can they navigate the product, how usable is it, what features do they like or dislike

Now we know what kinds of questions there are, let’s delve into the value of pre-made questions, and some examples of each question type.

Using pre-made user research questions

To elevate your research, you can opt to use pre-existing questions from a question bank. As with all research tools , there are many benefits to this, including saving time and effort, and having many questions to choose from. Using a question bank also ensures questions are always carefully considered, easily understandable for users, and unbiased.

Meet the Maze question bank

An open-source question repository for product teams, our question bank is aimed at helping you ask the best user research questions to gather insight that will help build truly user-centered products.

question-bank-3

A good question bank will be multifunctional, with questions you can use when running moderated to unmoderated testing, conducting generative or evaluative research, or gathering quantitative or qualitative data. So you can have one place to go for all your user research question needs.

🚀 Boost your research with Maze templates

If you’re a Maze user, you can also use the question bank as a handy companion to fuel your team’s research with Maze—check out the templates column and question block suggestions for maximum efficiency when building mazes.

Ultimately, a pre-made question bank can help save you a lot of time, and allow you to focus on conducting the research and processing analysis.

If you’d like to create your own questions, let’s get into the different user research question types, what questions they include, and how to ask them.

question bank for user research questions

Click on the image to head straight to the question bank 👆

Questions about the problem

To support product and design decisions behind any solution, you need to be familiar with the problem you (and your users) are trying to solve. Whether you’re starting product discovery and want to understand user pain points, or you’re testing new features and want to gauge which will be most popular— you can’t begin working on a solution until you’ve honed in on what the problem is.

What’s bothering your users? How can you make their lives easier? What’s their key challenge, and what are they trying to achieve that’s being blocked by that problem?

Only once you’ve narrowed down a key problem statement can you translate solutions into the user experience, and identify opportunities for product development .

Questions focusing on the problem you’re trying to solve are key in product discovery stages and concept validation . The reason for using a particular product or feature may vary between users—consider Instagram’s Explore tab: it could be used to find friends, connect with like-minded people, or find inspiration.

Questions that can help hone into the problem at hand include:

  • What problems do you face when you do [task]?
  • Please complete this sentence: "The most frustrating part of trying to complete [task] is…”
  • What is your main goal when trying to complete [task]?
  • What is your personal measure of success when it comes to [goal]?
  • How are you currently solving [problem]?
  • Describe your ideal solution to [problem]

Questions about the people

Understanding the problem you’re trying to solve goes hand in hand with the people who are facing this problem—who they are and how they think, how they adopt and use products, their wants, needs and dislikes.

Put simply, there’s no point building a product if it solves the problem your user is having—but not in the way they wanted it to.

To really understand how your users think, and the way they approach a product, you need to understand their mental models. Broadly speaking, a mental model determines how someone forms their thinking process—it might impact the way they approach a problem, the kind of solution they’d like, and how they expect certain features to work.

UX research methods like card sorting are a good way to understand people’s mental models, but you can also gather this insight through thoughtful user interviews or research questions.

User-focused questions also cover understanding attitudes towards product adoption, use habits and circumstances, pricing models, and demographics.

Some example questions you could ask to learn more about your target users include:

  • Are there any products that you prefer to use to do [task]?
  • What does your job look like in your company?
  • How do you prefer to be trained on new products?
  • How much would you pay for [product]?
  • Please describe who you might collaborate with when [task]?
  • How often do you do [task]?

Questions about the product

Once you understand the problem your product will solve, and the people who’ll be using it, it’s time to circle back to the product itself. Questions about the product may be about its usability, what features you’re including, how users feel about content or design, and whether it does what they need it to.

Just like all research, it’s a good idea to ask product-related questions multiple time during the research phase, as both questions and answer will vary depending on what development stage you’re at—from prioritizing which feature to focus on developing first, to assessing how navigable a certain product section is, or reviewing the appeal of specific design aspects.

To gain a well-rounded understanding of how users find using your product or feature, usability testing is imperative. And, if you’re trying to nail down product navigation and identify any bumps in the user journey, tree testing is the research method of choice.

Whatever your focus, questions relating to the product are useful in both evaluative and generative research , and critical for creating a user-centered, solution-focused product.

Sample questions you can use to learn more about the product and features could include:

  • How did you find the language (including but not limited to copy, phrasing, tone) used on the website?
  • What’s the single most important thing we could do to make [product] better?
  • On a scale of 1-10, how was your experience when [task]?
  • Was the product navigation as expected?
  • If you could change one thing about the design what would it be and why?
  • Thinking about what [product] offers, which of the following best describes your feelings about it?

🤔 To dive into the questions you should be asking during usability testing, check out how to ask effective usability testing questions .

Regardless of what questions you ask, it’s worth bearing in mind that this information should be considered a guide, not a rule—as sometimes what people think they’ll do is not what they always do in practice . This is why it’s so important to continue research and testing in all stages of product development, so you can always be working off the most reliable and up-to-date insight.

Guidelines for crafting the right user research questions

Research questions set the standard of the data you’ll gather with them, so it’s crucial to properly craft each question to maximize insight and ensure accurate results.

Using a pre-made question bank is one way to keep questions effective, but if you’re writing your own questions, bear in mind that everything from the language you use to the structure or format of questions can influence the user’s answer.

The best questions for user interviews and research are clear , precise , and unbiased . Let’s go over some ultimate tips for crafting questions that fulfill this.

how to design research questions

Stay neutral: avoid leading questions

One of the most important points when it comes to any research is being a neutral party, which means removing cognitive bias from your work. Research isn’t helpful if it’s biased, so ensure your questions are as impartial as possible—after all, just because you like Concept A over Concept B, doesn’t mean everyone will.

The key to staying neutral is avoiding leading questions where you subconsciously favor one thing over another, or plant an opinion or idea in the user’s mind, such as “How would you use concept A?”—this assumes they preferred concept A, which they may not have. Instead, try asking which concept they would use, followed by how they would use it.

Take it one question at a time

The majority of us think best when our minds are clear and able to focus on one thing, so avoid bombarding research participants with multiple questions phrased together.

Rather than asking a question like “What did you think about the design, copy and layout of the page?”, ask individually about the design, copy, and layout. Otherwise, you risk users merging their thoughts into one answer, when in fact they may feel very differently about each element.

Of course some questions lend themselves to being combined (e.g., “Which concept did you prefer and why?”), but it’s best to keep things separate when possible, and ask “Why?” in follow up questions, to allow users space to think and form individual answers for each question.

Ask open-ended questions

Similar to ensuring questions are unbiased, it’s also a good idea to ask open-ended questions—that is, to avoid questions which result in simply a ‘yes’ or ‘no’ answer.

The benefit of open-ended questions is that they give participants an opportunity to expand on their answer, work through their experience, and share details with you that may otherwise be missed. Consider that, while asking “Did you like the product?” may answer whether a user liked it, you’ll be left wondering what it is they like about it. Instead, try framing questions in a way that provides space for additional information, e.g. “What did you think about the product?”.

Pro tip ✨ If you do ask closed-ended questions, always keep follow up questions aside to dig deeper gather and extra insight from your participants.

Help users find their own voice

The language we use is incredibly powerful. Used well, words can move us, sway our opinions, educate us, and more.

By helping your research participants to find their own voice, you can unlock powerful statements and user insights which will truly impact your product. Formatting questions with the user at the center—using ‘you’ and asking emotive questions—builds empathy with the user and encourages them to find and share their own opinions through honest answers.

Ask questions you think you know the answer to

Our final question-crafting tip is to use research questions to test and validate your own assumptions and opinions. Ask questions you think you know the answer to—if you believe all users will prefer one new feature over the other, see if you’re right. If you think a certain design element works better on a different page, ask research participants to determine where they prefer it.

As with any research, while you may be user-adjacent, you are not your users. You are the expert in your product; they are the expert in using your product. Trust their opinions, and use their knowledge and experience to confirm your suspicions, or disprove them. Either way, you gain valuable insights.

User research is as effective as the questions you ask

Whether you’re investigating user preferences or conducting usability testing, research is only as effective as the questions you ask—and how you ask them.

Focus on questions that fit your research objectives, phrase your questions in the best way possible, and work to build empathy with your user; you’ll be able to gather valuable insights in no time.

Frequently asked questions and user research questions

What makes a good user research question?

A good research question is open-ended , unbiased , clear , and precise . It helps research participants share their thoughts, feedback, and opinions with researchers, without influencing or limiting their responses.

What type of user research questions are there?

User research questions can broadly be broken down into three categories:

How do you create a user research question?

There are several ways to create a user research question: you can either write your own question, or select premade questions from an existing research question bank.

If you choose to write your own research questions, it’s important to keep them clear and precise above all else—focus on asking questions that encourage users to open up, share additional information, and speak honestly.

Continue Reading

leading-questions-thumbnail

How to avoid leading questions in UX research (+ examples)

ethics-in-ux-research-thumbnail

UX research best practices: Building and researching products with ethics in mind

Try rapid testing now, for free.

How to Craft Your Ideal Thesis Research Topic

How to Craft Your Ideal Thesis Research Topic

Table of contents

how to design research questions

Catherine Miller

Writing your undergraduate thesis is probably one of the most interesting parts of studying, especially because you get to choose your area of study. But as both a student and a teacher who’s helped countless students develop their research topics, I know this freedom can be just as intimidating as it is liberating.

Fortunately, there’a a step-by-step process you can follow that will help make the whole process a lot easier. In this article, I’ll show you how to choose a unique, specific thesis topic that’s true to your passions and interests, while making a contribution to your field.

how to design research questions

Choose a topic that you’re interested in

First things first: double-check with your teachers or supervisor if there are any constraints on your research topic. Once your parameters are clear, it’s time to identify what lights you up — after all, you’re going to be spending a lot of time thinking about it.

Within your field of study, you probably already have some topics that have grabbed your attention more than others. This can be a great place to start. Additionally, consider using the rest of your academic and extra-curricular interests as a source of ideas. At this stage, you only need a broad topic before you narrow it down to a specific question. 

If you’re feeling stuck, here are some things to try:

  • Look back through old course notes to remind yourself of topics you previously covered. Do any of these inspire you?
  • Talk to potential supervisors about your ideas, as they can point you toward areas you might not have considered.
  • Think about the things you enjoy in everyday life — whether that’s cycling, cinema, cooking, or fashion — then consider if there are any overlaps with your field of study.
  • Imagine you have been asked to give a presentation or record a podcast in the next three days. What topics would you feel confident discussing?
  • Watch a selection of existing lectures or explainer videos, or listen to podcasts by experts in your field. Note which topics you feel curious to explore further.
  • Discuss your field of study with teachers friends and family, some with existing knowledge and some without. Which aspects do you enjoy talking about? 

By doing all this, you might uncover some unusual and exciting avenues for research. For example, when writing my Master’s dissertation, I decided to combine my field of study (English teaching methodology) with one of my passions outside work (creative writing). In my undergraduate course, a friend drew on her lived experience of disability to look into the literary portrayal of disability in the ancient world. 

Do your research

Once you’ve chosen your topic of interest, it’s time to dive into research. This is a really important part of this early process because it allows you to:

  • See what other people have written about the topic — you don’t want to cover the same old ground as everyone else.
  • Gain perspective on the big questions surrounding the topic. 
  • Go deeper into the parts that interest you to help you decide where to focus.
  • Start building your bibliography and a bank of interesting quotations. 

A great way to start is to visit your library for an introductory book. For example, the “A Very Short Introduction” series from the Oxford University Press provides overviews of a range of themes. Similar types of overviews may have the title “ A Companion to [Subject]” or “[Subject] A Student Companion”. Ask your librarian or teacher if you’re not sure where to begin. 

Your introductory volume can spark ideas for further research, and the bibliography can give you some pointers about where to go next. You can also use keywords to research online via academic sites like JStor or Google Scholar. Check which subscriptions are available via your institution.

At this stage, you may not wish to read every single paper you come across in full — this could take a very long time and not everything will be relevant. Summarizing software like Wordtune could be very useful here.

Just upload a PDF or link to an online article using Wordtune, and it will produce a summary of the whole paper with a list of key points. This helps you to quickly sift through papers to grasp their central ideas and identify which ones to read in full. 

Screenshot of Wordtune's summarizing tool

Get Wordtune for free > Get Wordtune for free >

You can also use Wordtune for semantic search. In this case, the tool focuses its summary around your chosen search term, making it even easier to get what you need from the paper.

how to design research questions

As you go, make sure you keep organized notes of what you’ve read, including the author and publication information and the page number of any citations you want to use. 

Some people are happy to do this process with pen and paper, but if you prefer a digital method, there are several software options, including Zotero , EndNote , and Mendeley . Your institution may have an existing subscription so check before you sign up.

Narrowing down your thesis research topic

Now you’ve read around the topic, it’s time to narrow down your ideas so you can craft your final question. For example, when it came to my undergraduate thesis, I knew I wanted to write about Ancient Greek religion and I was interested in the topic of goddesses. So, I:

  • Did some wide reading around the topic of goddesses
  • Learned that the goddess Hera was not as well researched as others and that there were some fascinating aspects I wanted to explore
  • Decided (with my supervisor’s support) to focus on her temples in the Argive region of Greece

how to design research questions

As part of this process, it can be helpful to consider the “5 Ws”: why, what, who, when, and where, as you move from the bigger picture to something more precise. 

Why did you choose this research topic?

Come back to the reasons you originally chose your theme. What grabbed you? Why is this topic important to you — or to the wider world? In my example, I knew I wanted to write about goddesses because, as a woman, I was interested in how a society in which female lives were often highly controlled dealt with having powerful female deities. My research highlighted Hera as one of the most powerful goddesses, tying into my key interest.

What are some of the big questions about your topic?

During your research, you’ll probably run into the same themes time and time again. Some of the questions that arise may not have been answered yet or might benefit from a fresh look. 

Equally, there may be questions that haven’t yet been asked, especially if you are approaching the topic from a modern perspective or combining research that hasn’t been considered before. This might include taking a post-colonial, feminist, or queer approach to older texts or bringing in research using new scientific methods.

In my example, I knew there were still controversies about why so many temples to the goddess Hera were built in a certain region, and was keen to explore these further.

Who is the research topic relevant to?

Considering the “who” might help you open up new avenues. Is there a particular audience you want to reach? What might they be interested in? Is this a new audience for this field? Are there people out there who might be affected by the outcome of this research — for example, people with a particular medical condition — who might be able to use your conclusions?

Which period will you focus on?

Depending on the nature of your field, you might be able to choose a timeframe, which can help narrow the topic down. For example, you might focus on historical events that took place over a handful of years, look at the impact of a work of literature at a certain point after its publication, or review scientific progress over the last five years. 

With my thesis, I decided to focus on the time when the temples were built rather than considering the hundreds of years for which they have existed, which would have taken me far too long.

Where does your topic relate to?

Place can be another means of narrowing down the topic. For example, consider the impact of your topic on a particular neighborhood, city, or country, rather than trying to process a global question. 

In my example, I chose to focus my research on one area of Greece, where there were lots of temples to Hera. This meant skipping other important locations, but including these would have made the thesis too wide-ranging.

Create an outline and get feedback

Once you have an idea of what you are going to write about, create an outline or summary and get feedback from your teacher(s). It’s okay if you don’t know exactly how you’re going to answer your thesis question yet, but based on your research you should have a rough plan of the key points you want to cover. So, for me, the outline was as follows:

  • Context: who was the goddess Hera?
  • Overview of her sanctuaries in the Argive region
  • Their initial development 
  • Political and cultural influences
  • The importance of the mythical past

In the final thesis, I took a strong view on why the goddess was so important in this region, but it took more research, writing, and discussion with my supervisor to pin down my argument.

To choose a thesis research topic, find something you’re passionate about, research widely to get the big picture, and then move to a more focused view. Bringing a fresh perspective to a popular theme, finding an underserved audience who could benefit from your research, or answering a controversial question can make your thesis stand out from the crowd.

For tips on how to start writing your thesis, don’t miss our advice on writing a great research abstract and a stellar literature review . And don’t forget that Wordtune can also support you with proofreading, making it even easier to submit a polished thesis.

How do you come up with a research topic for a thesis?

To help you find a thesis topic, speak to your professor, look through your old course notes, think about what you already enjoy in everyday life, talk about your field of study with friends and family, and research podcasts and videos to find a topic that is interesting for you. It’s a good idea to refine your topic so that it’s not too general or broad.  

Do you choose your own thesis topic?

Yes, you usually choose your own thesis topic. You can get help from your professor(s), friends, and family to figure out which research topic is interesting to you. 

Share This Article:

How to Craft an Engaging Elevator Pitch that Gets Results

How to Craft an Engaging Elevator Pitch that Gets Results

Eight Steps to Craft an Irresistible LinkedIn Profile

Eight Steps to Craft an Irresistible LinkedIn Profile

7 Common Errors in Writing + How to Fix Them (With Examples)

7 Common Errors in Writing + How to Fix Them (With Examples)

Looking for fresh content, thank you your submission has been received.

Language selection

  • Français fr

How to Compose a "How Might We" Question (DDN2-J15)

Description.

This job aid serves as a guide for developing a structured "how might we" question as a way to generate new ideas for solving known problems by reframing a user problem into an opportunity.

Published: April 23, 2024 Type: Job aid

Download as PDF (282 KB)

how to design research questions

How to Compose a How Might We (HMW) Question

HMW questions can be used to highlight potential opportunities for ideation based on insights found during design research.

Desired outcome

A set of structured questions to work on at the ideation stage of the design process.

When to use

  • After conducting design research and data synthesis but before ideation.
  • When you want to reframe your current problem statement to more easily uncover opportunities.

Pairs well with

  • How to Compose a Problem Statement (DDN2-J06)
  • User Persona Checklist (DDN2-J12)
  • How might we [action/what] for [user/other stakeholders] in order to [enact a change]?
  • If you're having trouble coming up with HMW questions, break the bigger problem into smaller ones, and then start writing HMW in front of each smaller problem.
  • Focuses on the desired outcome
  • Specific enough
  • Does not suggest a solution
  • Not too broad
  • Not too narrow
  • Phrased positively
  • Find any overlap between the HMW questions and see if you can combine some into one.
  • Prioritize any remaining HMW questions by their impact on the project.
  • Select the HMW question with the highest impact to answer.

How to Compose a 'How Might We' Question

Event: Brave Conversations and Bold Actions When Building Accessible and Inclusive Workplaces

how to design research questions

Event: The Trust Series: Trust and Misinformation in Digital Information Ecosystems (Rebroadcast)

how to design research questions

Event: GC Data Conference 2024: Taking Stock of the Evolution of Data Protection in Canada (Rebroadcast)

  • GCLearning newsletter

Naval Postgraduate School

Naval Research Program

Research proposal guide - naval research program, research proposal guide.

Once an Initial Research Estimate Form (IREF)  is validated and selected for funding, the next step is to complete a Research Proposal. Proposals must be completed and approved before funding can be authorized and released.

Faculty that have an IREF validated and selected for funding are required to complete the following steps before funding will be authorized and established. More details for each step are provided below; this list can be used as a checklist if desired.

Please notify NRP at [email protected]  if you have any reservations about accepting your funded project (e.g. impending retirement, emergent obligations, etc.).

Jump to section

Eligibility, annual pi training, acknowledgment of terms.

  • Technical Proposal/Narrative

Proposal tab

Nps personnel tab, proposal questions tab, proposal data tab, abstracts and attachments tab, proposal budget tab, review process, proposal amendments, troubleshooting.

More events

Events & Deadlines

Quick links, principal investigators.

The Principal Investigator (PI) is the researcher who has primary responsibility for the design, execution, and management of a sponsored research project and is named on the proposal to the sponsoring agency. The PI has the primary responsibility for the fulfillment of the Statement of Work. Even when collaborating with one or more Co-PIs, the PI has the ultimate responsibility for the project and remains the sole individual responsible for managing expenditures in support of the project. 

Only eligible Naval Postgraduate School faculty participating in the mission of NPS may submit proposals and act as a PI/PD/Co-I/Co-PD for sponsored projects. Individuals in a faculty or staff category other than those listed in the SPPGM-22 require a waiver to be eligible. Sponsored Program Policy/Guidance Memo 22 (SPPGM-22): Who can be a PI/PD/Co-I/Co-PD?  (PDF, 4 January 2023) PI/PD/Co-I/Co-PD Justification Memorandum (Waiver Form)  (PDF)

^ Back to top

Training is required for anyone who functions as a PI/PD or has direct access to funds on sponsored projects. Annual PI Training is completed within Sakai, and includes four modules:

  • Accountability/Fiscal Law: 13/14 required to pass
  • Protection of Human Subjects: 7/8 required to pass
  • OPSEC for the PI/PD: pass/fail
  • Stewardship: 18/20 required to pass

PIs must pass all modules for training to be complete. Please visit Sponsored Programs Related Annual Online Trainings  to begin.

Please send a screenshot or export of your passing scores to NRP upon successful completion of your Annual PI Training.

All PIs and Co-PIs must digitally sign the Acknowledgment of Terms form . This form must then be uploaded as an attachment to your Research Proposal.

To digitally sign the form, you may need to download and save it to your computer, and open in Adobe Reader. Opening it in your web browser doesn't reliably activate the signature fields.

When uploading as an attachment, go to the Abstracts and Attachments tab in Coeus, and upload the form using the "Supplementary Documentation" category.

Please do not email any documents directly to NRP unless requested to do so.

PDF, 142KB. Last updated November 2023

All PIs must complete a Technical Proposal/Narrative, using the official NRP template.  These documents must be submitted as attachments to your Research Proposal.

  • Read all template guidance prior to starting your proposal
  • Complete all required template elements
  • Supporting TASKS section must include direct correlation/justification for all budget expenses
  • Coeus is approved for CUI, but please mark all documents accordingly if applicable
  • Remove the first page containing template guidance before submitting to Coeus

Topic Advocate signatures are no longer required. Research Proposals will be routed through the chain for approval by NPS personnel and teams using Coeus. For efficiency purposes and to prevent delays, please  do not bypass  this process.

Word, 57KB. Last updated October 2023

Coeus Proposal Package

Koali Coeus is the system NRP uses to manage and review Research Proposals. To submit a Research Proposal, you will use a Proposal Development Document (PDD).

NRP creates empty PDD shells within Coeus, to pre-populate required information and simplify setup. Each PI will receive a Coeus-generated, automated email prompting you to begin your proposal.

Please email the NRP office at [email protected] with any questions, or if you don't receive your Coeus access email.

  • Period of performance and milestone dates, in all proposal documents, must match.
  • Proposals are only accepted through Coeus. Incomplete proposal packages will be rejected.
  • Spend plans must be realistic as you will be required to execute as scheduled (burn rate).
  • Expenses must include direct correlation/justification to the TASKS in your technical proposal.
  • If someone is assisting you in preparing your proposal package, give them a link to this page.

This tab will be completed by NRP. Please do not make any changes to the fields present on this tab.

At minimum, you must include the PI and any Co-PIs. You can be a PI on no more than two concurrent NRP projects across all Cycle Years, and no more than one NRP project per Cycle Year.

  • Enter the last name, email address, etc. of the person you wish to add. You only need to fill out one field, and the search is not case-sensitive. Click search .
  • Click return value  on the far left of the row containing the correct personnel record.
  • The top section of the page will now have the person's name, as well as a  Proposal Role  section. Select the appropriate role, then click  add person  below that.

If additional staff/faculty are expected to participate but have yet to be identified, input their positions in your project using To be named  instead of Employee Search .

exclamation point inside a red circle

Please answer all Proposal Questions, including any sub-questions that may appear. If you have any questions about this tab, please contact NRP .

Please fill out all Proposal Data. If you have any questions about this tab, please contact NRP .

To select multiple items in a "select all that apply" list, use  Ctrl  on Windows, or  Cmd  on Mac.

Upload your required attachments including your  Acknowledgment of Terms form  and your Technical Proposal/Narrative  under the categories below:

  • Acknowledgment of Terms:  "Supplementary Documentation"
  • Technical Proposal/Narrative:  "Technical Proposal/Narrative"
  • Budget Justification:  "Budget Justification"
  • Equipment Justification:  "Equipment"
  • You must upload a waiver for  each  person requiring one

Copy-paste the abstract from your Technical Proposal/Narrative into the  Publicly Releasable Abstract  section, under Enter Abstract . Make sure to click  add  or it will not save to your PDD correctly.

When entering keywords, please enter one keyword per line,  not  a comma-separated list. Keywords are used by other integrated systems and comma-separating them can cause errors in the data integrations.

The quarterly spend plan you enter into Coeus generates your  required  burn rate schedule. This data is reported to the Budget Submission Office (BSO) and the burn rate must be executed as input into Coeus. PIs are expected to plan for salary adjustments within their budget. The authorized project amount is not increased due to promotions or Cost of Living Allowance increases.

Ensure your quarterly spend plan is realistic by accounting for:

  • Cost-of-living adjustments
  • Raises and promotions
  • Reasonable flexibility

Official research proposal budgets must be submitted using the Coeus budget proposal tool. The  FY24 NRP Budget Spreadsheet  is used for budget/spend plan updates during the PoP. The spreadsheet can be used for general offline proposal budget planning purposes but it is highly recommended that you use the  Coeus training instance  to draft your proposal budget.

Your proposal budget is an embedded document within your PDD, and has tabs of its own. NRP has created a quarterly budget shell for you to fill out; open this budget by using the  open  button on the far right of the page.

Using your IREF budget allocations, enter quarterly expenses in the  NPS Labor  and Other Direct Costs  (Non-Labor) tabs. Your PDD's budget must be equal to or less than the budget proposed in your IREF.

If financial expenditure questions arise during budget development or execution, PIs should consult with the NRP SPFA .

How can the money be spent?

  • NRP funds are RDT&E BA 6.6 and are appropriated solely for specific selected NRP projects. There must be a direct relationship between funds spent and the selected NRP research project.
  • This money cannot be used for academic/curriculum support.
  • This money cannot be used for office supplies, printers or cell phones.
  • This money cannot be used to hire administrative personnel.

Financial Terms

  • Indirect Costs:  The NRP uses NR&DE funds, and indirect cost are not collected. The indirect rate is 0%.
  • Fringe  (aka Acceleration or Fully Burdened Rate): Fringe is always included in the cost of payroll regardless of how your payroll is being charged.  Fringe addresses the actual cost of benefits paid by the government for each employee (TSP, FERS, Medicare, FEGLI, TSP Matching, Annual Leave, Sick Leave, Vacation).  NPS recommends using 52.5% for projection purposes.
  • Overhead:  The NRP takes a small percentage off the top of the annual budget to run the program. Therefore, no overhead cost needs to be factored into each individual project budget.

Spend Plan Justification

The Description & Purpose field(s) in Coeus for all expenses (Other Direct Costs/Non-Labor) must include a direct correlation/justification to the TASKS in your Technical Proposal/Narrative. Do not use blanket terms.

If your budget includes costs that exceed the NRP allowances, attach a Budget Justification document. Alternatively, you can include line-item Budget Justification notes in your PDD's budget.

  • Ensure that quarters with proposed travel include appropriate corresponding labor hours
  • People who are not listed in the specific NRP project are not allowed to utilize these funds. Travel percentage and total cap may change in FY25.
  • Unique business such as project kick-off meetings, mid-year progress review meetings, final projects delivery meetings, data collection, and/or one conference attendance that are directly tied to the project can be conducted via travel, but all “regular business” should be conducted on Teams. Virtual/online conferences are preferred and encouraged. Labor must be charged to the project at the same time you are on travel.
  • Ensure travel and labor expenses align with research completion timelines, to include any travel for the purpose of final debriefing/delivering the final product(s)
  • Students:  Student participation is allowed; however, travel requests must state how the travel applies to the associated NRP research.
  • DTS form justification box must include: NRP project number, PI Name, detailed purpose of the travel i.e., how the travel is directly related to the NRP project, travel is/is not included in the original proposal.
  • All travelers are required to submit a  Travel Report  after each trip.
  • Academic purposes
  • Thesis development
  • Student graduations
  • Other research projects
  • List all known project personnel. List additional planned but unidentified individuals under "To be named." Notify the NRP SPFA  of project personnel changes immediately to avoid a payroll approval delay.
  • Labor is charged using actual benefits and varies per individual. Rates are updated/calculated in Coeus routinely. Consult your SPFA for individual rates. NRP is exempt from other Indirect Costs.
  • NRP funds are not appropriate for employee cash awards. All awards using NRP funds will be reversed upon detection.
  • The fully burdened amount is listed in Coeus. PIs are expected to plan for salary adjustments within their budget. The authorized project amount is not increased due to promotions or Cost of Living Allowance increases .

External Support

If you are intending/planning to outsource labor/skills that cannot be performed by NPS personnel you must obtain approval from your department chair.

NRP funds cannot be used to hire administrative personnel.

Acquisitions

All purchases must align with the tasks and deliverables cited in your proposal and require a detailed justification to be submitted in ERP. As per the Annual PI Training, purchasing for "the greater good" is not allowed.

Provide an explanation, in plain language, detailing how each purchase contributes to the tasks and deliverables of the project. Blanket terms such as "Mission Essential / Critical" are not a valid justification.

Total purchasing exceeding 25% of your project's total budget will require additional justification.

  • Orders should be submitted early in order to contribute to the project deliverable(s), and must be acquired within the project's Period of Performance.
  • Acquisitions for computers, equipment, contracts, and MIPRS are  only  approved for the benefit of the selected NRP project. Therefore, each item must be ordered soon enough that it arrives early enough to contribute to the project deliverables.
  • PIs may be allowed to purchase equipment with justification (e.g., computers) once every three years, however purchasing peripheral equipment that is considered office equipment is not allowed.
  • All equipment must be shipped directly to the warehouse and registered in the NPS property accounting system prior to receipt under the PI’s name. The PI is accountable to produce records during an audit.
  • Cell phones & cell phone services
  • Printers, ink, and toner
  • Office supplies
  • Publications (Please contact NRP for NRP-related publication expenses)
  • Items considered to be for general purposes
  • Checklist of OSHE Related Hazards to Consider
  • Include labor, time, and costs for safety controls.
  • Include safety and environmental planning and training hours.
  • Include funds for safety assessments if needed, protective equipment and physical controls.
  • Critical to plan ahead for off-campus activities, UUVs, lithium batteries, RF emitter, hazmat, lasers, etc.

Review  Safety Information Needed from PIs for Project Descriptions

For safety questions or concerns email  [email protected]  or visit the  Safety Review and Planning page on the  Safety website.

Finalizing your budget

Once your budget is complete, save it with the button at the bottom, and use the blue  Return to Proposal  button at the top right. Check the  Final  box for your budget in the  Proposal Budget  tab.

  • Coeus User Guide
  • Contact NRP
  • Contact Coeus Ombudsman
  • Contact NRP SPFA for financial expenditure questions
  • Budget Spreadsheet

Submit Your Proposal

Once your PDD is completed, run Data Validation .

  • Go to the Proposal Actions tab
  • On the  Data Validation  section, click the  show  button to expand it
  • Click  turn on validation
  • Go through each of the  Validation Errors  and  Warnings , and fix them
  • Reach out to NRP at  [email protected]  if you need any help

Once your PDD passes validation, please use the  Submit  button at the bottom of the  Proposal Actions  tab to submit it for approval. NRP will receive an automated email from Coeus letting us know when your PDD is ready to review.

See the Troubleshooting guide below for help resolving errors. NRP is also happy to assist; contact us at [email protected] .

Once your PDD is successfully submitted, it goes through several stages of review:

  • Your department chair reviews and approves your PDD. If you have Co-PIs listed, their department chairs must review and approve your PDD as well.
  • NRP reviews your PDD for completeness, accuracy, and adherence to requirements and guidance.
  • NRP's Financial Manager reviews your budget and spending allocations.
  • NRP's Program Manager reviews and approves your PDD.
  • The Vice Provost for Research and Innovation reviews and approves your PDD.

Once the VPR has approved your PDD, NRP double-checks a few more requirements:

  • Completion of your annual PI training
  • Completion and submission of all previous Cycle Years' required research deliverables
  • Successful approval from the  Human Research Protection Program Office & Institutional Review Board (IRB) , if required

Once these are complete, NRP then issues funding for you to begin your research.

To check your proposal's current status in the review process:

  • Log in to Coeus
  • In the  Proposals  section of the Coeus homepage, click "Search Proposals"
  • In the  Document ID  field, enter the five-digit Document ID of your proposal. If you don't know the Document ID, please reach out to NRP and we can provide that to you.
  • Click the  Search  button
  • Click "view" on the left of the row your proposal shows up in, in the search results
  • Go to the  Proposal Actions  tab
  • Open the  Route Log  section by clicking the "show" button on it
  • In Action List to Complete:  Approval is required
  • In Action List to FYI:  Approval is not required; the person was notified for their situational awareness
  • If multiple people are listed within the same approval line, only one of them is required to approve

To make amendments to an approved and finalized PDD, email the Coeus Ombudsman  with your amendment request.

The types of changes that require an amendment through Coeus are:

  • Changes to the Period of Performance
  • Budget increases
  • Changes to the PI or Co-PI(s)
  • Topic Advocate changes
  • Statement of Work changes

Here are solutions to common problems encountered through the Research Proposal process.

If you're still having trouble, please reach out to NRP . We're happy to help!

PDDs are "checked out" when someone opens them to edit them, and locked until the person editing clicks the  close  button to "check in" the proposal.  Closing the browser tab will not check in the PDD.

If your proposal was locked by someone else, Coeus will display their name at the top of the PDD. Simply email them and request that they open the proposal and close it using the  close  button at the bottom of the page rather than just closing the browser tab.

If you're not able to get a hold of the person your PDD is checked out to, email the Coeus Ombudsman to request an administrator to unlock your PDD.

Reach out to NRP and let us know; we can add them as an authorized user to your PDD.

Opening the PDF in your browser doesn't always activate the signature fields. Download it to your computer and open it in Adobe Reader or Adobe Acrobat. The fields should show up.

A systematic literature review of empirical research on ChatGPT in education

  • Open access
  • Published: 26 May 2024
  • Volume 3 , article number  60 , ( 2024 )

Cite this article

You have full access to this open access article

how to design research questions

  • Yazid Albadarin   ORCID: orcid.org/0009-0005-8068-8902 1 ,
  • Mohammed Saqr 1 ,
  • Nicolas Pope 1 &
  • Markku Tukiainen 1  

Over the last four decades, studies have investigated the incorporation of Artificial Intelligence (AI) into education. A recent prominent AI-powered technology that has impacted the education sector is ChatGPT. This article provides a systematic review of 14 empirical studies incorporating ChatGPT into various educational settings, published in 2022 and before the 10th of April 2023—the date of conducting the search process. It carefully followed the essential steps outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, as well as Okoli’s (Okoli in Commun Assoc Inf Syst, 2015) steps for conducting a rigorous and transparent systematic review. In this review, we aimed to explore how students and teachers have utilized ChatGPT in various educational settings, as well as the primary findings of those studies. By employing Creswell’s (Creswell in Educational research: planning, conducting, and evaluating quantitative and qualitative research [Ebook], Pearson Education, London, 2015) coding techniques for data extraction and interpretation, we sought to gain insight into their initial attempts at ChatGPT incorporation into education. This approach also enabled us to extract insights and considerations that can facilitate its effective and responsible use in future educational contexts. The results of this review show that learners have utilized ChatGPT as a virtual intelligent assistant, where it offered instant feedback, on-demand answers, and explanations of complex topics. Additionally, learners have used it to enhance their writing and language skills by generating ideas, composing essays, summarizing, translating, paraphrasing texts, or checking grammar. Moreover, learners turned to it as an aiding tool to facilitate their directed and personalized learning by assisting in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks. However, the results of specific studies (n = 3, 21.4%) show that overuse of ChatGPT may negatively impact innovative capacities and collaborative learning competencies among learners. Educators, on the other hand, have utilized ChatGPT to create lesson plans, generate quizzes, and provide additional resources, which helped them enhance their productivity and efficiency and promote different teaching methodologies. Despite these benefits, the majority of the reviewed studies recommend the importance of conducting structured training, support, and clear guidelines for both learners and educators to mitigate the drawbacks. This includes developing critical evaluation skills to assess the accuracy and relevance of information provided by ChatGPT, as well as strategies for integrating human interaction and collaboration into learning activities that involve AI tools. Furthermore, they also recommend ongoing research and proactive dialogue with policymakers, stakeholders, and educational practitioners to refine and enhance the use of AI in learning environments. This review could serve as an insightful resource for practitioners who seek to integrate ChatGPT into education and stimulate further research in the field.

Similar content being viewed by others

how to design research questions

Empowering learners with ChatGPT: insights from a systematic literature exploration

how to design research questions

Incorporating AI in foreign language education: An investigation into ChatGPT’s effect on foreign language learners

how to design research questions

Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT

Avoid common mistakes on your manuscript.

1 Introduction

Educational technology, a rapidly evolving field, plays a crucial role in reshaping the landscape of teaching and learning [ 82 ]. One of the most transformative technological innovations of our era that has influenced the field of education is Artificial Intelligence (AI) [ 50 ]. Over the last four decades, AI in education (AIEd) has gained remarkable attention for its potential to make significant advancements in learning, instructional methods, and administrative tasks within educational settings [ 11 ]. In particular, a large language model (LLM), a type of AI algorithm that applies artificial neural networks (ANNs) and uses massively large data sets to understand, summarize, generate, and predict new content that is almost difficult to differentiate from human creations [ 79 ], has opened up novel possibilities for enhancing various aspects of education, from content creation to personalized instruction [ 35 ]. Chatbots that leverage the capabilities of LLMs to understand and generate human-like responses have also presented the capacity to enhance student learning and educational outcomes by engaging students, offering timely support, and fostering interactive learning experiences [ 46 ].

The ongoing and remarkable technological advancements in chatbots have made their use more convenient, increasingly natural and effortless, and have expanded their potential for deployment across various domains [ 70 ]. One prominent example of chatbot applications is the Chat Generative Pre-Trained Transformer, known as ChatGPT, which was introduced by OpenAI, a leading AI research lab, on November 30th, 2022. ChatGPT employs a variety of deep learning techniques to generate human-like text, with a particular focus on recurrent neural networks (RNNs). Long short-term memory (LSTM) allows it to grasp the context of the text being processed and retain information from previous inputs. Also, the transformer architecture, a neural network architecture based on the self-attention mechanism, allows it to analyze specific parts of the input, thereby enabling it to produce more natural-sounding and coherent output. Additionally, the unsupervised generative pre-training and the fine-tuning methods allow ChatGPT to generate more relevant and accurate text for specific tasks [ 31 , 62 ]. Furthermore, reinforcement learning from human feedback (RLHF), a machine learning approach that combines reinforcement learning techniques with human-provided feedback, has helped improve ChatGPT’s model by accelerating the learning process and making it significantly more efficient.

This cutting-edge natural language processing (NLP) tool is widely recognized as one of today's most advanced LLMs-based chatbots [ 70 ], allowing users to ask questions and receive detailed, coherent, systematic, personalized, convincing, and informative human-like responses [ 55 ], even within complex and ambiguous contexts [ 63 , 77 ]. ChatGPT is considered the fastest-growing technology in history: in just three months following its public launch, it amassed an estimated 120 million monthly active users [ 16 ] with an estimated 13 million daily queries [ 49 ], surpassing all other applications [ 64 ]. This remarkable growth can be attributed to the unique features and user-friendly interface that ChatGPT offers. Its intuitive design allows users to interact seamlessly with the technology, making it accessible to a diverse range of individuals, regardless of their technical expertise [ 78 ]. Additionally, its exceptional performance results from a combination of advanced algorithms, continuous enhancements, and extensive training on a diverse dataset that includes various text sources such as books, articles, websites, and online forums [ 63 ], have contributed to a more engaging and satisfying user experience [ 62 ]. These factors collectively explain its remarkable global growth and set it apart from predecessors like Bard, Bing Chat, ERNIE, and others.

In this context, several studies have explored the technological advancements of chatbots. One noteworthy recent research effort, conducted by Schöbel et al. [ 70 ], stands out for its comprehensive analysis of more than 5,000 studies on communication agents. This study offered a comprehensive overview of the historical progression and future prospects of communication agents, including ChatGPT. Moreover, other studies have focused on making comparisons, particularly between ChatGPT and alternative chatbots like Bard, Bing Chat, ERNIE, LaMDA, BlenderBot, and various others. For example, O’Leary [ 53 ] compared two chatbots, LaMDA and BlenderBot, with ChatGPT and revealed that ChatGPT outperformed both. This superiority arises from ChatGPT’s capacity to handle a wider range of questions and generate slightly varied perspectives within specific contexts. Similarly, ChatGPT exhibited an impressive ability to formulate interpretable responses that were easily understood when compared with Google's feature snippet [ 34 ]. Additionally, ChatGPT was compared to other LLMs-based chatbots, including Bard and BERT, as well as ERNIE. The findings indicated that ChatGPT exhibited strong performance in the given tasks, often outperforming the other models [ 59 ].

Furthermore, in the education context, a comprehensive study systematically compared a range of the most promising chatbots, including Bard, Bing Chat, ChatGPT, and Ernie across a multidisciplinary test that required higher-order thinking. The study revealed that ChatGPT achieved the highest score, surpassing Bing Chat and Bard [ 64 ]. Similarly, a comparative analysis was conducted to compare ChatGPT with Bard in answering a set of 30 mathematical questions and logic problems, grouped into two question sets. Set (A) is unavailable online, while Set (B) is available online. The results revealed ChatGPT's superiority in Set (A) over Bard. Nevertheless, Bard's advantage emerged in Set (B) due to its capacity to access the internet directly and retrieve answers, a capability that ChatGPT does not possess [ 57 ]. However, through these varied assessments, ChatGPT consistently highlights its exceptional prowess compared to various alternatives in the ever-evolving chatbot technology.

The widespread adoption of chatbots, especially ChatGPT, by millions of students and educators, has sparked extensive discussions regarding its incorporation into the education sector [ 64 ]. Accordingly, many scholars have contributed to the discourse, expressing both optimism and pessimism regarding the incorporation of ChatGPT into education. For example, ChatGPT has been highlighted for its capabilities in enriching the learning and teaching experience through its ability to support different learning approaches, including adaptive learning, personalized learning, and self-directed learning [ 58 , 60 , 91 ]), deliver summative and formative feedback to students and provide real-time responses to questions, increase the accessibility of information [ 22 , 40 , 43 ], foster students’ performance, engagement and motivation [ 14 , 44 , 58 ], and enhance teaching practices [ 17 , 18 , 64 , 74 ].

On the other hand, concerns have been also raised regarding its potential negative effects on learning and teaching. These include the dissemination of false information and references [ 12 , 23 , 61 , 85 ], biased reinforcement [ 47 , 50 ], compromised academic integrity [ 18 , 40 , 66 , 74 ], and the potential decline in students' skills [ 43 , 61 , 64 , 74 ]. As a result, ChatGPT has been banned in multiple countries, including Russia, China, Venezuela, Belarus, and Iran, as well as in various educational institutions in India, Italy, Western Australia, France, and the United States [ 52 , 90 ].

Clearly, the advent of chatbots, especially ChatGPT, has provoked significant controversy due to their potential impact on learning and teaching. This indicates the necessity for further exploration to gain a deeper understanding of this technology and carefully evaluate its potential benefits, limitations, challenges, and threats to education [ 79 ]. Therefore, conducting a systematic literature review will provide valuable insights into the potential prospects and obstacles linked to its incorporation into education. This systematic literature review will primarily focus on ChatGPT, driven by the aforementioned key factors outlined above.

However, the existing literature lacks a systematic literature review of empirical studies. Thus, this systematic literature review aims to address this gap by synthesizing the existing empirical studies conducted on chatbots, particularly ChatGPT, in the field of education, highlighting how ChatGPT has been utilized in educational settings, and identifying any existing gaps. This review may be particularly useful for researchers in the field and educators who are contemplating the integration of ChatGPT or any chatbot into education. The following research questions will guide this study:

What are students' and teachers' initial attempts at utilizing ChatGPT in education?

What are the main findings derived from empirical studies that have incorporated ChatGPT into learning and teaching?

2 Methodology

To conduct this study, the authors followed the essential steps of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) and Okoli’s [ 54 ] steps for conducting a systematic review. These included identifying the study’s purpose, drafting a protocol, applying a practical screening process, searching the literature, extracting relevant data, evaluating the quality of the included studies, synthesizing the studies, and ultimately writing the review. The subsequent section provides an extensive explanation of how these steps were carried out in this study.

2.1 Identify the purpose

Given the widespread adoption of ChatGPT by students and teachers for various educational purposes, often without a thorough understanding of responsible and effective use or a clear recognition of its potential impact on learning and teaching, the authors recognized the need for further exploration of ChatGPT's impact on education in this early stage. Therefore, they have chosen to conduct a systematic literature review of existing empirical studies that incorporate ChatGPT into educational settings. Despite the limited number of empirical studies due to the novelty of the topic, their goal is to gain a deeper understanding of this technology and proactively evaluate its potential benefits, limitations, challenges, and threats to education. This effort could help to understand initial reactions and attempts at incorporating ChatGPT into education and bring out insights and considerations that can inform the future development of education.

2.2 Draft the protocol

The next step is formulating the protocol. This protocol serves to outline the study process in a rigorous and transparent manner, mitigating researcher bias in study selection and data extraction [ 88 ]. The protocol will include the following steps: generating the research question, predefining a literature search strategy, identifying search locations, establishing selection criteria, assessing the studies, developing a data extraction strategy, and creating a timeline.

2.3 Apply practical screen

The screening step aims to accurately filter the articles resulting from the searching step and select the empirical studies that have incorporated ChatGPT into educational contexts, which will guide us in answering the research questions and achieving the objectives of this study. To ensure the rigorous execution of this step, our inclusion and exclusion criteria were determined based on the authors' experience and informed by previous successful systematic reviews [ 21 ]. Table 1 summarizes the inclusion and exclusion criteria for study selection.

2.4 Literature search

We conducted a thorough literature search to identify articles that explored, examined, and addressed the use of ChatGPT in Educational contexts. We utilized two research databases: Dimensions.ai, which provides access to a large number of research publications, and lens.org, which offers access to over 300 million articles, patents, and other research outputs from diverse sources. Additionally, we included three databases, Scopus, Web of Knowledge, and ERIC, which contain relevant research on the topic that addresses our research questions. To browse and identify relevant articles, we used the following search formula: ("ChatGPT" AND "Education"), which included the Boolean operator "AND" to get more specific results. The subject area in the Scopus and ERIC databases were narrowed to "ChatGPT" and "Education" keywords, and in the WoS database was limited to the "Education" category. The search was conducted between the 3rd and 10th of April 2023, which resulted in 276 articles from all selected databases (111 articles from Dimensions.ai, 65 from Scopus, 28 from Web of Science, 14 from ERIC, and 58 from Lens.org). These articles were imported into the Rayyan web-based system for analysis. The duplicates were identified automatically by the system. Subsequently, the first author manually reviewed the duplicated articles ensured that they had the same content, and then removed them, leaving us with 135 unique articles. Afterward, the titles, abstracts, and keywords of the first 40 manuscripts were scanned and reviewed by the first author and were discussed with the second and third authors to resolve any disagreements. Subsequently, the first author proceeded with the filtering process for all articles and carefully applied the inclusion and exclusion criteria as presented in Table  1 . Articles that met any one of the exclusion criteria were eliminated, resulting in 26 articles. Afterward, the authors met to carefully scan and discuss them. The authors agreed to eliminate any empirical studies solely focused on checking ChatGPT capabilities, as these studies do not guide us in addressing the research questions and achieving the study's objectives. This resulted in 14 articles eligible for analysis.

2.5 Quality appraisal

The examination and evaluation of the quality of the extracted articles is a vital step [ 9 ]. Therefore, the extracted articles were carefully evaluated for quality using Fink’s [ 24 ] standards, which emphasize the necessity for detailed descriptions of methodology, results, conclusions, strengths, and limitations. The process began with a thorough assessment of each study's design, data collection, and analysis methods to ensure their appropriateness and comprehensive execution. The clarity, consistency, and logical progression from data to results and conclusions were also critically examined. Potential biases and recognized limitations within the studies were also scrutinized. Ultimately, two articles were excluded for failing to meet Fink’s criteria, particularly in providing sufficient detail on methodology, results, conclusions, strengths, or limitations. The review process is illustrated in Fig.  1 .

figure 1

The study selection process

2.6 Data extraction

The next step is data extraction, the process of capturing the key information and categories from the included studies. To improve efficiency, reduce variation among authors, and minimize errors in data analysis, the coding categories were constructed using Creswell's [ 15 ] coding techniques for data extraction and interpretation. The coding process involves three sequential steps. The initial stage encompasses open coding , where the researcher examines the data, generates codes to describe and categorize it, and gains a deeper understanding without preconceived ideas. Following open coding is axial coding , where the interrelationships between codes from open coding are analyzed to establish more comprehensive categories or themes. The process concludes with selective coding , refining and integrating categories or themes to identify core concepts emerging from the data. The first coder performed the coding process, then engaged in discussions with the second and third authors to finalize the coding categories for the first five articles. The first coder then proceeded to code all studies and engaged again in discussions with the other authors to ensure the finalization of the coding process. After a comprehensive analysis and capturing of the key information from the included studies, the data extraction and interpretation process yielded several themes. These themes have been categorized and are presented in Table  2 . It is important to note that open coding results were removed from Table  2 for aesthetic reasons, as it included many generic aspects, such as words, short phrases, or sentences mentioned in the studies.

2.7 Synthesize studies

In this stage, we will gather, discuss, and analyze the key findings that emerged from the selected studies. The synthesis stage is considered a transition from an author-centric to a concept-centric focus, enabling us to map all the provided information to achieve the most effective evaluation of the data [ 87 ]. Initially, the authors extracted data that included general information about the selected studies, including the author(s)' names, study titles, years of publication, educational levels, research methodologies, sample sizes, participants, main aims or objectives, raw data sources, and analysis methods. Following that, all key information and significant results from the selected studies were compiled using Creswell’s [ 15 ] coding techniques for data extraction and interpretation to identify core concepts and themes emerging from the data, focusing on those that directly contributed to our research questions and objectives, such as the initial utilization of ChatGPT in learning and teaching, learners' and educators' familiarity with ChatGPT, and the main findings of each study. Finally, the data related to each selected study were extracted into an Excel spreadsheet for data processing. The Excel spreadsheet was reviewed by the authors, including a series of discussions to ensure the finalization of this process and prepare it for further analysis. Afterward, the final result being analyzed and presented in various types of charts and graphs. Table 4 presents the extracted data from the selected studies, with each study labeled with a capital 'S' followed by a number.

This section consists of two main parts. The first part provides a descriptive analysis of the data compiled from the reviewed studies. The second part presents the answers to the research questions and the main findings of these studies.

3.1 Part 1: descriptive analysis

This section will provide a descriptive analysis of the reviewed studies, including educational levels and fields, participants distribution, country contribution, research methodologies, study sample size, study population, publication year, list of journals, familiarity with ChatGPT, source of data, and the main aims and objectives of the studies. Table 4 presents a comprehensive overview of the extracted data from the selected studies.

3.1.1 The number of the reviewed studies and publication years

The total number of the reviewed studies was 14. All studies were empirical studies and published in different journals focusing on Education and Technology. One study was published in 2022 [S1], while the remaining were published in 2023 [S2]-[S14]. Table 3 illustrates the year of publication, the names of the journals, and the number of reviewed studies published in each journal for the studies reviewed.

3.1.2 Educational levels and fields

The majority of the reviewed studies, 11 studies, were conducted in higher education institutions [S1]-[S10] and [S13]. Two studies did not specify the educational level of the population [S12] and [S14], while one study focused on elementary education [S11]. However, the reviewed studies covered various fields of education. Three studies focused on Arts and Humanities Education [S8], [S11], and [S14], specifically English Education. Two studies focused on Engineering Education, with one in Computer Engineering [S2] and the other in Construction Education [S3]. Two studies focused on Mathematics Education [S5] and [S12]. One study focused on Social Science Education [S13]. One study focused on Early Education [S4]. One study focused on Journalism Education [S9]. Finally, three studies did not specify the field of education [S1], [S6], and [S7]. Figure  2 represents the educational levels in the reviewed studies, while Fig.  3 represents the context of the reviewed studies.

figure 2

Educational levels in the reviewed studies

figure 3

Context of the reviewed studies

3.1.3 Participants distribution and countries contribution

The reviewed studies have been conducted across different geographic regions, providing a diverse representation of the studies. The majority of the studies, 10 in total, [S1]-[S3], [S5]-[S9], [S11], and [S14], primarily focused on participants from single countries such as Pakistan, the United Arab Emirates, China, Indonesia, Poland, Saudi Arabia, South Korea, Spain, Tajikistan, and the United States. In contrast, four studies, [S4], [S10], [S12], and [S13], involved participants from multiple countries, including China and the United States [S4], China, the United Kingdom, and the United States [S10], the United Arab Emirates, Oman, Saudi Arabia, and Jordan [S12], Turkey, Sweden, Canada, and Australia [ 13 ]. Figures  4 and 5 illustrate the distribution of participants, whether from single or multiple countries, and the contribution of each country in the reviewed studies, respectively.

figure 4

The reviewed studies conducted in single or multiple countries

figure 5

The Contribution of each country in the studies

3.1.4 Study population and sample size

Four study populations were included: university students, university teachers, university teachers and students, and elementary school teachers. Six studies involved university students [S2], [S3], [S5] and [S6]-[S8]. Three studies focused on university teachers [S1], [S4], and [S6], while one study specifically targeted elementary school teachers [S11]. Additionally, four studies included both university teachers and students [S10] and [ 12 , 13 , 14 ], and among them, study [S13] specifically included postgraduate students. In terms of the sample size of the reviewed studies, nine studies included a small sample size of less than 50 participants [S1], [S3], [S6], [S8], and [S10]-[S13]. Three studies had 50–100 participants [S2], [S9], and [S14]. Only one study had more than 100 participants [S7]. It is worth mentioning that study [S4] adopted a mixed methods approach, including 10 participants for qualitative analysis and 110 participants for quantitative analysis.

3.1.5 Participants’ familiarity with using ChatGPT

The reviewed studies recruited a diverse range of participants with varying levels of familiarity with ChatGPT. Five studies [S2], [S4], [S6], [S8], and [S12] involved participants already familiar with ChatGPT, while eight studies [S1], [S3], [S5], [S7], [S9], [S10], [S13] and [S14] included individuals with differing levels of familiarity. Notably, one study [S11] had participants who were entirely unfamiliar with ChatGPT. It is important to note that four studies [S3], [S5], [S9], and [S11] provided training or guidance to their participants before conducting their studies, while ten studies [S1], [S2], [S4], [S6]-[S8], [S10], and [S12]-[S14] did not provide training due to the participants' existing familiarity with ChatGPT.

3.1.6 Research methodology approaches and source(S) of data

The reviewed studies adopted various research methodology approaches. Seven studies adopted qualitative research methodology [S1], [S4], [S6], [S8], [S10], [S11], and [S12], while three studies adopted quantitative research methodology [S3], [S7], and [S14], and four studies employed mixed-methods, which involved a combination of both the strengths of qualitative and quantitative methods [S2], [S5], [S9], and [S13].

In terms of the source(s) of data, the reviewed studies obtained their data from various sources, such as interviews, questionnaires, and pre-and post-tests. Six studies relied on interviews as their primary source of data collection [S1], [S4], [S6], [S10], [S11], and [S12], four studies relied on questionnaires [S2], [S7], [S13], and [S14], two studies combined the use of pre-and post-tests and questionnaires for data collection [S3] and [S9], while two studies combined the use of questionnaires and interviews to obtain the data [S5] and [S8]. It is important to note that six of the reviewed studies were quasi-experimental [S3], [S5], [S8], [S9], [S12], and [S14], while the remaining ones were experimental studies [S1], [S2], [S4], [S6], [S7], [S10], [S11], and [S13]. Figures  6 and 7 illustrate the research methodologies and the source (s) of data used in the reviewed studies, respectively.

figure 6

Research methodologies in the reviewed studies

figure 7

Source of data in the reviewed studies

3.1.7 The aim and objectives of the studies

The reviewed studies encompassed a diverse set of aims, with several of them incorporating multiple primary objectives. Six studies [S3], [S6], [S7], [S8], [S11], and [S12] examined the integration of ChatGPT in educational contexts, and four studies [S4], [S5], [S13], and [S14] investigated the various implications of its use in education, while three studies [S2], [S9], and [S10] aimed to explore both its integration and implications in education. Additionally, seven studies explicitly explored attitudes and perceptions of students [S2] and [S3], educators [S1] and [S6], or both [S10], [S12], and [S13] regarding the utilization of ChatGPT in educational settings.

3.2 Part 2: research questions and main findings of the reviewed studies

This part will present the answers to the research questions and the main findings of the reviewed studies, classified into two main categories (learning and teaching) according to AI Education classification by [ 36 ]. Figure  8 summarizes the main findings of the reviewed studies in a visually informative diagram. Table 4 provides a detailed list of the key information extracted from the selected studies that led to generating these themes.

figure 8

The main findings in the reviewed studies

4 Students' initial attempts at utilizing ChatGPT in learning and main findings from students' perspective

4.1 virtual intelligent assistant.

Nine studies demonstrated that ChatGPT has been utilized by students as an intelligent assistant to enhance and support their learning. Students employed it for various purposes, such as answering on-demand questions [S2]-[S5], [S8], [S10], and [S12], providing valuable information and learning resources [S2]-[S5], [S6], and [S8], as well as receiving immediate feedback [S2], [S4], [S9], [S10], and [S12]. In this regard, students generally were confident in the accuracy of ChatGPT's responses, considering them relevant, reliable, and detailed [S3], [S4], [S5], and [S8]. However, some students indicated the need for improvement, as they found that answers are not always accurate [S2], and that misleading information may have been provided or that it may not always align with their expectations [S6] and [S10]. It was also observed by the students that the accuracy of ChatGPT is dependent on several factors, including the quality and specificity of the user's input, the complexity of the question or topic, and the scope and relevance of its training data [S12]. Many students felt that ChatGPT's answers were not always accurate and most of them believed that it requires good background knowledge to work with.

4.2 Writing and language proficiency assistant

Six of the reviewed studies highlighted that ChatGPT has been utilized by students as a valuable assistant tool to improve their academic writing skills and language proficiency. Among these studies, three mainly focused on English education, demonstrating that students showed sufficient mastery in using ChatGPT for generating ideas, summarizing, paraphrasing texts, and completing writing essays [S8], [S11], and [S14]. Furthermore, ChatGPT helped them in writing by making students active investigators rather than passive knowledge recipients and facilitated the development of their writing skills [S11] and [S14]. Similarly, ChatGPT allowed students to generate unique ideas and perspectives, leading to deeper analysis and reflection on their journalism writing [S9]. In terms of language proficiency, ChatGPT allowed participants to translate content into their home languages, making it more accessible and relevant to their context [S4]. It also enabled them to request changes in linguistic tones or flavors [S8]. Moreover, participants used it to check grammar or as a dictionary [S11].

4.3 Valuable resource for learning approaches

Five studies demonstrated that students used ChatGPT as a valuable complementary resource for self-directed learning. It provided learning resources and guidance on diverse educational topics and created a supportive home learning environment [S2] and [S4]. Moreover, it offered step-by-step guidance to grasp concepts at their own pace and enhance their understanding [S5], streamlined task and project completion carried out independently [S7], provided comprehensive and easy-to-understand explanations on various subjects [S10], and assisted in studying geometry operations, thereby empowering them to explore geometry operations at their own pace [S12]. Three studies showed that students used ChatGPT as a valuable learning resource for personalized learning. It delivered age-appropriate conversations and tailored teaching based on a child's interests [S4], acted as a personalized learning assistant, adapted to their needs and pace, which assisted them in understanding mathematical concepts [S12], and enabled personalized learning experiences in social sciences by adapting to students' needs and learning styles [S13]. On the other hand, it is important to note that, according to one study [S5], students suggested that using ChatGPT may negatively affect collaborative learning competencies between students.

4.4 Enhancing students' competencies

Six of the reviewed studies have shown that ChatGPT is a valuable tool for improving a wide range of skills among students. Two studies have provided evidence that ChatGPT led to improvements in students' critical thinking, reasoning skills, and hazard recognition competencies through engaging them in interactive conversations or activities and providing responses related to their disciplines in journalism [S5] and construction education [S9]. Furthermore, two studies focused on mathematical education have shown the positive impact of ChatGPT on students' problem-solving abilities in unraveling problem-solving questions [S12] and enhancing the students' understanding of the problem-solving process [S5]. Lastly, one study indicated that ChatGPT effectively contributed to the enhancement of conversational social skills [S4].

4.5 Supporting students' academic success

Seven of the reviewed studies highlighted that students found ChatGPT to be beneficial for learning as it enhanced learning efficiency and improved the learning experience. It has been observed to improve students' efficiency in computer engineering studies by providing well-structured responses and good explanations [S2]. Additionally, students found it extremely useful for hazard reporting [S3], and it also enhanced their efficiency in solving mathematics problems and capabilities [S5] and [S12]. Furthermore, by finding information, generating ideas, translating texts, and providing alternative questions, ChatGPT aided students in deepening their understanding of various subjects [S6]. It contributed to an increase in students' overall productivity [S7] and improved efficiency in composing written tasks [S8]. Regarding learning experiences, ChatGPT was instrumental in assisting students in identifying hazards that they might have otherwise overlooked [S3]. It also improved students' learning experiences in solving mathematics problems and developing abilities [S5] and [S12]. Moreover, it increased students' successful completion of important tasks in their studies [S7], particularly those involving average difficulty writing tasks [S8]. Additionally, ChatGPT increased the chances of educational success by providing students with baseline knowledge on various topics [S10].

5 Teachers' initial attempts at utilizing ChatGPT in teaching and main findings from teachers' perspective

5.1 valuable resource for teaching.

The reviewed studies showed that teachers have employed ChatGPT to recommend, modify, and generate diverse, creative, organized, and engaging educational contents, teaching materials, and testing resources more rapidly [S4], [S6], [S10] and [S11]. Additionally, teachers experienced increased productivity as ChatGPT facilitated quick and accurate responses to questions, fact-checking, and information searches [S1]. It also proved valuable in constructing new knowledge [S6] and providing timely answers to students' questions in classrooms [S11]. Moreover, ChatGPT enhanced teachers' efficiency by generating new ideas for activities and preplanning activities for their students [S4] and [S6], including interactive language game partners [S11].

5.2 Improving productivity and efficiency

The reviewed studies showed that participants' productivity and work efficiency have been significantly enhanced by using ChatGPT as it enabled them to allocate more time to other tasks and reduce their overall workloads [S6], [S10], [S11], [S13], and [S14]. However, three studies [S1], [S4], and [S11], indicated a negative perception and attitude among teachers toward using ChatGPT. This negativity stemmed from a lack of necessary skills to use it effectively [S1], a limited familiarity with it [S4], and occasional inaccuracies in the content provided by it [S10].

5.3 Catalyzing new teaching methodologies

Five of the reviewed studies highlighted that educators found the necessity of redefining their teaching profession with the assistance of ChatGPT [S11], developing new effective learning strategies [S4], and adapting teaching strategies and methodologies to ensure the development of essential skills for future engineers [S5]. They also emphasized the importance of adopting new educational philosophies and approaches that can evolve with the introduction of ChatGPT into the classroom [S12]. Furthermore, updating curricula to focus on improving human-specific features, such as emotional intelligence, creativity, and philosophical perspectives [S13], was found to be essential.

5.4 Effective utilization of CHATGPT in teaching

According to the reviewed studies, effective utilization of ChatGPT in education requires providing teachers with well-structured training, support, and adequate background on how to use ChatGPT responsibly [S1], [S3], [S11], and [S12]. Establishing clear rules and regulations regarding its usage is essential to ensure it positively impacts the teaching and learning processes, including students' skills [S1], [S4], [S5], [S8], [S9], and [S11]-[S14]. Moreover, conducting further research and engaging in discussions with policymakers and stakeholders is indeed crucial for the successful integration of ChatGPT in education and to maximize the benefits for both educators and students [S1], [S6]-[S10], and [S12]-[S14].

6 Discussion

The purpose of this review is to conduct a systematic review of empirical studies that have explored the utilization of ChatGPT, one of today’s most advanced LLM-based chatbots, in education. The findings of the reviewed studies showed several ways of ChatGPT utilization in different learning and teaching practices as well as it provided insights and considerations that can facilitate its effective and responsible use in future educational contexts. The results of the reviewed studies came from diverse fields of education, which helped us avoid a biased review that is limited to a specific field. Similarly, the reviewed studies have been conducted across different geographic regions. This kind of variety in geographic representation enriched the findings of this review.

In response to RQ1 , "What are students' and teachers' initial attempts at utilizing ChatGPT in education?", the findings from this review provide comprehensive insights. Chatbots, including ChatGPT, play a crucial role in supporting student learning, enhancing their learning experiences, and facilitating diverse learning approaches [ 42 , 43 ]. This review found that this tool, ChatGPT, has been instrumental in enhancing students' learning experiences by serving as a virtual intelligent assistant, providing immediate feedback, on-demand answers, and engaging in educational conversations. Additionally, students have benefited from ChatGPT’s ability to generate ideas, compose essays, and perform tasks like summarizing, translating, paraphrasing texts, or checking grammar, thereby enhancing their writing and language competencies. Furthermore, students have turned to ChatGPT for assistance in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks, which fosters a supportive home learning environment, allowing them to take responsibility for their own learning and cultivate the skills and approaches essential for supportive home learning environment [ 26 , 27 , 28 ]. This finding aligns with the study of Saqr et al. [ 68 , 69 ] who highlighted that, when students actively engage in their own learning process, it yields additional advantages, such as heightened motivation, enhanced achievement, and the cultivation of enthusiasm, turning them into advocates for their own learning.

Moreover, students have utilized ChatGPT for tailored teaching and step-by-step guidance on diverse educational topics, streamlining task and project completion, and generating and recommending educational content. This personalization enhances the learning environment, leading to increased academic success. This finding aligns with other recent studies [ 26 , 27 , 28 , 60 , 66 ] which revealed that ChatGPT has the potential to offer personalized learning experiences and support an effective learning process by providing students with customized feedback and explanations tailored to their needs and abilities. Ultimately, fostering students' performance, engagement, and motivation, leading to increase students' academic success [ 14 , 44 , 58 ]. This ultimate outcome is in line with the findings of Saqr et al. [ 68 , 69 ], which emphasized that learning strategies are important catalysts of students' learning, as students who utilize effective learning strategies are more likely to have better academic achievement.

Teachers, too, have capitalized on ChatGPT's capabilities to enhance productivity and efficiency, using it for creating lesson plans, generating quizzes, providing additional resources, generating and preplanning new ideas for activities, and aiding in answering students’ questions. This adoption of technology introduces new opportunities to support teaching and learning practices, enhancing teacher productivity. This finding aligns with those of Day [ 17 ], De Castro [ 18 ], and Su and Yang [ 74 ] as well as with those of Valtonen et al. [ 82 ], who revealed that emerging technological advancements have opened up novel opportunities and means to support teaching and learning practices, and enhance teachers’ productivity.

In response to RQ2 , "What are the main findings derived from empirical studies that have incorporated ChatGPT into learning and teaching?", the findings from this review provide profound insights and raise significant concerns. Starting with the insights, chatbots, including ChatGPT, have demonstrated the potential to reshape and revolutionize education, creating new, novel opportunities for enhancing the learning process and outcomes [ 83 ], facilitating different learning approaches, and offering a range of pedagogical benefits [ 19 , 43 , 72 ]. In this context, this review found that ChatGPT could open avenues for educators to adopt or develop new effective learning and teaching strategies that can evolve with the introduction of ChatGPT into the classroom. Nonetheless, there is an evident lack of research understanding regarding the potential impact of generative machine learning models within diverse educational settings [ 83 ]. This necessitates teachers to attain a high level of proficiency in incorporating chatbots, such as ChatGPT, into their classrooms to create inventive, well-structured, and captivating learning strategies. In the same vein, the review also found that teachers without the requisite skills to utilize ChatGPT realized that it did not contribute positively to their work and could potentially have adverse effects [ 37 ]. This concern could lead to inequity of access to the benefits of chatbots, including ChatGPT, as individuals who lack the necessary expertise may not be able to harness their full potential, resulting in disparities in educational outcomes and opportunities. Therefore, immediate action is needed to address these potential issues. A potential solution is offering training, support, and competency development for teachers to ensure that all of them can leverage chatbots, including ChatGPT, effectively and equitably in their educational practices [ 5 , 28 , 80 ], which could enhance accessibility and inclusivity, and potentially result in innovative outcomes [ 82 , 83 ].

Additionally, chatbots, including ChatGPT, have the potential to significantly impact students' thinking abilities, including retention, reasoning, analysis skills [ 19 , 45 ], and foster innovation and creativity capabilities [ 83 ]. This review found that ChatGPT could contribute to improving a wide range of skills among students. However, it found that frequent use of ChatGPT may result in a decrease in innovative capacities, collaborative skills and cognitive capacities, and students' motivation to attend classes, as well as could lead to reduced higher-order thinking skills among students [ 22 , 29 ]. Therefore, immediate action is needed to carefully examine the long-term impact of chatbots such as ChatGPT, on learning outcomes as well as to explore its incorporation into educational settings as a supportive tool without compromising students' cognitive development and critical thinking abilities. In the same vein, the review also found that it is challenging to draw a consistent conclusion regarding the potential of ChatGPT to aid self-directed learning approach. This finding aligns with the recent study of Baskara [ 8 ]. Therefore, further research is needed to explore the potential of ChatGPT for self-directed learning. One potential solution involves utilizing learning analytics as a novel approach to examine various aspects of students' learning and support them in their individual endeavors [ 32 ]. This approach can bridge this gap by facilitating an in-depth analysis of how learners engage with ChatGPT, identifying trends in self-directed learning behavior, and assessing its influence on their outcomes.

Turning to the significant concerns, on the other hand, a fundamental challenge with LLM-based chatbots, including ChatGPT, is the accuracy and quality of the provided information and responses, as they provide false information as truth—a phenomenon often referred to as "hallucination" [ 3 , 49 ]. In this context, this review found that the provided information was not entirely satisfactory. Consequently, the utilization of chatbots presents potential concerns, such as generating and providing inaccurate or misleading information, especially for students who utilize it to support their learning. This finding aligns with other findings [ 6 , 30 , 35 , 40 ] which revealed that incorporating chatbots such as ChatGPT, into education presents challenges related to its accuracy and reliability due to its training on a large corpus of data, which may contain inaccuracies and the way users formulate or ask ChatGPT. Therefore, immediate action is needed to address these potential issues. One possible solution is to equip students with the necessary skills and competencies, which include a background understanding of how to use it effectively and the ability to assess and evaluate the information it generates, as the accuracy and the quality of the provided information depend on the input, its complexity, the topic, and the relevance of its training data [ 28 , 49 , 86 ]. However, it's also essential to examine how learners can be educated about how these models operate, the data used in their training, and how to recognize their limitations, challenges, and issues [ 79 ].

Furthermore, chatbots present a substantial challenge concerning maintaining academic integrity [ 20 , 56 ] and copyright violations [ 83 ], which are significant concerns in education. The review found that the potential misuse of ChatGPT might foster cheating, facilitate plagiarism, and threaten academic integrity. This issue is also affirmed by the research conducted by Basic et al. [ 7 ], who presented evidence that students who utilized ChatGPT in their writing assignments had more plagiarism cases than those who did not. These findings align with the conclusions drawn by Cotton et al. [ 13 ], Hisan and Amri [ 33 ] and Sullivan et al. [ 75 ], who revealed that the integration of chatbots such as ChatGPT into education poses a significant challenge to the preservation of academic integrity. Moreover, chatbots, including ChatGPT, have increased the difficulty in identifying plagiarism [ 47 , 67 , 76 ]. The findings from previous studies [ 1 , 84 ] indicate that AI-generated text often went undetected by plagiarism software, such as Turnitin. However, Turnitin and other similar plagiarism detection tools, such as ZeroGPT, GPTZero, and Copyleaks, have since evolved, incorporating enhanced techniques to detect AI-generated text, despite the possibility of false positives, as noted in different studies that have found these tools still not yet fully ready to accurately and reliably identify AI-generated text [ 10 , 51 ], and new novel detection methods may need to be created and implemented for AI-generated text detection [ 4 ]. This potential issue could lead to another concern, which is the difficulty of accurately evaluating student performance when they utilize chatbots such as ChatGPT assistance in their assignments. Consequently, the most LLM-driven chatbots present a substantial challenge to traditional assessments [ 64 ]. The findings from previous studies indicate the importance of rethinking, improving, and redesigning innovative assessment methods in the era of chatbots [ 14 , 20 , 64 , 75 ]. These methods should prioritize the process of evaluating students' ability to apply knowledge to complex cases and demonstrate comprehension, rather than solely focusing on the final product for assessment. Therefore, immediate action is needed to address these potential issues. One possible solution would be the development of clear guidelines, regulatory policies, and pedagogical guidance. These measures would help regulate the proper and ethical utilization of chatbots, such as ChatGPT, and must be established before their introduction to students [ 35 , 38 , 39 , 41 , 89 ].

In summary, our review has delved into the utilization of ChatGPT, a prominent example of chatbots, in education, addressing the question of how ChatGPT has been utilized in education. However, there remain significant gaps, which necessitate further research to shed light on this area.

7 Conclusions

This systematic review has shed light on the varied initial attempts at incorporating ChatGPT into education by both learners and educators, while also offering insights and considerations that can facilitate its effective and responsible use in future educational contexts. From the analysis of 14 selected studies, the review revealed the dual-edged impact of ChatGPT in educational settings. On the positive side, ChatGPT significantly aided the learning process in various ways. Learners have used it as a virtual intelligent assistant, benefiting from its ability to provide immediate feedback, on-demand answers, and easy access to educational resources. Additionally, it was clear that learners have used it to enhance their writing and language skills, engaging in practices such as generating ideas, composing essays, and performing tasks like summarizing, translating, paraphrasing texts, or checking grammar. Importantly, other learners have utilized it in supporting and facilitating their directed and personalized learning on a broad range of educational topics, assisting in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks. Educators, on the other hand, found ChatGPT beneficial for enhancing productivity and efficiency. They used it for creating lesson plans, generating quizzes, providing additional resources, and answers learners' questions, which saved time and allowed for more dynamic and engaging teaching strategies and methodologies.

However, the review also pointed out negative impacts. The results revealed that overuse of ChatGPT could decrease innovative capacities and collaborative learning among learners. Specifically, relying too much on ChatGPT for quick answers can inhibit learners' critical thinking and problem-solving skills. Learners might not engage deeply with the material or consider multiple solutions to a problem. This tendency was particularly evident in group projects, where learners preferred consulting ChatGPT individually for solutions over brainstorming and collaborating with peers, which negatively affected their teamwork abilities. On a broader level, integrating ChatGPT into education has also raised several concerns, including the potential for providing inaccurate or misleading information, issues of inequity in access, challenges related to academic integrity, and the possibility of misusing the technology.

Accordingly, this review emphasizes the urgency of developing clear rules, policies, and regulations to ensure ChatGPT's effective and responsible use in educational settings, alongside other chatbots, by both learners and educators. This requires providing well-structured training to educate them on responsible usage and understanding its limitations, along with offering sufficient background information. Moreover, it highlights the importance of rethinking, improving, and redesigning innovative teaching and assessment methods in the era of ChatGPT. Furthermore, conducting further research and engaging in discussions with policymakers and stakeholders are essential steps to maximize the benefits for both educators and learners and ensure academic integrity.

It is important to acknowledge that this review has certain limitations. Firstly, the limited inclusion of reviewed studies can be attributed to several reasons, including the novelty of the technology, as new technologies often face initial skepticism and cautious adoption; the lack of clear guidelines or best practices for leveraging this technology for educational purposes; and institutional or governmental policies affecting the utilization of this technology in educational contexts. These factors, in turn, have affected the number of studies available for review. Secondly, the utilization of the original version of ChatGPT, based on GPT-3 or GPT-3.5, implies that new studies utilizing the updated version, GPT-4 may lead to different findings. Therefore, conducting follow-up systematic reviews is essential once more empirical studies on ChatGPT are published. Additionally, long-term studies are necessary to thoroughly examine and assess the impact of ChatGPT on various educational practices.

Despite these limitations, this systematic review has highlighted the transformative potential of ChatGPT in education, revealing its diverse utilization by learners and educators alike and summarized the benefits of incorporating it into education, as well as the forefront critical concerns and challenges that must be addressed to facilitate its effective and responsible use in future educational contexts. This review could serve as an insightful resource for practitioners who seek to integrate ChatGPT into education and stimulate further research in the field.

Data availability

The data supporting our findings are available upon request.

Abbreviations

  • Artificial intelligence

AI in education

Large language model

Artificial neural networks

Chat Generative Pre-Trained Transformer

Recurrent neural networks

Long short-term memory

Reinforcement learning from human feedback

Natural language processing

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

AlAfnan MA, Dishari S, Jovic M, Lomidze K. ChatGPT as an educational tool: opportunities, challenges, and recommendations for communication, business writing, and composition courses. J Artif Intell Technol. 2023. https://doi.org/10.37965/jait.2023.0184 .

Article   Google Scholar  

Ali JKM, Shamsan MAA, Hezam TA, Mohammed AAQ. Impact of ChatGPT on learning motivation. J Engl Stud Arabia Felix. 2023;2(1):41–9. https://doi.org/10.56540/jesaf.v2i1.51 .

Alkaissi H, McFarlane SI. Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus. 2023. https://doi.org/10.7759/cureus.35179 .

Anderson N, Belavý DL, Perle SM, Hendricks S, Hespanhol L, Verhagen E, Memon AR. AI did not write this manuscript, or did it? Can we trick the AI text detector into generated texts? The potential future of ChatGPT and AI in sports & exercise medicine manuscript generation. BMJ Open Sport Exerc Med. 2023;9(1): e001568. https://doi.org/10.1136/bmjsem-2023-001568 .

Ausat AMA, Massang B, Efendi M, Nofirman N, Riady Y. Can chat GPT replace the role of the teacher in the classroom: a fundamental analysis. J Educ. 2023;5(4):16100–6.

Google Scholar  

Baidoo-Anu D, Ansah L. Education in the Era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4337484 .

Basic Z, Banovac A, Kruzic I, Jerkovic I. Better by you, better than me, chatgpt3 as writing assistance in students essays. 2023. arXiv preprint arXiv:2302.04536 .‏

Baskara FR. The promises and pitfalls of using chat GPT for self-determined learning in higher education: an argumentative review. Prosiding Seminar Nasional Fakultas Tarbiyah dan Ilmu Keguruan IAIM Sinjai. 2023;2:95–101. https://doi.org/10.47435/sentikjar.v2i0.1825 .

Behera RK, Bala PK, Dhir A. The emerging role of cognitive computing in healthcare: a systematic literature review. Int J Med Inform. 2019;129:154–66. https://doi.org/10.1016/j.ijmedinf.2019.04.024 .

Chaka C. Detecting AI content in responses generated by ChatGPT, YouChat, and Chatsonic: the case of five AI content detection tools. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.2.12 .

Chiu TKF, Xia Q, Zhou X, Chai CS, Cheng M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput Educ Artif Intell. 2023;4:100118. https://doi.org/10.1016/j.caeai.2022.100118 .

Choi EPH, Lee JJ, Ho M, Kwok JYY, Lok KYW. Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. Nurse Educ Today. 2023;125:105796. https://doi.org/10.1016/j.nedt.2023.105796 .

Cotton D, Cotton PA, Shipway JR. Chatting and cheating: ensuring academic integrity in the era of ChatGPT. Innov Educ Teach Int. 2023. https://doi.org/10.1080/14703297.2023.2190148 .

Crawford J, Cowling M, Allen K. Leadership is needed for ethical ChatGPT: Character, assessment, and learning using artificial intelligence (AI). J Univ Teach Learn Pract. 2023. https://doi.org/10.53761/1.20.3.02 .

Creswell JW. Educational research: planning, conducting, and evaluating quantitative and qualitative research [Ebook]. 4th ed. London: Pearson Education; 2015.

Curry D. ChatGPT Revenue and Usage Statistics (2023)—Business of Apps. 2023. https://www.businessofapps.com/data/chatgpt-statistics/

Day T. A preliminary investigation of fake peer-reviewed citations and references generated by ChatGPT. Prof Geogr. 2023. https://doi.org/10.1080/00330124.2023.2190373 .

De Castro CA. A Discussion about the Impact of ChatGPT in education: benefits and concerns. J Bus Theor Pract. 2023;11(2):p28. https://doi.org/10.22158/jbtp.v11n2p28 .

Deng X, Yu Z. A meta-analysis and systematic review of the effect of Chatbot technology use in sustainable education. Sustainability. 2023;15(4):2940. https://doi.org/10.3390/su15042940 .

Eke DO. ChatGPT and the rise of generative AI: threat to academic integrity? J Responsib Technol. 2023;13:100060. https://doi.org/10.1016/j.jrt.2023.100060 .

Elmoazen R, Saqr M, Tedre M, Hirsto L. A systematic literature review of empirical research on epistemic network analysis in education. IEEE Access. 2022;10:17330–48. https://doi.org/10.1109/access.2022.3149812 .

Farrokhnia M, Banihashem SK, Noroozi O, Wals AEJ. A SWOT analysis of ChatGPT: implications for educational practice and research. Innov Educ Teach Int. 2023. https://doi.org/10.1080/14703297.2023.2195846 .

Fergus S, Botha M, Ostovar M. Evaluating academic answers generated using ChatGPT. J Chem Educ. 2023;100(4):1672–5. https://doi.org/10.1021/acs.jchemed.3c00087 .

Fink A. Conducting research literature reviews: from the Internet to Paper. Incorporated: SAGE Publications; 2010.

Firaina R, Sulisworo D. Exploring the usage of ChatGPT in higher education: frequency and impact on productivity. Buletin Edukasi Indonesia (BEI). 2023;2(01):39–46. https://doi.org/10.56741/bei.v2i01.310 .

Firat, M. (2023). How chat GPT can transform autodidactic experiences and open education.  Department of Distance Education, Open Education Faculty, Anadolu Unive .‏ https://orcid.org/0000-0001-8707-5918

Firat M. What ChatGPT means for universities: perceptions of scholars and students. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.22 .

Fuchs K. Exploring the opportunities and challenges of NLP models in higher education: is Chat GPT a blessing or a curse? Front Educ. 2023. https://doi.org/10.3389/feduc.2023.1166682 .

García-Peñalvo FJ. La percepción de la inteligencia artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico. Educ Knowl Soc. 2023;24: e31279. https://doi.org/10.14201/eks.31279 .

Gilson A, Safranek CW, Huang T, Socrates V, Chi L, Taylor A, Chartash D. How does ChatGPT perform on the United States medical Licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med Educ. 2023;9: e45312. https://doi.org/10.2196/45312 .

Hashana AJ, Brundha P, Ayoobkhan MUA, Fazila S. Deep Learning in ChatGPT—A Survey. In   2023 7th international conference on trends in electronics and informatics (ICOEI) . 2023. (pp. 1001–1005). IEEE. https://doi.org/10.1109/icoei56765.2023.10125852

Hirsto L, Saqr M, López-Pernas S, Valtonen T. (2022). A systematic narrative review of learning analytics research in K-12 and schools.  Proceedings . https://ceur-ws.org/Vol-3383/FLAIEC22_paper_9536.pdf

Hisan UK, Amri MM. ChatGPT and medical education: a double-edged sword. J Pedag Educ Sci. 2023;2(01):71–89. https://doi.org/10.13140/RG.2.2.31280.23043/1 .

Hopkins AM, Logan JM, Kichenadasse G, Sorich MJ. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr. 2023. https://doi.org/10.1093/jncics/pkad010 .

Househ M, AlSaad R, Alhuwail D, Ahmed A, Healy MG, Latifi S, Sheikh J. Large Language models in medical education: opportunities, challenges, and future directions. JMIR Med Educ. 2023;9: e48291. https://doi.org/10.2196/48291 .

Ilkka T. The impact of artificial intelligence on learning, teaching, and education. Minist de Educ. 2018. https://doi.org/10.2760/12297 .

Iqbal N, Ahmed H, Azhar KA. Exploring teachers’ attitudes towards using CHATGPT. Globa J Manag Adm Sci. 2022;3(4):97–111. https://doi.org/10.46568/gjmas.v3i4.163 .

Irfan M, Murray L, Ali S. Integration of Artificial intelligence in academia: a case study of critical teaching and learning in Higher education. Globa Soc Sci Rev. 2023;8(1):352–64. https://doi.org/10.31703/gssr.2023(viii-i).32 .

Jeon JH, Lee S. Large language models in education: a focus on the complementary relationship between human teachers and ChatGPT. Educ Inf Technol. 2023. https://doi.org/10.1007/s10639-023-11834-1 .

Khan RA, Jawaid M, Khan AR, Sajjad M. ChatGPT—Reshaping medical education and clinical management. Pak J Med Sci. 2023. https://doi.org/10.12669/pjms.39.2.7653 .

King MR. A conversation on artificial intelligence, Chatbots, and plagiarism in higher education. Cell Mol Bioeng. 2023;16(1):1–2. https://doi.org/10.1007/s12195-022-00754-8 .

Kooli C. Chatbots in education and research: a critical examination of ethical implications and solutions. Sustainability. 2023;15(7):5614. https://doi.org/10.3390/su15075614 .

Kuhail MA, Alturki N, Alramlawi S, Alhejori K. Interacting with educational chatbots: a systematic review. Educ Inf Technol. 2022;28(1):973–1018. https://doi.org/10.1007/s10639-022-11177-3 .

Lee H. The rise of ChatGPT: exploring its potential in medical education. Anat Sci Educ. 2023. https://doi.org/10.1002/ase.2270 .

Li L, Subbareddy R, Raghavendra CG. AI intelligence Chatbot to improve students learning in the higher education platform. J Interconnect Netw. 2022. https://doi.org/10.1142/s0219265921430325 .

Limna P. A Review of Artificial Intelligence (AI) in Education during the Digital Era. 2022. https://ssrn.com/abstract=4160798

Lo CK. What is the impact of ChatGPT on education? A rapid review of the literature. Educ Sci. 2023;13(4):410. https://doi.org/10.3390/educsci13040410 .

Luo W, He H, Liu J, Berson IR, Berson MJ, Zhou Y, Li H. Aladdin’s genie or pandora’s box For early childhood education? Experts chat on the roles, challenges, and developments of ChatGPT. Early Educ Dev. 2023. https://doi.org/10.1080/10409289.2023.2214181 .

Meyer JG, Urbanowicz RJ, Martin P, O’Connor K, Li R, Peng P, Moore JH. ChatGPT and large language models in academia: opportunities and challenges. Biodata Min. 2023. https://doi.org/10.1186/s13040-023-00339-9 .

Mhlanga D. Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4354422 .

Neumann, M., Rauschenberger, M., & Schön, E. M. (2023). “We Need To Talk About ChatGPT”: The Future of AI and Higher Education.‏ https://doi.org/10.1109/seeng59157.2023.00010

Nolan B. Here are the schools and colleges that have banned the use of ChatGPT over plagiarism and misinformation fears. Business Insider . 2023. https://www.businessinsider.com

O’Leary DE. An analysis of three chatbots: BlenderBot, ChatGPT and LaMDA. Int J Intell Syst Account, Financ Manag. 2023;30(1):41–54. https://doi.org/10.1002/isaf.1531 .

Okoli C. A guide to conducting a standalone systematic literature review. Commun Assoc Inf Syst. 2015. https://doi.org/10.17705/1cais.03743 .

OpenAI. (2023). https://openai.com/blog/chatgpt

Perkins M. Academic integrity considerations of AI large language models in the post-pandemic era: ChatGPT and beyond. J Univ Teach Learn Pract. 2023. https://doi.org/10.53761/1.20.02.07 .

Plevris V, Papazafeiropoulos G, Rios AJ. Chatbots put to the test in math and logic problems: A preliminary comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard. arXiv (Cornell University) . 2023. https://doi.org/10.48550/arxiv.2305.18618

Rahman MM, Watanobe Y (2023) ChatGPT for education and research: opportunities, threats, and strategies. Appl Sci 13(9):5783. https://doi.org/10.3390/app13095783

Ram B, Verma P. Artificial intelligence AI-based Chatbot study of ChatGPT, google AI bard and baidu AI. World J Adv Eng Technol Sci. 2023;8(1):258–61. https://doi.org/10.30574/wjaets.2023.8.1.0045 .

Rasul T, Nair S, Kalendra D, Robin M, de Oliveira Santini F, Ladeira WJ, Heathcote L. The role of ChatGPT in higher education: benefits, challenges, and future research directions. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.29 .

Ratnam M, Sharm B, Tomer A. ChatGPT: educational artificial intelligence. Int J Adv Trends Comput Sci Eng. 2023;12(2):84–91. https://doi.org/10.30534/ijatcse/2023/091222023 .

Ray PP. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys Syst. 2023;3:121–54. https://doi.org/10.1016/j.iotcps.2023.04.003 .

Roumeliotis KI, Tselikas ND. ChatGPT and Open-AI models: a preliminary review. Future Internet. 2023;15(6):192. https://doi.org/10.3390/fi15060192 .

Rudolph J, Tan S, Tan S. War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.23 .

Ruiz LMS, Moll-López S, Nuñez-Pérez A, Moraño J, Vega-Fleitas E. ChatGPT challenges blended learning methodologies in engineering education: a case study in mathematics. Appl Sci. 2023;13(10):6039. https://doi.org/10.3390/app13106039 .

Sallam M, Salim NA, Barakat M, Al-Tammemi AB. ChatGPT applications in medical, dental, pharmacy, and public health education: a descriptive study highlighting the advantages and limitations. Narra J. 2023;3(1): e103. https://doi.org/10.52225/narra.v3i1.103 .

Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care. 2023. https://doi.org/10.1186/s13054-023-04380-2 .

Saqr M, López-Pernas S, Helske S, Hrastinski S. The longitudinal association between engagement and achievement varies by time, students’ profiles, and achievement state: a full program study. Comput Educ. 2023;199:104787. https://doi.org/10.1016/j.compedu.2023.104787 .

Saqr M, Matcha W, Uzir N, Jovanović J, Gašević D, López-Pernas S. Transferring effective learning strategies across learning contexts matters: a study in problem-based learning. Australas J Educ Technol. 2023;39(3):9.

Schöbel S, Schmitt A, Benner D, Saqr M, Janson A, Leimeister JM. Charting the evolution and future of conversational agents: a research agenda along five waves and new frontiers. Inf Syst Front. 2023. https://doi.org/10.1007/s10796-023-10375-9 .

Shoufan A. Exploring students’ perceptions of CHATGPT: thematic analysis and follow-up survey. IEEE Access. 2023. https://doi.org/10.1109/access.2023.3268224 .

Sonderegger S, Seufert S. Chatbot-mediated learning: conceptual framework for the design of Chatbot use cases in education. Gallen: Institute for Educational Management and Technologies, University of St; 2022. https://doi.org/10.5220/0010999200003182 .

Book   Google Scholar  

Strzelecki A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact Learn Environ. 2023. https://doi.org/10.1080/10494820.2023.2209881 .

Su J, Yang W. Unlocking the power of ChatGPT: a framework for applying generative AI in education. ECNU Rev Educ. 2023. https://doi.org/10.1177/20965311231168423 .

Sullivan M, Kelly A, McLaughlan P. ChatGPT in higher education: Considerations for academic integrity and student learning. J ApplLearn Teach. 2023;6(1):1–10. https://doi.org/10.37074/jalt.2023.6.1.17 .

Szabo A. ChatGPT is a breakthrough in science and education but fails a test in sports and exercise psychology. Balt J Sport Health Sci. 2023;1(128):25–40. https://doi.org/10.33607/bjshs.v127i4.1233 .

Taecharungroj V. “What can ChatGPT do?” analyzing early reactions to the innovative AI chatbot on Twitter. Big Data Cognit Comput. 2023;7(1):35. https://doi.org/10.3390/bdcc7010035 .

Tam S, Said RB. User preferences for ChatGPT-powered conversational interfaces versus traditional methods. Biomed Eng Soc. 2023. https://doi.org/10.58496/mjcsc/2023/004 .

Tedre M, Kahila J, Vartiainen H. (2023). Exploration on how co-designing with AI facilitates critical evaluation of ethics of AI in craft education. In: Langran E, Christensen P, Sanson J (Eds).  Proceedings of Society for Information Technology and Teacher Education International Conference . 2023. pp. 2289–2296.

Tlili A, Shehata B, Adarkwah MA, Bozkurt A, Hickey DT, Huang R, Agyemang B. What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learn Environ. 2023. https://doi.org/10.1186/s40561-023-00237-x .

Uddin SMJ, Albert A, Ovid A, Alsharef A. Leveraging CHATGPT to aid construction hazard recognition and support safety education and training. Sustainability. 2023;15(9):7121. https://doi.org/10.3390/su15097121 .

Valtonen T, López-Pernas S, Saqr M, Vartiainen H, Sointu E, Tedre M. The nature and building blocks of educational technology research. Comput Hum Behav. 2022;128:107123. https://doi.org/10.1016/j.chb.2021.107123 .

Vartiainen H, Tedre M. Using artificial intelligence in craft education: crafting with text-to-image generative models. Digit Creat. 2023;34(1):1–21. https://doi.org/10.1080/14626268.2023.2174557 .

Ventayen RJM. OpenAI ChatGPT generated results: similarity index of artificial intelligence-based contents. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4332664 .

Wagner MW, Ertl-Wagner BB. Accuracy of information and references using ChatGPT-3 for retrieval of clinical radiological information. Can Assoc Radiol J. 2023. https://doi.org/10.1177/08465371231171125 .

Wardat Y, Tashtoush MA, AlAli R, Jarrah AM. ChatGPT: a revolutionary tool for teaching and learning mathematics. Eurasia J Math, Sci Technol Educ. 2023;19(7):em2286. https://doi.org/10.29333/ejmste/13272 .

Webster J, Watson RT. Analyzing the past to prepare for the future: writing a literature review. Manag Inf Syst Quart. 2002;26(2):3.

Xiao Y, Watson ME. Guidance on conducting a systematic literature review. J Plan Educ Res. 2017;39(1):93–112. https://doi.org/10.1177/0739456x17723971 .

Yan D. Impact of ChatGPT on learners in a L2 writing practicum: an exploratory investigation. Educ Inf Technol. 2023. https://doi.org/10.1007/s10639-023-11742-4 .

Yu H. Reflection on whether Chat GPT should be banned by academia from the perspective of education and teaching. Front Psychol. 2023;14:1181712. https://doi.org/10.3389/fpsyg.2023.1181712 .

Zhu C, Sun M, Luo J, Li T, Wang M. How to harness the potential of ChatGPT in education? Knowl Manag ELearn. 2023;15(2):133–52. https://doi.org/10.34105/j.kmel.2023.15.008 .

Download references

The paper is co-funded by the Academy of Finland (Suomen Akatemia) Research Council for Natural Sciences and Engineering for the project Towards precision education: Idiographic learning analytics (TOPEILA), Decision Number 350560.

Author information

Authors and affiliations.

School of Computing, University of Eastern Finland, 80100, Joensuu, Finland

Yazid Albadarin, Mohammed Saqr, Nicolas Pope & Markku Tukiainen

You can also search for this author in PubMed   Google Scholar

Contributions

YA contributed to the literature search, data analysis, discussion, and conclusion. Additionally, YA contributed to the manuscript’s writing, editing, and finalization. MS contributed to the study’s design, conceptualization, acquisition of funding, project administration, allocation of resources, supervision, validation, literature search, and analysis of results. Furthermore, MS contributed to the manuscript's writing, revising, and approving it in its finalized state. NP contributed to the results, and discussions, and provided supervision. NP also contributed to the writing process, revisions, and the final approval of the manuscript in its finalized state. MT contributed to the study's conceptualization, resource management, supervision, writing, revising the manuscript, and approving it.

Corresponding author

Correspondence to Yazid Albadarin .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table  4

The process of synthesizing the data presented in Table  4 involved identifying the relevant studies through a search process of databases (ERIC, Scopus, Web of Knowledge, Dimensions.ai, and lens.org) using specific keywords "ChatGPT" and "education". Following this, inclusion/exclusion criteria were applied, and data extraction was performed using Creswell's [ 15 ] coding techniques to capture key information and identify common themes across the included studies.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Albadarin, Y., Saqr, M., Pope, N. et al. A systematic literature review of empirical research on ChatGPT in education. Discov Educ 3 , 60 (2024). https://doi.org/10.1007/s44217-024-00138-2

Download citation

Received : 22 October 2023

Accepted : 10 May 2024

Published : 26 May 2024

DOI : https://doi.org/10.1007/s44217-024-00138-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Large language models
  • Educational technology
  • Systematic review

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

Did Body Lice Spread Bubonic Plague? Research Suggests the Parasites Are Better Vectors Than Thought

These blood-sucking insects are capable of transmitting the bacteria that caused the Black Death, according to a laboratory study

Sarah Kuta

Daily Correspondent

Illustration of a bunch of people sick or dying in the street, depicting a scene caused by the Black Death

The bubonic plague killed an estimated 25 million people in Europe —about one-third of the continent’s population—during a pandemic known as the Black Death in the mid-1300s. But exactly how and why the plague-causing bacteria , called Yersinia pestis , spread so quickly has remained an enduring mystery.

Scientists and historians believe rat fleas were largely responsible for transmitting the bacteria from person to person. But rat fleas alone can’t totally account for the speed of the spread.

Now, researchers have come up with another likely culprit: human body lice. These blood-sucking parasites may be more effective at spreading Y. pestis than previously thought, according to a new paper published Tuesday in the journal P LOS Biology .

The findings build upon a 2018 study that compared historical records of plague outbreaks in nine European cities to plague outbreak simulations under different conditions—some spreading via rats and some spreading via parasites that live on humans. That research also indicated that, while rats were likely involved, the plague was able to infect so many people because of human parasites, including body lice.

Body lice ( Pediculus humanus humanus ) are tiny, wingless insects that typically live in bedding and clothing and feed on human blood. They’re different from head lice ( Pediculus humanus capitis ), which tend to live on human scalps—though both species usually spread via direct contact with an infected person or contact with contaminated materials.

Today, body lice are usually found in situations involving reduced hygiene and a lack of access to clean clothing and bedding, such as after natural disasters or among people experiencing homelessness. But these opportunistic bugs have been feasting on humans and their ancestors for between five million and six million years—and in the past, they were just a fact of life.

Scientists have previously linked body lice with spreading other types of bacteria that cause human diseases—including trench fever , louse-borne relapsing fever and epidemic typhus —but not specifically with Y. pestis. So, researchers set out to explore the possible link between body lice and Y. pestis transmission .

They set up a laboratory experiment involving a device referred to as a “feeding membrane” that’s designed to mimic human skin. They created blood samples contaminated with Y. pestis at levels similar to actual human plague cases, then set the body lice loose to feed.

While drinking blood samples through the artificial skin, the body lice picked up the bacteria. Then, scientists transferred them to a new feeding membrane that contained uninfected blood. Later, when they tested the once-sterile blood sample, the scientists detected Y. pestis .

The researchers also discovered some possible mechanisms of transmission. Some of the body lice had Y. pestis in their digestive tracts and in their feces. And, because body lice feed frequently—usually five or six times a day, or once roughly every four hours—they produce feces frequently.

After being bitten by an infected louse, humans would likely scratch their skin. This scratching could create small entry points into the body for the lice’s infected feces; scratching might also crush the infected lice themselves and allow their contaminated fluids to enter the body.

In addition, the scientists found Y. pestis in some of the lice’s Pawlowsky glands, which secrete lubricating saliva into their mouthparts. If an infected louse bites a human, these secretions could also directly transmit the bacteria.

This particular finding could be a jumping off point for future investigations.

“Research on the salivary molecules produced by body lice is an understudied topic that is worthy of further characterization,” says study co-author Joe Hinnebusch , a now-retired senior investigator at the National Institute of Allergy and Infectious Diseases Laboratory of Bacteriology, to Interesting Engineering ’s Maria Bolevich. “Very little is known about the Pawlowsky glands.”

Still, because the study was conducted in a lab, it might not be a perfect comparison for how body lice may transmit Y. pestis in the real world, among real humans. But, even so, the findings suggest this previously overlooked parasite could have contributed to the Black Death’s spread nearly 700 years ago.

“About 30 to 50 percent of the population died during that pandemic,” says Meghan Brett , an infectious disease expert at the University of New Mexico who was not involved in the research, to NBC News ’ Linda Carroll. “One of the things that’s been hard to explain is how it was transmitted. It’s been suggested that rats and fleas were not sufficient. So, this study is actually quite interesting and has potentially come up with the explanation.”

Get the latest stories in your inbox every weekday.

Sarah Kuta

Sarah Kuta | READ MORE

Sarah Kuta is a writer and editor based in Longmont, Colorado. She covers history, science, travel, food and beverage, sustainability, economics and other topics.

IMAGES

  1. How to Develop a Strong Research Question

    how to design research questions

  2. 12 Questionnaire Design Tips for Successful Surveys

    how to design research questions

  3. How to Develop a Strong Research Question

    how to design research questions

  4. How to Write a Research Question in 2024: Types, Steps, and Examples

    how to design research questions

  5. Master Survey Design: A 10-step Guide with Examples

    how to design research questions

  6. Research Question: Definition, Types, Examples, Quick Tips

    how to design research questions

VIDEO

  1. Research Design, Research Method: What's the Difference?

  2. TAGLISH VERSION: How to Choose a Topic and Research design: Several examples

  3. TAGLISH VERSION: HOW TO WRITE THE INTRODUCTION: with EXAMPLES

  4. Systematic reviews on the effectiveness of women’s empowerment programmes: panel │Priya Nanda

  5. What are Causal Research Question? #causalresearchquestion

  6. What is Research Design

COMMENTS

  1. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  2. How to Write a Research Question: Types and Examples

    Choose a broad topic, such as "learner support" or "social media influence" for your study. Select topics of interest to make research more enjoyable and stay motivated. Preliminary research. The goal is to refine and focus your research question. The following strategies can help: Skim various scholarly articles.

  3. Research Design

    Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions. Introduction. Step 1. Step 2.

  4. The Writing Center

    Most professional researchers focus on topics they are genuinely interested in studying. Writers should choose a broad topic about which they genuinely would like to know more. An example of a general topic might be "Slavery in the American South" or "Films of the 1930s.". Do some preliminary research on your general topic.

  5. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  6. Research Question: Definition, Types, Examples, Quick Tips

    There are two types of research: Qualitative research and Quantitative research. There must be research questions for every type of research. Your research question will be based on the type of research you want to conduct and the type of data collection. The first step in designing research involves identifying a gap and creating a focused ...

  7. Designing a Research Question

    Research questions are vital to qualitative, quantitative, and mixed-methods research. They "narrow the research objective and research purpose" ([]: p 475; [2, 3]) and determine the study methods (e.g., research paradigm, design, sampling method, instruments, and analysis).Despite the essential role the question holds in guiding and focusing research, White [] noted that academic ...

  8. Creating a Good Research Question

    Important Factors: Consider Feasibility and Novelty. Sharmila Dorbala, MD, MPH, talks about how the questions become "a research umbrella.". David Sykes, MD, PhD, describes why feasibility, impact, and commitment are all crucial. Subha Ramani, PhD, MBBS, MMed, explains why it's important to consider stakeholders.

  9. How to Write a Research Question in 2024: Types, Steps, and Examples

    This research question design often includes both dependent and independent variables and use words such as "association" or "trends." Qualitative research questions. Qualitative research questions may concern broad areas of research or more specific areas of study. Similar to quantitative research questions, qualitative research questions ...

  10. Research Question 101

    Types of research questions. Now that we've defined what a research question is, let's look at the different types of research questions that you might come across. Broadly speaking, there are (at least) four different types of research questions - descriptive, comparative, relational, and explanatory. Descriptive questions ask what is happening. In other words, they seek to describe a ...

  11. How to Develop a Good Research Question?

    A strong research question guides the design of a study. Moreover, it helps determine the type of research and identify specific objectives. Research questions state the specific issue you are addressing and focus on outcomes of the research for individuals to learn. Therefore, it helps break up the study into easy steps to complete the ...

  12. 3 Steps to Designing Effective Research Questions and Study Methods

    Step 3: Explore Study Design Formats. The next step is selecting the study format you want to use to gather your data. "People often ask me what the best study design is to use for their work. But there is no one right answer," Robertson says. "We tend to think randomized clinical trials have the highest level of evidence.

  13. Research Questions

    Designing the study: Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results. Collecting data: Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments. Analyzing data: Research questions ...

  14. Framing a research question: The first and most vital step in planning

    In summary, a research question should be refined by consideration of previously published research findings, focused to address specific and relevant clinical issues and be achievable. It will form the foundations on which to design a research study that has the potential to deliver clinically useful results.

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  16. Formulation of Research Question

    A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem. ... RQ determines study design, for example, the question aimed to find the incidence of a disease in population will lead to conducting a survey; to find risk factors for a disease will ...

  17. How to define a research question or a design problem

    Introduction. Many texts state that identifying a good research question (or, equivalently, a design problem) is important for research. Wikipedia, for example, starts (as of writing this text, at least) with the following two sentences: "A research question is 'a question that a research project sets out to answer'.

  18. Crafting Your Thesis Statement: Formulating a Strong Research Question

    Step 1: Choose a Topic. The first step in crafting a strong thesis statement is choosing a topic that interests you and is relevant to your field of study. A good topic should be specific enough to allow for in-depth research and analysis but broad enough to provide adequate material for discussion.

  19. Formulating design research questions: A framework

    The framework, RIN. AFE, pertains to criteria for effective research questions: on the substance side, Relevant, Interesting and Novel; on the methodological execution side, Appropriate, Feasible and Ethical. The application of this framework is demonstrated through an analysis of an award-winning Design Studies paper.

  20. Research Question

    3. Determines the Research Design. The type of research question informs the research design, including the choice of methodology, data collection methods, and analysis techniques. Benefit: Ensures that the chosen research design is appropriate for answering the specific research question, enhancing the validity and reliability of the results. 4.

  21. The Best User Research Questions (+ How to Ask Them)

    Questions for user research can typically be categorized three ways: Questions about the problem e.g., what are users' pain points, what task are they trying to complete, what solution do they want. Questions about the people e.g., who they are, how they use products, what they want to accomplish, how likely are they to use the product.

  22. Your Step-by-Step Guide to Choosing a Thesis Research Topic.

    Create an outline and get feedback. Once you have an idea of what you are going to write about, create an outline or summary and get feedback from your teacher(s). It's okay if you don't know exactly how you're going to answer your thesis question yet, but based on your research you should have a rough plan of the key points you want to ...

  23. How to Compose a "How Might We" Question (DDN2-J15)

    HMW questions can be used to highlight potential opportunities for ideation based on insights found during design research. Desired outcome. A set of structured questions to work on at the ideation stage of the design process. When to use. After conducting design research and data synthesis but before ideation.

  24. Research Proposal Guide

    Research Proposal Guide. Once an Initial Research Estimate Form (IREF) is validated and selected for funding, the next step is to complete a Research Proposal. Proposals must be completed and approved before funding can be authorized and released. Faculty that have an IREF validated and selected for funding are required to complete the ...

  25. A systematic literature review of empirical research on ChatGPT in

    2.7 Synthesize studies. In this stage, we will gather, discuss, and analyze the key findings that emerged from the selected studies. The synthesis stage is considered a transition from an author-centric to a concept-centric focus, enabling us to map all the provided information to achieve the most effective evaluation of the data [].Initially, the authors extracted data that included general ...

  26. Co-design to support the development of inclusive eHealth tools for

    Methods: This study is based on a social justice design and participant observation as part of a large-scale research project funded by the Ministry of Families as part of the Age-Friendly Quebec Program (Québec Ami des Aînés). The analysis was based on the method developed by Miles and Huberman and on Paillé's analytical questioning method.

  27. Did Body Lice Spread Bubonic Plague? Research Suggests the Parasites

    That research also indicated that, while rats were likely involved, the plague was able to infect so many people because of human parasites, including body lice.