Covidence website will be inaccessible as we upgrading our platform on Monday 23rd August at 10am AEST, / 2am CEST/1am BST (Sunday, 15th August 8pm EDT/5pm PDT) 

How to write the methods section of a systematic review

Home | Blog | How To | How to write the methods section of a systematic review

Covidence breaks down how to write a methods section

The methods section of your systematic review describes what you did, how you did it, and why. Readers need this information to interpret the results and conclusions of the review. Often, a lot of information needs to be distilled into just a few paragraphs. This can be a challenging task, but good preparation and the right tools will help you to set off in the right direction 🗺️🧭.

Systematic reviews are so-called because they are conducted in a way that is rigorous and replicable. So it’s important that these methods are reported in a way that is thorough, clear, and easy to navigate for the reader – whether that’s a patient, a healthcare worker, or a researcher. 

Like most things in a systematic review, the methods should be planned upfront and ideally described in detail in a project plan or protocol. Reviews of healthcare interventions follow the PRISMA guidelines for the minimum set of items to report in the methods section. But what else should be included? It’s a good idea to consider what readers will want to know about the review methods and whether the journal you’re planning to submit the work to has expectations on the reporting of methods. Finding out in advance will help you to plan what to include.

systematic literature review the method

Describe what happened

While the research plan sets out what you intend to do, the methods section is a write-up of what actually happened. It’s not a simple case of rewriting the plan in the past tense – you will also need to discuss and justify deviations from the plan and describe the handling of issues that were unforeseen at the time the plan was written. For this reason, it is useful to make detailed notes before, during, and after the review is completed. Relying on memory alone risks losing valuable information and trawling through emails when the deadline is looming can be frustrating and time consuming! 

Keep it brief

The methods section should be succinct but include all the noteworthy information. This can be a difficult balance to achieve. A useful strategy is to aim for a brief description that signposts the reader to a separate section or sections of supporting information. This could include datasets, a flowchart to show what happened to the excluded studies, a collection of search strategies, and tables containing detailed information about the studies.This separation keeps the review short and simple while enabling the reader to drill down to the detail as needed. And if the methods follow a well-known or standard process, it might suffice to say so and give a reference, rather than describe the process at length. 

Follow a structure

A clear structure provides focus. Use of descriptive headings keeps the writing on track and helps the reader get to key information quickly. What should the structure of the methods section look like? As always, a lot depends on the type of review but it will certainly contain information relating to the following areas:

  • Selection criteria ⭕
  • Data collection and analysis 👩‍💻
  • Study quality and risk of bias ⚖️

Let’s look at each of these in turn.

1. Selection criteria ⭕

The criteria for including and excluding studies are listed here. This includes detail about the types of studies, the types of participants, the types of interventions and the types of outcomes and how they were measured. 

2. Search 🕵🏾‍♀️

Comprehensive reporting of the search is important because this means it can be evaluated and replicated. The search strategies are included in the review, along with details of the databases searched. It’s also important to list any restrictions on the search (for example, language), describe how resources other than electronic databases were searched (for example,  non-indexed journals), and give the date that the searches were run. The PRISMA-S extension provides guidance on reporting literature searches. 

systematic literature review the method

Systematic reviewer pro-tip:

 Copy and paste the search strategy to avoid introducing typos

3. Data collection and analysis 👩‍💻

This section describes:

  • how studies were selected for inclusion in the review
  • how study data were extracted from the study reports
  • how study data were combined for analysis and synthesis

To describe how studies were selected for inclusion , review teams outline the screening process. Covidence uses reviewers’ decision data to automatically populate a PRISMA flow diagram for this purpose. Covidence can also calculate Cohen’s kappa to enable review teams to report the level of agreement among individual reviewers during screening.

To describe how study data were extracted from the study reports , reviewers outline the form that was used, any pilot-testing that was done, and the items that were extracted from the included studies. An important piece of information to include here is the process used to resolve conflict among the reviewers. Covidence’s data extraction tool saves reviewers’ comments and notes in the system as they work. This keeps the information in one place for easy retrieval ⚡.

To describe how study data were combined for analysis and synthesis, reviewers outline the type of synthesis (narrative or quantitative, for example), the methods for grouping data, the challenges that came up, and how these were dealt with. If the review includes a meta-analysis, it will detail how this was performed and how the treatment effects were measured.

4. Study quality and risk of bias ⚖️

Because the results of systematic reviews can be affected by many types of bias, reviewers make every effort to minimise it and to show the reader that the methods they used were appropriate. This section describes the methods used to assess study quality and an assessment of the risk of bias across a range of domains. 

Steps to assess the risk of bias in studies include looking at how study participants were assigned to treatment groups and whether patients and/or study assessors were blinded to the treatment given. Reviewers also report their assessment of the risk of bias due to missing outcome data, whether that is due to participant drop-out or non-reporting of the outcomes by the study authors.

Covidence’s default template for assessing study quality is Cochrane’s risk of bias tool but it is also possible to start from scratch and build a tool with a set of custom domains if you prefer.

Careful planning, clear writing, and a structured approach are key to a good methods section. A methodologist will be able to refer review teams to examples of good methods reporting in the literature. Covidence helps reviewers to screen references, extract data and complete risk of bias tables quickly and efficiently. Sign up for a free trial today!

Picture of Laura Mellor. Portsmouth, UK

Laura Mellor. Portsmouth, UK

Perhaps you'd also like....

systematic literature review the method

Top 5 Tips for High-Quality Systematic Review Data Extraction

Data extraction can be a complex step in the systematic review process. Here are 5 top tips from our experts to help prepare and achieve high quality data extraction.

systematic literature review the method

How to get through study quality assessment Systematic Review

Find out 5 tops tips to conducting quality assessment and why it’s an important step in the systematic review process.

systematic literature review the method

How to extract study data for your systematic review

Learn the basic process and some tips to build data extraction forms for your systematic review with Covidence.

Better systematic review management

Head office, working for an institution or organisation.

Find out why over 350 of the world’s leading institutions are seeing a surge in publications since using Covidence!

Request a consultation with one of our team members and start empowering your researchers:

By using our site you consent to our use of cookies to measure and improve our site’s performance. Please see our Privacy Policy for more information. 

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Systematic Review | Definition, Example, & Guide

Systematic Review | Definition, Example & Guide

Published on June 15, 2022 by Shaun Turney . Revised on November 20, 2023.

A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer.

They answered the question “What is the effectiveness of probiotics in reducing eczema symptoms and improving quality of life in patients with eczema?”

In this context, a probiotic is a health product that contains live microorganisms and is taken by mouth. Eczema is a common skin condition that causes red, itchy skin.

Table of contents

What is a systematic review, systematic review vs. meta-analysis, systematic review vs. literature review, systematic review vs. scoping review, when to conduct a systematic review, pros and cons of systematic reviews, step-by-step example of a systematic review, other interesting articles, frequently asked questions about systematic reviews.

A review is an overview of the research that’s already been completed on a topic.

What makes a systematic review different from other types of reviews is that the research methods are designed to reduce bias . The methods are repeatable, and the approach is formal and systematic:

  • Formulate a research question
  • Develop a protocol
  • Search for all relevant studies
  • Apply the selection criteria
  • Extract the data
  • Synthesize the data
  • Write and publish a report

Although multiple sets of guidelines exist, the Cochrane Handbook for Systematic Reviews is among the most widely used. It provides detailed guidelines on how to complete each step of the systematic review process.

Systematic reviews are most commonly used in medical and public health research, but they can also be found in other disciplines.

Systematic reviews typically answer their research question by synthesizing all available evidence and evaluating the quality of the evidence. Synthesizing means bringing together different information to tell a single, cohesive story. The synthesis can be narrative ( qualitative ), quantitative , or both.

Prevent plagiarism. Run a free check.

Systematic reviews often quantitatively synthesize the evidence using a meta-analysis . A meta-analysis is a statistical analysis, not a type of review.

A meta-analysis is a technique to synthesize results from multiple studies. It’s a statistical analysis that combines the results of two or more studies, usually to estimate an effect size .

A literature review is a type of review that uses a less systematic and formal approach than a systematic review. Typically, an expert in a topic will qualitatively summarize and evaluate previous work, without using a formal, explicit method.

Although literature reviews are often less time-consuming and can be insightful or helpful, they have a higher risk of bias and are less transparent than systematic reviews.

Similar to a systematic review, a scoping review is a type of review that tries to minimize bias by using transparent and repeatable methods.

However, a scoping review isn’t a type of systematic review. The most important difference is the goal: rather than answering a specific question, a scoping review explores a topic. The researcher tries to identify the main concepts, theories, and evidence, as well as gaps in the current research.

Sometimes scoping reviews are an exploratory preparation step for a systematic review, and sometimes they are a standalone project.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

systematic literature review the method

A systematic review is a good choice of review if you want to answer a question about the effectiveness of an intervention , such as a medical treatment.

To conduct a systematic review, you’ll need the following:

  • A precise question , usually about the effectiveness of an intervention. The question needs to be about a topic that’s previously been studied by multiple researchers. If there’s no previous research, there’s nothing to review.
  • If you’re doing a systematic review on your own (e.g., for a research paper or thesis ), you should take appropriate measures to ensure the validity and reliability of your research.
  • Access to databases and journal archives. Often, your educational institution provides you with access.
  • Time. A professional systematic review is a time-consuming process: it will take the lead author about six months of full-time work. If you’re a student, you should narrow the scope of your systematic review and stick to a tight schedule.
  • Bibliographic, word-processing, spreadsheet, and statistical software . For example, you could use EndNote, Microsoft Word, Excel, and SPSS.

A systematic review has many pros .

  • They minimize research bias by considering all available evidence and evaluating each study for bias.
  • Their methods are transparent , so they can be scrutinized by others.
  • They’re thorough : they summarize all available evidence.
  • They can be replicated and updated by others.

Systematic reviews also have a few cons .

  • They’re time-consuming .
  • They’re narrow in scope : they only answer the precise research question.

The 7 steps for conducting a systematic review are explained with an example.

Step 1: Formulate a research question

Formulating the research question is probably the most important step of a systematic review. A clear research question will:

  • Allow you to more effectively communicate your research to other researchers and practitioners
  • Guide your decisions as you plan and conduct your systematic review

A good research question for a systematic review has four components, which you can remember with the acronym PICO :

  • Population(s) or problem(s)
  • Intervention(s)
  • Comparison(s)

You can rearrange these four components to write your research question:

  • What is the effectiveness of I versus C for O in P ?

Sometimes, you may want to include a fifth component, the type of study design . In this case, the acronym is PICOT .

  • Type of study design(s)
  • The population of patients with eczema
  • The intervention of probiotics
  • In comparison to no treatment, placebo , or non-probiotic treatment
  • The outcome of changes in participant-, parent-, and doctor-rated symptoms of eczema and quality of life
  • Randomized control trials, a type of study design

Their research question was:

  • What is the effectiveness of probiotics versus no treatment, a placebo, or a non-probiotic treatment for reducing eczema symptoms and improving quality of life in patients with eczema?

Step 2: Develop a protocol

A protocol is a document that contains your research plan for the systematic review. This is an important step because having a plan allows you to work more efficiently and reduces bias.

Your protocol should include the following components:

  • Background information : Provide the context of the research question, including why it’s important.
  • Research objective (s) : Rephrase your research question as an objective.
  • Selection criteria: State how you’ll decide which studies to include or exclude from your review.
  • Search strategy: Discuss your plan for finding studies.
  • Analysis: Explain what information you’ll collect from the studies and how you’ll synthesize the data.

If you’re a professional seeking to publish your review, it’s a good idea to bring together an advisory committee . This is a group of about six people who have experience in the topic you’re researching. They can help you make decisions about your protocol.

It’s highly recommended to register your protocol. Registering your protocol means submitting it to a database such as PROSPERO or ClinicalTrials.gov .

Step 3: Search for all relevant studies

Searching for relevant studies is the most time-consuming step of a systematic review.

To reduce bias, it’s important to search for relevant studies very thoroughly. Your strategy will depend on your field and your research question, but sources generally fall into these four categories:

  • Databases: Search multiple databases of peer-reviewed literature, such as PubMed or Scopus . Think carefully about how to phrase your search terms and include multiple synonyms of each word. Use Boolean operators if relevant.
  • Handsearching: In addition to searching the primary sources using databases, you’ll also need to search manually. One strategy is to scan relevant journals or conference proceedings. Another strategy is to scan the reference lists of relevant studies.
  • Gray literature: Gray literature includes documents produced by governments, universities, and other institutions that aren’t published by traditional publishers. Graduate student theses are an important type of gray literature, which you can search using the Networked Digital Library of Theses and Dissertations (NDLTD) . In medicine, clinical trial registries are another important type of gray literature.
  • Experts: Contact experts in the field to ask if they have unpublished studies that should be included in your review.

At this stage of your review, you won’t read the articles yet. Simply save any potentially relevant citations using bibliographic software, such as Scribbr’s APA or MLA Generator .

  • Databases: EMBASE, PsycINFO, AMED, LILACS, and ISI Web of Science
  • Handsearch: Conference proceedings and reference lists of articles
  • Gray literature: The Cochrane Library, the metaRegister of Controlled Trials, and the Ongoing Skin Trials Register
  • Experts: Authors of unpublished registered trials, pharmaceutical companies, and manufacturers of probiotics

Step 4: Apply the selection criteria

Applying the selection criteria is a three-person job. Two of you will independently read the studies and decide which to include in your review based on the selection criteria you established in your protocol . The third person’s job is to break any ties.

To increase inter-rater reliability , ensure that everyone thoroughly understands the selection criteria before you begin.

If you’re writing a systematic review as a student for an assignment, you might not have a team. In this case, you’ll have to apply the selection criteria on your own; you can mention this as a limitation in your paper’s discussion.

You should apply the selection criteria in two phases:

  • Based on the titles and abstracts : Decide whether each article potentially meets the selection criteria based on the information provided in the abstracts.
  • Based on the full texts: Download the articles that weren’t excluded during the first phase. If an article isn’t available online or through your library, you may need to contact the authors to ask for a copy. Read the articles and decide which articles meet the selection criteria.

It’s very important to keep a meticulous record of why you included or excluded each article. When the selection process is complete, you can summarize what you did using a PRISMA flow diagram .

Next, Boyle and colleagues found the full texts for each of the remaining studies. Boyle and Tang read through the articles to decide if any more studies needed to be excluded based on the selection criteria.

When Boyle and Tang disagreed about whether a study should be excluded, they discussed it with Varigos until the three researchers came to an agreement.

Step 5: Extract the data

Extracting the data means collecting information from the selected studies in a systematic way. There are two types of information you need to collect from each study:

  • Information about the study’s methods and results . The exact information will depend on your research question, but it might include the year, study design , sample size, context, research findings , and conclusions. If any data are missing, you’ll need to contact the study’s authors.
  • Your judgment of the quality of the evidence, including risk of bias .

You should collect this information using forms. You can find sample forms in The Registry of Methods and Tools for Evidence-Informed Decision Making and the Grading of Recommendations, Assessment, Development and Evaluations Working Group .

Extracting the data is also a three-person job. Two people should do this step independently, and the third person will resolve any disagreements.

They also collected data about possible sources of bias, such as how the study participants were randomized into the control and treatment groups.

Step 6: Synthesize the data

Synthesizing the data means bringing together the information you collected into a single, cohesive story. There are two main approaches to synthesizing the data:

  • Narrative ( qualitative ): Summarize the information in words. You’ll need to discuss the studies and assess their overall quality.
  • Quantitative : Use statistical methods to summarize and compare data from different studies. The most common quantitative approach is a meta-analysis , which allows you to combine results from multiple studies into a summary result.

Generally, you should use both approaches together whenever possible. If you don’t have enough data, or the data from different studies aren’t comparable, then you can take just a narrative approach. However, you should justify why a quantitative approach wasn’t possible.

Boyle and colleagues also divided the studies into subgroups, such as studies about babies, children, and adults, and analyzed the effect sizes within each group.

Step 7: Write and publish a report

The purpose of writing a systematic review article is to share the answer to your research question and explain how you arrived at this answer.

Your article should include the following sections:

  • Abstract : A summary of the review
  • Introduction : Including the rationale and objectives
  • Methods : Including the selection criteria, search method, data extraction method, and synthesis method
  • Results : Including results of the search and selection process, study characteristics, risk of bias in the studies, and synthesis results
  • Discussion : Including interpretation of the results and limitations of the review
  • Conclusion : The answer to your research question and implications for practice, policy, or research

To verify that your report includes everything it needs, you can use the PRISMA checklist .

Once your report is written, you can publish it in a systematic review database, such as the Cochrane Database of Systematic Reviews , and/or in a peer-reviewed journal.

In their report, Boyle and colleagues concluded that probiotics cannot be recommended for reducing eczema symptoms or improving quality of life in patients with eczema. Note Generative AI tools like ChatGPT can be useful at various stages of the writing and research process and can help you to write your systematic review. However, we strongly advise against trying to pass AI-generated text off as your own work.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a thesis, dissertation , or research paper , in order to situate your work in relation to existing knowledge.

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, November 20). Systematic Review | Definition, Example & Guide. Scribbr. Retrieved June 20, 2024, from https://www.scribbr.com/methodology/systematic-review/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, how to write a literature review | guide, examples, & templates, how to write a research proposal | examples & templates, what is critical thinking | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Reference management. Clean and simple.

How to write a systematic literature review [9 steps]

Systematic literature review

What is a systematic literature review?

Where are systematic literature reviews used, what types of systematic literature reviews are there, how to write a systematic literature review, 1. decide on your team, 2. formulate your question, 3. plan your research protocol, 4. search for the literature, 5. screen the literature, 6. assess the quality of the studies, 7. extract the data, 8. analyze the results, 9. interpret and present the results, registering your systematic literature review, frequently asked questions about writing a systematic literature review, related articles.

A systematic literature review is a summary, analysis, and evaluation of all the existing research on a well-formulated and specific question.

Put simply, a systematic review is a study of studies that is popular in medical and healthcare research. In this guide, we will cover:

  • the definition of a systematic literature review
  • the purpose of a systematic literature review
  • the different types of systematic reviews
  • how to write a systematic literature review

➡️ Visit our guide to the best research databases for medicine and health to find resources for your systematic review.

Systematic literature reviews can be utilized in various contexts, but they’re often relied on in clinical or healthcare settings.

Medical professionals read systematic literature reviews to stay up-to-date in their field, and granting agencies sometimes need them to make sure there’s justification for further research in an area. They can even be used as the starting point for developing clinical practice guidelines.

A classic systematic literature review can take different approaches:

  • Effectiveness reviews assess the extent to which a medical intervention or therapy achieves its intended effect. They’re the most common type of systematic literature review.
  • Diagnostic test accuracy reviews produce a summary of diagnostic test performance so that their accuracy can be determined before use by healthcare professionals.
  • Experiential (qualitative) reviews analyze human experiences in a cultural or social context. They can be used to assess the effectiveness of an intervention from a person-centric perspective.
  • Costs/economics evaluation reviews look at the cost implications of an intervention or procedure, to assess the resources needed to implement it.
  • Etiology/risk reviews usually try to determine to what degree a relationship exists between an exposure and a health outcome. This can be used to better inform healthcare planning and resource allocation.
  • Psychometric reviews assess the quality of health measurement tools so that the best instrument can be selected for use.
  • Prevalence/incidence reviews measure both the proportion of a population who have a disease, and how often the disease occurs.
  • Prognostic reviews examine the course of a disease and its potential outcomes.
  • Expert opinion/policy reviews are based around expert narrative or policy. They’re often used to complement, or in the absence of, quantitative data.
  • Methodology systematic reviews can be carried out to analyze any methodological issues in the design, conduct, or review of research studies.

Writing a systematic literature review can feel like an overwhelming undertaking. After all, they can often take 6 to 18 months to complete. Below we’ve prepared a step-by-step guide on how to write a systematic literature review.

  • Decide on your team.
  • Formulate your question.
  • Plan your research protocol.
  • Search for the literature.
  • Screen the literature.
  • Assess the quality of the studies.
  • Extract the data.
  • Analyze the results.
  • Interpret and present the results.

When carrying out a systematic literature review, you should employ multiple reviewers in order to minimize bias and strengthen analysis. A minimum of two is a good rule of thumb, with a third to serve as a tiebreaker if needed.

You may also need to team up with a librarian to help with the search, literature screeners, a statistician to analyze the data, and the relevant subject experts.

Define your answerable question. Then ask yourself, “has someone written a systematic literature review on my question already?” If so, yours may not be needed. A librarian can help you answer this.

You should formulate a “well-built clinical question.” This is the process of generating a good search question. To do this, run through PICO:

  • Patient or Population or Problem/Disease : who or what is the question about? Are there factors about them (e.g. age, race) that could be relevant to the question you’re trying to answer?
  • Intervention : which main intervention or treatment are you considering for assessment?
  • Comparison(s) or Control : is there an alternative intervention or treatment you’re considering? Your systematic literature review doesn’t have to contain a comparison, but you’ll want to stipulate at this stage, either way.
  • Outcome(s) : what are you trying to measure or achieve? What’s the wider goal for the work you’ll be doing?

Now you need a detailed strategy for how you’re going to search for and evaluate the studies relating to your question.

The protocol for your systematic literature review should include:

  • the objectives of your project
  • the specific methods and processes that you’ll use
  • the eligibility criteria of the individual studies
  • how you plan to extract data from individual studies
  • which analyses you’re going to carry out

For a full guide on how to systematically develop your protocol, take a look at the PRISMA checklist . PRISMA has been designed primarily to improve the reporting of systematic literature reviews and meta-analyses.

When writing a systematic literature review, your goal is to find all of the relevant studies relating to your question, so you need to search thoroughly .

This is where your librarian will come in handy again. They should be able to help you formulate a detailed search strategy, and point you to all of the best databases for your topic.

➡️ Read more on on how to efficiently search research databases .

The places to consider in your search are electronic scientific databases (the most popular are PubMed , MEDLINE , and Embase ), controlled clinical trial registers, non-English literature, raw data from published trials, references listed in primary sources, and unpublished sources known to experts in the field.

➡️ Take a look at our list of the top academic research databases .

Tip: Don’t miss out on “gray literature.” You’ll improve the reliability of your findings by including it.

Don’t miss out on “gray literature” sources: those sources outside of the usual academic publishing environment. They include:

  • non-peer-reviewed journals
  • pharmaceutical industry files
  • conference proceedings
  • pharmaceutical company websites
  • internal reports

Gray literature sources are more likely to contain negative conclusions, so you’ll improve the reliability of your findings by including it. You should document details such as:

  • The databases you search and which years they cover
  • The dates you first run the searches, and when they’re updated
  • Which strategies you use, including search terms
  • The numbers of results obtained

➡️ Read more about gray literature .

This should be performed by your two reviewers, using the criteria documented in your research protocol. The screening is done in two phases:

  • Pre-screening of all titles and abstracts, and selecting those appropriate
  • Screening of the full-text articles of the selected studies

Make sure reviewers keep a log of which studies they exclude, with reasons why.

➡️ Visit our guide on what is an abstract?

Your reviewers should evaluate the methodological quality of your chosen full-text articles. Make an assessment checklist that closely aligns with your research protocol, including a consistent scoring system, calculations of the quality of each study, and sensitivity analysis.

The kinds of questions you'll come up with are:

  • Were the participants really randomly allocated to their groups?
  • Were the groups similar in terms of prognostic factors?
  • Could the conclusions of the study have been influenced by bias?

Every step of the data extraction must be documented for transparency and replicability. Create a data extraction form and set your reviewers to work extracting data from the qualified studies.

Here’s a free detailed template for recording data extraction, from Dalhousie University. It should be adapted to your specific question.

Establish a standard measure of outcome which can be applied to each study on the basis of its effect size.

Measures of outcome for studies with:

  • Binary outcomes (e.g. cured/not cured) are odds ratio and risk ratio
  • Continuous outcomes (e.g. blood pressure) are means, difference in means, and standardized difference in means
  • Survival or time-to-event data are hazard ratios

Design a table and populate it with your data results. Draw this out into a forest plot , which provides a simple visual representation of variation between the studies.

Then analyze the data for issues. These can include heterogeneity, which is when studies’ lines within the forest plot don’t overlap with any other studies. Again, record any excluded studies here for reference.

Consider different factors when interpreting your results. These include limitations, strength of evidence, biases, applicability, economic effects, and implications for future practice or research.

Apply appropriate grading of your evidence and consider the strength of your recommendations.

It’s best to formulate a detailed plan for how you’ll present your systematic review results. Take a look at these guidelines for interpreting results from the Cochrane Institute.

Before writing your systematic literature review, you can register it with OSF for additional guidance along the way. You could also register your completed work with PROSPERO .

Systematic literature reviews are often found in clinical or healthcare settings. Medical professionals read systematic literature reviews to stay up-to-date in their field and granting agencies sometimes need them to make sure there’s justification for further research in an area.

The first stage in carrying out a systematic literature review is to put together your team. You should employ multiple reviewers in order to minimize bias and strengthen analysis. A minimum of two is a good rule of thumb, with a third to serve as a tiebreaker if needed.

Your systematic review should include the following details:

A literature review simply provides a summary of the literature available on a topic. A systematic review, on the other hand, is more than just a summary. It also includes an analysis and evaluation of existing research. Put simply, it's a study of studies.

The final stage of conducting a systematic literature review is interpreting and presenting the results. It’s best to formulate a detailed plan for how you’ll present your systematic review results, guidelines can be found for example from the Cochrane institute .

systematic literature review the method

systematic literature review the method

What is a Systematic Literature Review?

A systematic literature review (SLR) is an independent academic method that aims to identify and evaluate all relevant literature on a topic in order to derive conclusions about the question under consideration. "Systematic reviews are undertaken to clarify the state of existing research and the implications that should be drawn from this." (Feak & Swales, 2009, p. 3) An SLR can demonstrate the current state of research on a topic, while identifying gaps and areas requiring further research with regard to a given research question. A formal methodological approach is pursued in order to reduce distortions caused by an overly restrictive selection of the available literature and to increase the reliability of the literature selected (Tranfield, Denyer & Smart, 2003). A special aspect in this regard is the fact that a research objective is defined for the search itself and the criteria for determining what is to be included and excluded are defined prior to conducting the search. The search is mainly performed in electronic literature databases (such as Business Source Complete or Web of Science), but also includes manual searches (reviews of reference lists in relevant sources) and the identification of literature not yet published in order to obtain a comprehensive overview of a research topic.

An SLR protocol documents all the information gathered and the steps taken as part of an SLR in order to make the selection process transparent and reproducible. The PRISMA flow-diagram support you in making the selection process visible.

In an ideal scenario, experts from the respective research discipline, as well as experts working in the relevant field and in libraries, should be involved in setting the search terms . As a rule, the literature is selected by two or more reviewers working independently of one another. Both measures serve the purpose of increasing the objectivity of the literature selection. An SLR must, then, be more than merely a summary of a topic (Briner & Denyer, 2012). As such, it also distinguishes itself from “ordinary” surveys of the available literature. The following table shows the differences between an SLR and an “ordinary” literature review.

  • Charts of BSWL workshop (pdf, 2.88 MB)
  • Listen to the interview (mp4, 12.35 MB)

Differences to "common" literature reviews

CharacteristicSLRcommon literature overview
Independent research methodyesno
Explicit formulation of the search objectivesyesno
Identification of all publications on a topicyesno
Defined criteria for inclusion and exclusion of publicationsyesno
Description of search procedureyesno
Literature selection and information extraction by several personsyesno
Transparent quality evaluation of publicationsyesno

What are the objectives of SLRs?

  • Avoidance of research redundancies despite a growing amount of publications
  • Identification of research areas, gaps and methods
  • Input for evidence-based management, which allows to base management decisions on scientific methods and findings
  • Identification of links between different areas of researc

Process steps of an SLR

A SLR has several process steps which are defined differently in the literature (Fink 2014, p. 4; Guba 2008, Transfield et al. 2003). We distinguish the following steps which are adapted to the economics and management research area:

1. Defining research questions

Briner & Denyer (2009, p. 347ff.) have developed the CIMO scheme to establish clearly formulated and answerable research questions in the field of economic sciences:

C – CONTEXT:  Which individuals, relationships, institutional frameworks and systems are being investigated?

I – Intervention:  The effects of which event, action or activity are being investigated?

M – Mechanisms:  Which mechanisms can explain the relationship between interventions and results? Under what conditions do these mechanisms take effect?

O – Outcomes:  What are the effects of the intervention? How are the results measured? What are intended and unintended effects?

The objective of the systematic literature review is used to formulate research questions such as “How can a project team be led effectively?”. Since there are numerous interpretations and constructs for “effective”, “leadership” and “project team”, these terms must be particularized.

With the aid of the scheme, the following concrete research questions can be derived with regard to this example:

Under what conditions (C) does leadership style (I) influence the performance of project teams (O)?

Which constructs have an effect upon the influence of leadership style (I) on a project team’s performance (O)?          

Research questions do not necessarily need to follow the CIMO scheme, but they should:

  • ... be formulated in a clear, focused and comprehensible manner and be answerable;
  • ... have been determined prior to carrying out the SLR;
  • ... consist of general and specific questions.

As early as this stage, the criteria for inclusion and exclusion are also defined. The selection of the criteria must be well-grounded. This may include conceptual factors such as a geographical or temporal restrictions, congruent definitions of constructs, as well as quality criteria (journal impact factor > x).

2. Selecting databases and other research sources

The selection of sources must be described and explained in detail. The aim is to find a balance between the relevance of the sources (content-related fit) and the scope of the sources.

In the field of economic sciences, there are a number of literature databases that can be searched as part of an SLR. Some examples in this regard are:

  • Business Source Complete
  • ProQuest One Business
  • EconBiz        

Our video " Selecting the right databases " explains how to find relevant databases for your topic.

Literature databases are an important source of research for SLRs, as they can minimize distortions caused by an individual literature selection (selection bias), while offering advantages for a systematic search due to their data structure. The aim is to find all database entries on a topic and thus keep the retrieval bias low (tutorial on retrieval bias ).  Besides articles from scientific journals, it is important to inlcude working papers, conference proceedings, etc to reduce the publication bias ( tutorial on publication bias ).

Our online self-study course " Searching economic databases " explains step 2 und 3.

3. Defining search terms

Once the literature databases and other research sources have been selected, search terms are defined. For this purpose, the research topic/questions is/are divided into blocks of terms of equal ranking. This approach is called the block-building method (Guba 2008, p. 63). The so-called document-term matrix, which lists topic blocks and search terms according to a scheme, is helpful in this regard. The aim is to identify as many different synonyms as possible for the partial terms. A precisely formulated research question facilitates the identification of relevant search terms. In addition, keywords from particularly relevant articles support the formulation of search terms.

A document-term matrix for the topic “The influence of management style on the performance of project teams” is shown in this example .

Identification of headwords and keywords

When setting search terms, a distinction must be made between subject headings and keywords, both of which are described below:

  • appear in the title, abstract and/or text
  • sometimes specified by the author, but in most cases automatically generated
  • non-standardized
  • different spellings and forms (singular/plural) must be searched separately

Subject headings

  • describe the content
  • are generated by an editorial team
  • are listed in a standardized list (thesaurus)
  • may comprise various keywords
  • include different spellings
  • database-specific

Subject headings are a standardized list of words that are generated by the specialists in charge of some databases. This so-called index of subject headings (thesaurus) helps searchers find relevant articles, since the headwords indicate the content of a publication. By contrast, an ordinary keyword search does not necessarily result in a content-related fit, since the database also displays articles in which, for example, a word appears once in the abstract, even though the article’s content does not cover the topic.

Nevertheless, searches using both headwords and keywords should be conducted, since some articles may not yet have been assigned headwords, or errors may have occurred during the assignment of headwords. 

To add headwords to your search in the Business Source Complete database, please select the Thesaurus tab at the top. Here you can find headwords in a new search field and integrate them into your search query. In the search history, headwords are marked with the addition DE (descriptor).

The EconBiz database of the German National Library of Economics (ZBW – Leibniz Information Centre for Economics), which also contains German-language literature, has created its own index of subject headings with the STW Thesaurus for Economics . Headwords are integrated into the search by being used in the search query.

Since the indexes of subject headings divide terms into synonyms, generic terms and sub-aspects, they facilitate the creation of a document-term matrix. For this purpose it is advisable to specify in the document-term matrix the origin of the search terms (STW Thesaurus for Economics, Business Source Complete, etc.).

Searching in literature databases

Once the document-term matrix has been defined, the search in literature databases begins. It is recommended to enter each word of the document-term matrix individually into the database in order to obtain a good overview of the number of hits per word. Finally, all the words contained in a block of terms are linked with the Boolean operator OR and thereby a union of all the words is formed. The latter are then linked with each other using the Boolean operator AND. In doing so, each block should be added individually in order to see to what degree the number of hits decreases.

Since the search query must be set up separately for each database, tools such as  LitSonar  have been developed to enable a systematic search across different databases. LitSonar was created by  Professor Dr. Ali Sunyaev (Institute of Applied Informatics and Formal Description Methods – AIFB) at the Karlsruhe Institute of Technology.

Advanced search

Certain database-specific commands can be used to refine a search, for example, by taking variable word endings into account (*) or specifying the distance between two words, etc. Our overview shows the most important search commands for our top databases.

Additional searches in sources other than literature databases

In addition to literature databases, other sources should also be searched. Fink (2014, p. 27) lists the following reasons for this:

  • the topic is new and not yet included in indexes of subject headings;
  • search terms are not used congruently in articles because uniform definitions do not exist;
  • some studies are still in the process of being published, or have been completed, but not published.

Therefore, further search strategies are manual search, bibliographic analysis, personal contacts and academic networks (Briner & Denyer, p. 349). Manual search means that you go through the source information of relevant articles and supplement your hit list accordingly. In addition, you should conduct a targeted search for so-called gray literature, that is, literature not distributed via the book trade, such as working papers from specialist areas and conference reports. By including different types of publications, the so-called publication bias (DBWM video “Understanding publication bias” ) – that is, distortions due to exclusive use of articles from peer-reviewed journals – should be kept to a minimum.

The PRESS-Checklist can support you to check the correctness of your search terms.

4. Merging hits from different databases

In principle, large amounts of data can be easily collected, structured and sorted with data processing programs such as Excel. Another option is to use reference management programs such as EndNote, Citavi or Zotero. The Saxon State and University Library Dresden (SLUB Dresden) provides an  overview of current reference management programs  . Software for qualitative data analysis such as NVivo is equally suited for data processing. A comprehensive overview of the features of different tools that support the SLR process can be found in Bandara et al. (2015).

Our online-self study course "Managing literature with Citavi" shows you how to use the reference management software Citavi.

When conducting an SLR, you should specify for each hit the database from which it originates and the date on which the query was made. In addition, you should always indicate how many hits you have identified in the various databases or, for example, by manual search.

Exporting data from literature databases

Exporting from literature databases is very easy. In  Business Source Complete  , you must first click on the “Share” button in the hit list, then “Email a link to download exported results” at the very bottom and then select the appropriate format for the respective literature program.

Exporting data from the literature database  EconBiz  is somewhat more complex. Here you must first create a marked list and then select each hit individually and add it to the marked list. Afterwards, articles on the list can be exported.

After merging all hits from the various databases, duplicate entries (duplicates) are deleted.

5. Applying inclusion and exclusion criteria

All publications are evaluated in the literature management program applying the previously defined criteria for inclusion and exclusion. Only those sources that survive this selection process will subsequently be analyzed. The review process and inclusion criteria should be tested with a small sample and adjustments made if necessary before applying it to all articles. In the ideal case, even this selection would be carried out by more than one person, with each working independently of one another. It needs to be made clear how discrepancies between reviewers are dealt with. 

The review of the criteria for inclusion and exclusion is primarily based on the title, abstract and subject headings in the databases, as well as on the keywords provided by the authors of a publication in the first step. In a second step the whole article / source will be read.

You can create tag words for the inclusion and exclusion in your literature management tool to keep an overview.

In addition to the common literature management tools, you can also use software tools that have been developed to support SLRs. The central library of the university in Zurich has published an overview and evaluation of different tools based on a survey among researchers. --> View SLR tools

The selection process needs to be made transparent. The PRISMA flow diagram supports the visualization of the number of included / excluded studies.

Forward and backward search

Should it become apparent that the number of sources found is relatively small, or if you wish to proceed with particular thoroughness, a forward-and-backward search based on the sources found is recommendable (Webster & Watson 2002, p. xvi). A backward search means going through the bibliographies of the sources found. A forward search, by contrast, identifies articles that have cited the relevant publications. The Web of Science and Scopus databases can be used to perform citation analyses.

6. Perform the review

As the next step, the remaining titles are analyzed as to their content by reading them several times in full. Information is extracted according to defined criteria and the quality of the publications is evaluated. If the data extraction is carried out by more than one person, a training ensures that there will be no differences between the reviewers.

Depending on the research questions there exist diffent methods for data abstraction (content analysis, concept matrix etc.). A so-called concept matrix can be used to structure the content of information (Webster & Watson 2002, p. xvii). The image to the right gives an example of a concept matrix according to Becker (2014).

Particularly in the field of economic sciences, the evaluation of a study’s quality cannot be performed according to a generally valid scheme, such as those existing in the field of medicine, for instance. Quality assessment therefore depends largely on the research questions.

Based on the findings of individual studies, a meta-level is then applied to try to understand what similarities and differences exist between the publications, what research gaps exist, etc. This may also result in the development of a theoretical model or reference framework.

Example concept matrix (Becker 2013) on the topic Business Process Management

ArticlePatternConfigurationSimilarities
Thom (2008)x  
Yang (2009)x x
Rosa (2009) xx

7. Synthesizing results

Once the review has been conducted, the results must be compiled and, on the basis of these, conclusions derived with regard to the research question (Fink 2014, p. 199ff.). This includes, for example, the following aspects:

  • historical development of topics (histogram, time series: when, and how frequently, did publications on the research topic appear?);
  • overview of journals, authors or specialist disciplines dealing with the topic;
  • comparison of applied statistical methods;
  • topics covered by research;
  • identifying research gaps;
  • developing a reference framework;
  • developing constructs;
  • performing a meta-analysis: comparison of the correlations of the results of different empirical studies (see for example Fink 2014, p. 203 on conducting meta-analyses)

Publications about the method

Bandara, W., Furtmueller, E., Miskon, S., Gorbacheva, E., & Beekhuyzen, J. (2015). Achieving Rigor in Literature Reviews: Insights from Qualitative Data Analysis and Tool-Support.  Communications of the Association for Information Systems . 34(8), 154-204.

Booth, A., Papaioannou, D., and Sutton, A. (2012)  Systematic approaches to a successful literature review.  London: Sage.

Briner, R. B., & Denyer, D. (2012). Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool. In Rousseau, D. M. (Hrsg.),  The Oxford Handbook of Evidenence Based Management . (S. 112-129). Oxford: Oxford University Press.

Durach, C. F., Wieland, A., & Machuca, Jose A. D. (2015). Antecedents and dimensions of supply chain robustness: a systematic literature review . International Journal of Physical Distribution & Logistic Management , 46 (1/2), 118-137. doi:  https://doi.org/10.1108/IJPDLM-05-2013-0133

Feak, C. B., & Swales, J. M. (2009). Telling a Research Story: Writing a Literature Review.  English in Today's Research World 2.  Ann Arbor: University of Michigan Press. doi:  10.3998/mpub.309338

Fink, A. (2014).  Conducting Research Literature Reviews: From the Internet to Paper  (4. Aufl.). Los Angeles, London, New Delhi, Singapore, Washington DC: Sage Publication.

Fisch, C., & Block, J. (2018). Six tips for your (systematic) literature review in business and management research.  Management Review Quarterly,  68, 103–106 (2018).  doi.org/10.1007/s11301-018-0142-x

Guba, B. (2008). Systematische Literaturrecherche.  Wiener Medizinische Wochenschrift , 158 (1-2), S. 62-69. doi:  doi.org/10.1007/s10354-007-0500-0  Hart, C.  Doing a literature review: releasing the social science research imagination.  London: Sage.

Jesson, J. K., Metheson, L. & Lacey, F. (2011).  Doing your Literature Review - traditional and Systematic Techniques . Los Angeles, London, New Delhi, Singapore, Washington DC: Sage Publication.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71.

Petticrew, M. and Roberts, H. (2006).  Systematic Reviews in the Social Sciences: A Practical Guide . Oxford:Blackwell. Ridley, D. (2012).  The literature review: A step-by-step guide . 2nd edn. London: Sage. 

Chang, W. and Taylor, S.A. (2016), The Effectiveness of Customer Participation in New Product Development: A Meta-Analysis,  Journal of Marketing , American Marketing Association, Los Angeles, CA, Vol. 80 No. 1, pp. 47–64.

Tranfield, D., Denyer, D. & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review.  British Journal of Management , 14 (3), S. 207-222. doi:  https://doi.org/10.1111/1467-8551.00375

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review.  Management Information Systems Quarterly , 26(2), xiii-xxiii.  http://www.jstor.org/stable/4132319

Durach, C. F., Wieland, A. & Machuca, Jose. A. D. (2015). Antecedents and dimensions of supply chain robustness: a systematic literature review. International Journal of Physical Distribution & Logistics Management, 45(1/2), 118 – 137.

What is particularly good about this example is that search terms were defined by a number of experts and the review was conducted by three researchers working independently of one another. Furthermore, the search terms used have been very well extracted and the procedure of the literature selection very well described.

On the downside, the restriction to English-language literature brings the language bias into play, even though the authors consider it to be insignificant for the subject area.

Bos-Nehles, A., Renkema, M. & Janssen, M. (2017). HRM and innovative work behaviour: a systematic literature review. Personnel Review, 46(7), pp. 1228-1253

  • Only very specific keywords used
  • No precise information on how the review process was carried out (who reviewed articles?)
  • Only journals with impact factor (publication bias)

Jia, F., Orzes, G., Sartor, M. & Nassimbeni, G. (2017). Global sourcing strategy and structure: towards a conceptual framework. International Journal of Operations & Production Management, 37(7), 840-864

  • Research questions are explicitly presented
  • Search string very detailed
  • Exact description of the review process
  • 2 persons conducted the review independently of each other

Franziska Klatt

[email protected]

+49 30 314-29778

systematic literature review the method

Privacy notice: The TU Berlin offers a chat information service. If you enable it, your IP address and chat messages will be transmitted to external EU servers. more information

The chat is currently unavailable.

Please use our alternative contact options.

Systematic Literature Reviews: An Introduction

  • Proceedings of the Design Society International Conference on Engineering Design 1(1):1633-1642
  • 1(1):1633-1642
  • CC BY-NC-ND 4.0
  • Conference: International Conference on Engineering Design 2019

Guillaume Lamé at CentraleSupélec

  • CentraleSupélec

Abstract and Figures

Search for "systematic review*" in titles on the Web of Science on 15 Sep 2018

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Kevin Gresham

  • Tinashe Mukonavanhu
  • Mahmoud Younis Mohmmed

Almabruk Sultan

  • Marinda Noor Fajrina Noviana Putri
  • Oscar López Regalado

Nemecio Núñez Rojas

  • Oscar Rafael López-Gil
  • José Sánchez-Rodríguez
  • Marinu Waruwu

Kazi Enamul Hoque

  • Mohamed Atheef

Tomás Ojeda Güemes

  • Moslehuddin Chowdhury Khaled

Tasnim Sultana

  • Tanbinatabassum
  • Aditi Sharma
  • DESIGN STUD

Philip Cash

  • BMC MED RES METHODOL

Zachary Munn

  • Martin Stacey

Laura Hay

  • L. Shamseer
  • David Moher
  • Alessandro Liberati

Jennifer M. Tetzlaff

  • David Jones

Alex J Sutton

  • J CLEAN PROD

Michael Saidani

  • Alissa Kendall
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Locations and Hours
  • UCLA Library
  • Research Guides
  • Biomedical Library Guides

Systematic Reviews

  • Types of Literature Reviews

What Makes a Systematic Review Different from Other Types of Reviews?

  • Planning Your Systematic Review
  • Database Searching
  • Creating the Search
  • Search Filters and Hedges
  • Grey Literature
  • Managing and Appraising Results
  • Further Resources

Reproduced from Grant, M. J. and Booth, A. (2009), A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26: 91–108. doi:10.1111/j.1471-1842.2009.00848.x

Aims to demonstrate writer has extensively researched literature and critically evaluated its quality. Goes beyond mere description to include degree of analysis and conceptual innovation. Typically results in hypothesis or mode Seeks to identify most significant items in the field No formal quality assessment. Attempts to evaluate according to contribution Typically narrative, perhaps conceptual or chronological Significant component: seeks to identify conceptual contribution to embody existing or derive new theory
Generic term: published materials that provide examination of recent or current literature. Can cover wide range of subjects at various levels of completeness and comprehensiveness. May include research findings May or may not include comprehensive searching May or may not include quality assessment Typically narrative Analysis may be chronological, conceptual, thematic, etc.
Mapping review/ systematic map Map out and categorize existing literature from which to commission further reviews and/or primary research by identifying gaps in research literature Completeness of searching determined by time/scope constraints No formal quality assessment May be graphical and tabular Characterizes quantity and quality of literature, perhaps by study design and other key features. May identify need for primary or secondary research
Technique that statistically combines the results of quantitative studies to provide a more precise effect of the results Aims for exhaustive, comprehensive searching. May use funnel plot to assess completeness Quality assessment may determine inclusion/ exclusion and/or sensitivity analyses Graphical and tabular with narrative commentary Numerical analysis of measures of effect assuming absence of heterogeneity
Refers to any combination of methods where one significant component is a literature review (usually systematic). Within a review context it refers to a combination of review approaches for example combining quantitative with qualitative research or outcome with process studies Requires either very sensitive search to retrieve all studies or separately conceived quantitative and qualitative strategies Requires either a generic appraisal instrument or separate appraisal processes with corresponding checklists Typically both components will be presented as narrative and in tables. May also employ graphical means of integrating quantitative and qualitative studies Analysis may characterise both literatures and look for correlations between characteristics or use gap analysis to identify aspects absent in one literature but missing in the other
Generic term: summary of the [medical] literature that attempts to survey the literature and describe its characteristics May or may not include comprehensive searching (depends whether systematic overview or not) May or may not include quality assessment (depends whether systematic overview or not) Synthesis depends on whether systematic or not. Typically narrative but may include tabular features Analysis may be chronological, conceptual, thematic, etc.
Method for integrating or comparing the findings from qualitative studies. It looks for ‘themes’ or ‘constructs’ that lie in or across individual qualitative studies May employ selective or purposive sampling Quality assessment typically used to mediate messages not for inclusion/exclusion Qualitative, narrative synthesis Thematic analysis, may include conceptual models
Assessment of what is already known about a policy or practice issue, by using systematic review methods to search and critically appraise existing research Completeness of searching determined by time constraints Time-limited formal quality assessment Typically narrative and tabular Quantities of literature and overall quality/direction of effect of literature
Preliminary assessment of potential size and scope of available research literature. Aims to identify nature and extent of research evidence (usually including ongoing research) Completeness of searching determined by time/scope constraints. May include research in progress No formal quality assessment Typically tabular with some narrative commentary Characterizes quantity and quality of literature, perhaps by study design and other key features. Attempts to specify a viable review
Tend to address more current matters in contrast to other combined retrospective and current approaches. May offer new perspectives Aims for comprehensive searching of current literature No formal quality assessment Typically narrative, may have tabular accompaniment Current state of knowledge and priorities for future investigation and research
Seeks to systematically search for, appraise and synthesis research evidence, often adhering to guidelines on the conduct of a review Aims for exhaustive, comprehensive searching Quality assessment may determine inclusion/exclusion Typically narrative with tabular accompaniment What is known; recommendations for practice. What remains unknown; uncertainty around findings, recommendations for future research
Combines strengths of critical review with a comprehensive search process. Typically addresses broad questions to produce ‘best evidence synthesis’ Aims for exhaustive, comprehensive searching May or may not include quality assessment Minimal narrative, tabular summary of studies What is known; recommendations for practice. Limitations
Attempt to include elements of systematic review process while stopping short of systematic review. Typically conducted as postgraduate student assignment May or may not include comprehensive searching May or may not include quality assessment Typically narrative with tabular accompaniment What is known; uncertainty around findings; limitations of methodology
Specifically refers to review compiling evidence from multiple reviews into one accessible and usable document. Focuses on broad condition or problem for which there are competing interventions and highlights reviews that address these interventions and their results Identification of component reviews, but no search for primary studies Quality assessment of studies within component reviews and/or of reviews themselves Graphical and tabular with narrative commentary What is known; recommendations for practice. What remains unknown; recommendations for future research
  • << Previous: Home
  • Next: Planning Your Systematic Review >>
  • Last Updated: Apr 17, 2024 2:02 PM
  • URL: https://guides.library.ucla.edu/systematicreviews

Systematic Reviews: Types of literature review, methods, & resources

  • Types of literature review, methods, & resources
  • Protocol and registration
  • Search strategy
  • Medical Literature Databases to search
  • Study selection and appraisal
  • Data Extraction/Coding/Study characteristics/Results
  • Reporting the quality/risk of bias
  • Manage citations using RefWorks This link opens in a new window
  • GW Box file storage for PDF's This link opens in a new window

Analytical reviews

GUIDELINES FOR HOW TO CARRY OUT AN ANALYTICAL REVIEW OF QUANTITATIVE RESEARCH

Enhancing the QUAlity and Transparency Of health Research (EQUATOR) network. (Tracking and listing over 550 reporting guidelines for various different study types including Randomised trials, Systematic reviews, Study protocols, Diagnostic/prognostic studies, Case reports, Clinical practice guidelines, Animal pre-clinical studies, etc). http://www.equator-network.org/resource-centre/library-of-health-research-reporting/

When comparing therapies :

PRISMA (Guideline on how to perform and write-up a systematic review and/or meta-analysis of the outcomes reported in multiple clinical trials of therapeutic interventions. PRISMA  replaces the previous QUORUM statement guidelines ):  Liberati, A,, Altman, D,, Moher, D, et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.  Plos Medicine, 6 (7):e1000100. doi:10.1371/journal.pmed.1000100 

When comparing diagnostic methods :

Checklist for Artificial Intelligence in Medical Imaging (CLAIM). CLAIM is modeled after the STARD guideline and has been extended to address applications of AI in medical imaging that include classification, image reconstruction, text analysis, and workflow optimization. The elements described here should be viewed as a “best practice” to guide authors in presenting their research. Reported in Mongan, J., Moy, L., & Kahn, C. E., Jr (2020). Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.  Radiology. Artificial intelligence ,  2 (2), e200029. https://doi.org/10.1148/ryai.2020200029

STAndards for the Reporting of Diagnostic accuracy studies (STARD) Statement. (Reporting guidelines for writing up a study comparing the accuracy of competing diagnostic methods)  http://www.stard-statement.org/

When evaluating clinical practice guidelines :

AGREE Research Trust (ART) (2013).  Appraisal of Guidelines for Research & Evaluation (AGREE-II) . (A 23-item instrument for as sessing th e quality of Clinical Practice Guidelines. Used internationally for evaluating or deciding which guidelines could be recommended for use in practice or to inform health policy decisions.)

National Guideline Clearinghouse Extent of Adherence to Trustworthy Standards (NEATS) Instrument (2019). (A 15-item instrument using scales of 1-5 to evaluate a guideline's adherence to the Institute of Medicine's standard for trustworthy guidelines. It has good external validity among guideline developers and good interrater reliability across trained reviewers.)

When you need to re-analyze individual participant data

If you wish to collect, check, and re-analyze individual participant data (IPD) from clinical trials addressing a particular research question, you should follow the  PRISMA-IPD  guidelines as reported in  Stewart, L.A., Clarke, M., Rovers, M., et al. (2015). Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data: The PRISMA-IPD Statement. JAMA, 313(16):1657-1665. doi:10.1001/jama.2015.3656 .

When comparing Randomized studies involving animals, livestock, or food:

O’Connor AM, et al. (2010).  The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety by modifying the CONSORT statement.  Zoonoses Public Health. 57(2):95-104. Epub 2010/01/15. doi: 10.1111/j.1863-2378.2009.01311.x. PubMed PMID: 20070653.

Sargeant JM, et al. (2010).  The REFLECT Statement: Reporting Guidelines for Randomized Controlled Trials in Livestock and Food Safety: Explanation and Elaboration.  Zoonoses Public Health. 57(2):105-36. Epub 2010/01/15. doi: JVB1312 [pii] 10.1111/j.1863-2378.2009.01312.x. PubMed PMID: 20070652.

GUIDELINES FOR HOW TO WRITE UP FOR PUBLICATION THE RESULTS OF ONE QUANTITATIVE CLINICAL TRIAL

When reporting the results of a Randomized Controlled Trial :

Consolidated Standards of Reporting Trials (CONSORT) Statement. (2010 reporting guideline for writing up a Randomized Controlled Clinical Trial).  http://www.consort-statement.org . Since updated in 2022, see Butcher, M. A., et al. (2022). Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension . JAMA : the Journal of the American Medical Association, 328(22), 2252–2264. https://doi.org/10.1001/jama.2022.21022

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6), e1000412–e1000412. https://doi.org/10.1371/journal.pbio.1000412 (A 20-item checklist, following the CONSORT approach, listing the information that published articles reporting research using animals should include, such as the number and specific characteristics of animals used; details of housing and husbandry; and the experimental, statistical, and analytical methods used to reduce bias.)

Narrative reviews

GUIDELINES  FOR HOW TO CARRY OUT  A  NARRATIVE REVIEW / QUALITATIVE RESEARCH /  OBSERVATIONAL STUDIES

Campbell, M. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ, 368. doi: https://doi.org/10.1136/bmj.l6890  (guideline on how to analyse evidence for a narrative review, to provide a recommendation based on heterogenous study types).

Community Preventive Services Task Force (2021).  The Methods Manual for Community Guide Systematic Reviews . (Public Health Prevention systematic review guidelines)

Enhancing the QUAlity and Transparency Of health Research (EQUATOR) network. (Tracking and listing over 550 reporting guidelines for various different study types including Observational studies, Qualitative research, Quality improvement studies, and Economic evaluations). http://www.equator-network.org/resource-centre/library-of-health-research-reporting/

Cochrane Qualitative & Implementation Methods Group. (2019). Training resources. Retrieved from  https://methods.cochrane.org/qi/training-resources . (Training materials for how to do a meta-synthesis, or qualitative evidence synthesis). 

Cornell University Library (2019). Planning worksheet for structured literature reviews. Retrieved 4/8/22 from  https://osf.io/tnfm7/  (offers a framework for a narrative literature review).

Green, B. N., Johnson, C. D., & Adams, A. (2006).  Writing narrative literature reviews for peer-reviewed journals: secrets of the trade . Journal of Chiropractic Medicine, 5(3): 101-117. DOI: 10.1016/ S0899-3467 (07)60142-6.  This is a very good article about what to take into consideration when writing any type of narrative review.

When reviewing observational studies/qualitative research :

STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement. (Reporting guidelines for various types of health sciences observational studies).  http://www.strobe-statement.org 

Meta-analysis of Observational Studies in Epidemiology (MOOSE)  http://jama.jamanetwork.com/article.aspx?articleid=192614

RATS Qualitative research systematic review guidelines.  https://www.equator-network.org/reporting-guidelines/qualitative-research-review-guidelines-rats/

Methods/Guidance

Right Review , this decision support website provides an algorithm to help reviewers choose a review methodology from among 41 knowledge synthesis methods.

The Systematic Review Toolbox , an online catalogue of tools that support various tasks within the systematic review and wider evidence synthesis process. Maintained by the UK University of York Health Economics Consortium, Newcastle University NIHR Innovation Observatory, and University of Sheffield School of Health and Related Research.

Institute of Medicine. (2011).  Finding What Works in Health Care: Standards for Systematic Reviews . Washington, DC: National Academies  (Systematic review guidelines from the Health and Medicine Division (HMD) of the U.S. National Academies of Sciences, Engineering, and Medicine (formerly called the Institute of Medicine)).

International Committee of Medical Journal Editors (2022).  Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly work in Medical Journals . Guidance on how to prepare a manuscript for submission to a Medical journal.

Cochrane Handbook of Systematic Reviews of Interventions (International Cochrane Collaboration systematic review guidelines). The various Cochrane review groups comporise around 30,000 physicians around the world working in the disciplines on reviews of interventions with very detailed methods for verifying the validity of the research methods and analysis performed in screened-in Randmized Controlled Clinical Trials. Typically published Cochrane Reviews are the most exhaustive review of the evidence of effectiveness of a particular drug or intervention, and include a statistical meta-analysis. Similar to practice guidelines, Cochrane reviews are periodically revised and updated.

Joanna Briggs Institute (JBI) Manual of Evidence Synthesis . (International systematic review guidelines). Based at the University of Adelaide, South Australia, and collaborating with around 80 academic and medical entities around the world. Unlike Cochrane Reviews that strictly focus on efficacy of interventions, JBI offers a broader, inclusive approach to evidence, to accommodate a range of diverse questions and study designs. The JBI manual provides guidance on how to analyse and include both quantitative and qualitative research.

Cochrane Methods Support Unit, webinar recordings on methodological support questions 

Cochrane Qualitative & Implementation Methods Group. (2019). Training resources. Retrieved from https://methods.cochrane.org/qi/training-resources . (How to do a meta-synthesis, or qualitative evidence synthesis). 

Center for Reviews and Dissemination (University of York, England) (2009).  Systematic Reviews: CRD's guidance for undertaking systematic reviews in health care . (British systematic review guidelines). 

Agency for Health Research & Quality (AHRQ) (2013). Methods guide for effectiveness and comparative effectiveness reviews . (U.S. comparative effectiveness review guidelines)

Hunter, K. E., et al. (2022). Searching clinical trials registers: guide for systematic reviewers.  BMJ (Clinical research ed.) ,  377 , e068791. https://doi.org/10.1136/bmj-2021-068791

Patient-Centered Outcomes Research Institute (PCORI).  The PCORI Methodology Report . (A 47-item methodology checklist for U.S. patient-centered outcomes research. Established under the Patient Protection and Affordable Care Act, PCORI funds the development of guidance on the comparative effectivess of clinical healthcare, similar to the UK National Institute for Clinical Evidence but without reporting cost-effectiveness QALY metrics). 

Canadian Agency for Drugs and Technologies in Health (CADTH) (2019). Grey Matters: a practical tool for searching health-related grey literature. Retrieved from https://www.cadth.ca/resources/finding-evidence/grey-matters . A checklist of N American & international online databases and websites you can use to search for unpublished reports, posters, and policy briefs, on topics including general medicine and nursing, public and mental health, health technology assessment, drug and device regulatory, approvals, warnings, and advisories.

Hempel, S., Xenakis, L., & Danz, M. (2016). Systematic Reviews for Occupational Safety and Health Questions: Resources for Evidence Synthesis. Retrieved 8/15/16 from http://www.rand.org/pubs/research_reports/RR1463.html . NIOSH guidelines for how to carry out a systematic review in the occupational safety and health domain.

A good source for reporting guidelines is the  NLM's  Research Reporting Guidelines and Initiatives .

Grading of Recommendations Assessment, Development and Evaluation (GRADE). (An international group of academics/clinicians working to promote a common approach to grading the quality of evidence and strength of recommendations.) 

Phillips, B., Ball, C., Sackett, D., et al. (2009). Oxford Centre for Evidence Based Medicine: Levels of Evidence. Retrieved 3/20/17 from https://www.cebm.net/wp-content/uploads/2014/06/CEBM-Levels-of-Evidence-2.1.pdf . (Another commonly used criteria for grading the quality of evidence and strength of recommendations, developed in part by EBM guru David Sackett.) 

Systematic Reviews for Animals & Food  (guidelines including the REFLECT statement for carrying out a systematic review on animal health, animal welfare, food safety, livestock, and agriculture)

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies . Health Information & Libraries Journal, 26(2), 91-108. doi:10.1111/j.1471-1842.2009.00848.x. (Describes 14 different types of literature and systematic review, useful for thinking at the outset about what sort of literature review you want to do.)

Sutton, A., Clowes, M., Preston, L., & Booth, A. (2019). Meeting the review family: exploring review types and associated information retrieval requirements . Health information and libraries journal, 36(3), 202–222. doi:10.1111/hir.12276  (An updated look at different types of literature review, expands on the Grant & Booth 2009 article listed above).

Garrard, J. (2007).  Health Sciences Literature Review Made Easy: The Matrix Method  (2nd Ed.).   Sudbury, MA:  Jones & Bartlett Publishers. (Textbook of health sciences literature search methods).

Zilberberg, M. (2012).  Between the lines: Finding the truth in medical literature . Goshen, MA: Evimed Research Press. (Concise book on foundational concepts of evidence-based medicine).

Lang, T. (2009). The Value of Systematic Reviews as Research Activities in Medical Education . In: Lang, T. How to write, publish, & present in the health sciences : a guide for clinicians & laboratory researchers. Philadelphia : American College of Physicians.  (This book chapter has a helpful bibliography on systematic review and meta-analysis methods)

Brown, S., Martin, E., Garcia, T., Winter, M., García, A., Brown, A., Cuevas H.,  & Sumlin, L. (2013). Managing complex research datasets using electronic tools: a meta-analysis exemplar . Computers, Informatics, Nursing: CIN, 31(6), 257-265. doi:10.1097/NXN.0b013e318295e69c. (This article advocates for the programming of electronic fillable forms in Adobe Acrobat Pro to feed data into Excel or SPSS for analysis, and to use cloud based file sharing systems such as Blackboard, RefWorks, or EverNote to facilitate sharing knowledge about the decision-making process and keep data secure. Of particular note are the flowchart describing this process, and their example screening form used for the initial screening of abstracts).

Brown, S., Upchurch, S., & Acton, G. (2003). A framework for developing a coding scheme for meta-analysis . Western Journal Of Nursing Research, 25(2), 205-222. (This article describes the process of how to design a coded data extraction form and codebook, Table 1 is an example of a coded data extraction form that can then be used to program a fillable form in Adobe Acrobat or Microsoft Access).

Elamin, M. B., Flynn, D. N., Bassler, D., Briel, M., Alonso-Coello, P., Karanicolas, P., & ... Montori, V. M. (2009). Choice of data extraction tools for systematic reviews depends on resources and review complexity .  Journal Of Clinical Epidemiology ,  62 (5), 506-510. doi:10.1016/j.jclinepi.2008.10.016  (This article offers advice on how to decide what tools to use to extract data for analytical systematic reviews).

Riegelman R.   Studying a Study and Testing a Test: Reading Evidence-based Health Research , 6th Edition.  Lippincott Williams & Wilkins, 2012. (Textbook of quantitative statistical methods used in health sciences research).

Rathbone, J., Hoffmann, T., & Glasziou, P. (2015). Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Systematic Reviews, 480. doi:10.1186/s13643-015-0067-6

Guyatt, G., Rennie, D., Meade, M., & Cook, D. (2015). Users' guides to the medical literature (3rd ed.). New York: McGraw-Hill Education Medical.  (This is a foundational textbook on evidence-based medicine and of particular use to the reviewer who wants to learn about the different types of published research article e.g. "what is a case report?" and to understand what types of study design best answer what types of clinical question).

Glanville, J., Duffy, S., Mccool, R., & Varley, D. (2014). Searching ClinicalTrials.gov and the International Clinical Trials Registry Platform to inform systematic reviews: what are the optimal search approaches? Journal of the Medical Library Association : JMLA, 102(3), 177–183. https://doi.org/10.3163/1536-5050.102.3.007

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan a web and mobile app for systematic reviews.  Systematic Reviews, 5 : 210, DOI: 10.1186/s13643-016-0384-4. http://rdcu.be/nzDM

Kwon Y, Lemieux M, McTavish J, Wathen N. (2015). Identifying and removing duplicate records from systematic review searches. J Med Libr Assoc. 103 (4): 184-8. doi: 10.3163/1536-5050.103.4.004. https://www.ncbi.nlm.nih.gov/pubmed/26512216

Bramer WM, Giustini D, de Jonge GB, Holland L, Bekhuis T. (2016). De-duplication of database search results for systematic reviews in EndNote. J Med Libr Assoc. 104 (3):240-3. doi: 10.3163/1536-5050.104.3.014. Erratum in: J Med Libr Assoc. 2017 Jan;105(1):111. https://www.ncbi.nlm.nih.gov/pubmed/27366130

McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40–46. doi: 10.1016/j.jclinepi.2016.01.021 . PRESS is a guideline with a checklist for librarians to critically appraise the search strategy for a systematic review literature search.

Clark, JM, Sanders, S, Carter, M, Honeyman, D, Cleo, G, Auld, Y, Booth, D, Condron, P, Dalais, C, Bateup, S, Linthwaite, B, May, N, Munn, J, Ramsay, L, Rickett, K, Rutter, C, Smith, A, Sondergeld, P, Wallin, M, Jones, M & Beller, E 2020, 'Improving the translation of search strategies using the Polyglot Search Translator: a randomized controlled trial',  Journal of the Medical Library Association , vol. 108, no. 2, pp. 195-207.

Journal articles describing systematic review methods can be searched for in PubMed using this search string in the PubMed search box: sysrev_methods [sb] . 

Software tools for systematic reviews

  • Covidence GW in 2019 has bought a subscription to this Cloud based tool for facilitating screening decisions, used by the Cochrane Collaboration. Register for an account.
  • NVIVO for analysis of qualitative research NVIVO is used for coding interview data to identify common themes emerging from interviews with several participants. GW faculty, staff, and students may download NVIVO software.
  • RedCAP RedCAP is software that can be used to create survey forms for research or data collection or data extraction. It has very detailed functionality to enable data exchange with Electronic Health Record Systems, and to integrate with study workflow such as scheduling follow up reminders for study participants.
  • SRDR tool from AHRQ Free, web-based and has a training environment, tutorials, and example templates of systematic review data extraction forms
  • RevMan 5 RevMan 5 is the desktop version of the software used by Cochrane systematic review teams. RevMan 5 is free for academic use and can be downloaded and configured to run as stand alone software that does not connect with the Cochrane server if you follow the instructions at https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman/revman-5-download/non-cochrane-reviews
  • Rayyan Free, web-based tool for collecting and screening citations. It has options to screen with multiple people, masking each other.
  • GradePro Free, web application to create, manage and share summaries of research evidence (called Evidence Profiles and Summary of Findings Tables) for reviews or guidelines, uses the GRADE criteria to evaluate each paper under review.
  • DistillerSR Needs subscription. Create coded data extraction forms from templates.
  • EPPI Reviewer Needs subscription. Like DistillerSR, tool for text mining, data clustering, classification and term extraction
  • SUMARI Needs subscription. Qualitative data analysis.
  • Dedoose Needs subscription. Qualitative data analysis, similar to NVIVO in that it can be used to code interview transcripts, identify word co-occurence, cloud based.
  • Meta-analysis software for statistical analysis of data for quantitative reviews SPSS, SAS, and STATA are popular analytical statistical software that include macros for carrying out meta-analysis. Himmelfarb has SPSS on some 3rd floor computers, and GW affiliates may download SAS to your own laptop from the Division of IT website. To perform mathematical analysis of big data sets there are statistical analysis software libraries in the R programming language available through GitHub and RStudio, but this requires advanced knowledge of the R and Python computer languages and data wrangling/cleaning.
  • PRISMA 2020 flow diagram The PRISMA Statement website has a page listing example flow diagram templates

GW researchers may want to consider using Refworks to manage citations, and GW Box to store the full text PDF's of review articles. You can also use online survey forms such as Qualtrics, RedCAP, or Survey Monkey, to design and create your own coded fillable forms, and export the data to Excel or one of the qualitative analytical software tools listed above.

Forest Plot Generators

  • RevMan 5 the desktop version of the software used by Cochrane systematic review teams. RevMan 5 is free for academic use and can be downloaded and configured to run as stand alone software that does not connect with the Cochrane server if you follow the instructions at https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman/revman-5-download/non-cochrane-reviews.
  • Meta-Essentials a free set of workbooks designed for Microsoft Excel that, based on your input, automatically produce meta-analyses including Forest Plots. Produced for Erasmus University Rotterdam joint research institute.
  • Neyeloff, Fuchs & Moreira Another set of Excel worksheets and instructions to generate a Forest Plot. Published as Neyeloff, J.L., Fuchs, S.C. & Moreira, L.B. Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res Notes 5, 52 (2012). https://doi-org.proxygw.wrlc.org/10.1186/1756-0500-5-52
  • For R programmers instructions are at https://cran.r-project.org/web/packages/forestplot/vignettes/forestplot.html and you can download the R code package from https://github.com/gforge/forestplot
  • << Previous: Home
  • Next: Protocol and registration >>

Creative Commons License

  • Last Updated: Jun 10, 2024 2:14 PM
  • URL: https://guides.himmelfarb.gwu.edu/systematic_review

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2850
  • [email protected]
  • https://himmelfarb.gwu.edu
  • UNC Libraries
  • HSL Academic Process
  • Systematic Reviews

Systematic Reviews: Home

Created by health science librarians.

HSL Logo

  • Systematic review resources

What is a Systematic Review?

A simplified process map, how can the library help, publications by hsl librarians, systematic reviews in non-health disciplines, resources for performing systematic reviews.

  • Step 1: Complete Pre-Review Tasks
  • Step 2: Develop a Protocol
  • Step 3: Conduct Literature Searches
  • Step 4: Manage Citations
  • Step 5: Screen Citations
  • Step 6: Assess Quality of Included Studies
  • Step 7: Extract Data from Included Studies
  • Step 8: Write the Review

  Check our FAQ's

   Email us

   Call (919) 962-0800

   Make an appointment with a librarian

  Request a systematic or scoping review consultation

Sign up for a systematic review workshop or watch a recording

A systematic review is a literature review that gathers all of the available evidence matching pre-specified eligibility criteria to answer a specific research question. It uses explicit, systematic methods, documented in a protocol, to minimize bias , provide reliable findings , and inform decision-making.  ¹  

There are many types of literature reviews.

Before beginning a systematic review, consider whether it is the best type of review for your question, goals, and resources. The table below compares a few different types of reviews to help you decide which is best for you. 

Comparing Systematic, Scoping, and Systematized Reviews
Systematic Review Scoping Review Systematized Review
Conducted for Publication Conducted for Publication Conducted for Assignment, Thesis, or (Possibly) Publication
Protocol Required Protocol Required No Protocol Required
Focused Research Question Broad Research Question Either
Focused Inclusion & Exclusion Criteria Broad Inclusion & Exclusion Criteria Either
Requires Large Team Requires Small Team Usually 1-2 People
  • Scoping Review Guide For more information about scoping reviews, refer to the UNC HSL Scoping Review Guide.

Systematic Reviews: A Simplified, Step-by-Step Process Map

  • UNC HSL's Simplified, Step-by-Step Process Map A PDF file of the HSL's Systematic Review Process Map.
  • Text-Only: UNC HSL's Systematic Reviews - A Simplified, Step-by-Step Process A text-only PDF file of HSL's Systematic Review Process Map.

Creative commons license applied to systematic reviews image requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.

The average systematic review takes 1,168 hours to complete. ¹   A librarian can help you speed up the process.

Systematic reviews follow established guidelines and best practices to produce high-quality research. Librarian involvement in systematic reviews is based on two levels. In Tier 1, your research team can consult with the librarian as needed. The librarian will answer questions and give you recommendations for tools to use. In Tier 2, the librarian will be an active member of your research team and co-author on your review. Roles and expectations of librarians vary based on the level of involvement desired. Examples of these differences are outlined in the table below.

Roles and expectations of librarians based on level of involvement desired.
Tasks Tier 1: Consultative Tier 2: Research Partner / Co-author
Guidance on process and steps Yes Yes
Background searching for past and upcoming reviews Yes Yes
Development and/or refinement of review topic Yes Yes
Assistance with refinement of PICO (population, intervention(s), comparator(s), and key questions Yes Yes
Guidance on study types to include Yes Yes
Guidance on protocol registration Yes Yes
Identification of databases for searches Yes Yes
Instruction in search techniques and methods Yes Yes
Training in citation management software use for managing and sharing results Yes Yes
Development and execution of searches No Yes
Downloading search results to citation management software and removing duplicates No Yes
Documentation of search strategies No Yes
Management of search results No Yes
Guidance on methods Yes Yes
Guidance on data extraction, and management techniques and software Yes Yes
Suggestions of journals to target for publication Yes Yes
Drafting of literature search description in "Methods" section No Yes
Creation of PRISMA diagram No Yes
Drafting of literature search appendix No Yes
Review other manuscript sections and final draft No Yes
Librarian contributions warrant co-authorship No Yes
  • Request a systematic or scoping review consultation

The following are systematic and scoping reviews co-authored by HSL librarians.

Only the most recent 15 results are listed. Click the website link at the bottom of the list to see all reviews co-authored by HSL librarians in PubMed

Researchers conduct systematic reviews in a variety of disciplines.  If your focus is on a topic outside of the health sciences, you may want to also consult the resources below to learn how systematic reviews may vary in your field.  You can also contact a librarian for your discipline with questions.

  • EPPI-Centre methods for conducting systematic reviews The EPPI-Centre develops methods and tools for conducting systematic reviews, including reviews for education, public and social policy.

Cover Art

Environmental Topics

  • Collaboration for Environmental Evidence (CEE) CEE seeks to promote and deliver evidence syntheses on issues of greatest concern to environmental policy and practice as a public service

Social Sciences

systematic literature review the method

  • Siddaway AP, Wood AM, Hedges LV. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annu Rev Psychol. 2019 Jan 4;70:747-770. doi: 10.1146/annurev-psych-010418-102803. A resource for psychology systematic reviews, which also covers qualitative meta-syntheses or meta-ethnographies
  • The Campbell Collaboration

Social Work

Cover Art

Software engineering

  • Guidelines for Performing Systematic Literature Reviews in Software Engineering The objective of this report is to propose comprehensive guidelines for systematic literature reviews appropriate for software engineering researchers, including PhD students.

Cover Art

Sport, Exercise, & Nutrition

Cover Art

  • Application of systematic review methodology to the field of nutrition by Tufts Evidence-based Practice Center Publication Date: 2009
  • Systematic Reviews and Meta-Analysis — Open & Free (Open Learning Initiative) The course follows guidelines and standards developed by the Campbell Collaboration, based on empirical evidence about how to produce the most comprehensive and accurate reviews of research

Cover Art

  • Systematic Reviews by David Gough, Sandy Oliver & James Thomas Publication Date: 2020

Cover Art

Updating reviews

  • Updating systematic reviews by University of Ottawa Evidence-based Practice Center Publication Date: 2007
  • Next: Step 1: Complete Pre-Review Tasks >>
  • Last Updated: May 16, 2024 3:24 PM
  • URL: https://guides.lib.unc.edu/systematic-reviews

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

How-to conduct a systematic literature review: A quick guide for computer science research

Affiliations.

  • 1 Faculty of Engineering, Mondragon University.
  • 2 Design Innovation Center(DBZ), Mondragon University.
  • PMID: 36405369
  • PMCID: PMC9672331
  • DOI: 10.1016/j.mex.2022.101895

Performing a literature review is a critical first step in research to understanding the state-of-the-art and identifying gaps and challenges in the field. A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in particular early-stage researchers in the computer-science field. The contribution of the article is the following:•Clearly defined strategies to follow for a systematic literature review in computer science research, and•Algorithmic method to tackle a systematic literature review.

Keywords: Systematic literature reviews; computer science; doctoral studies; literature reviews; research methodology.

© 2022 The Author(s).

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Graphical abstract

Example of Advanced search on…

Example of Advanced search on Scopus.

Performing quality assessment (QA) in…

Performing quality assessment (QA) in Parsif.al.

Example of data extraction form…

Example of data extraction form using Parsif.al.

Keyword co-relationship analysis using clusterization…

Keyword co-relationship analysis using clusterization in vos viewer.

Similar articles

  • The future of Cochrane Neonatal. Soll RF, Ovelman C, McGuire W. Soll RF, et al. Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12. Early Hum Dev. 2020. PMID: 33036834
  • A review of reviews on principles, strategies, outcomes and impacts of research partnerships approaches: a first step in synthesising the research partnership literature. Hoekstra F, Mrklas KJ, Khan M, McKay RC, Vis-Dunbar M, Sibley KM, Nguyen T, Graham ID; SCI Guiding Principles Consensus Panel; Gainforth HL. Hoekstra F, et al. Health Res Policy Syst. 2020 May 25;18(1):51. doi: 10.1186/s12961-020-0544-9. Health Res Policy Syst. 2020. PMID: 32450919 Free PMC article. Review.
  • Easy guide to conducting a systematic review. Caldwell PH, Bennett T. Caldwell PH, et al. J Paediatr Child Health. 2020 Jun;56(6):853-856. doi: 10.1111/jpc.14853. Epub 2020 May 4. J Paediatr Child Health. 2020. PMID: 32364273
  • Scoping Reviews, Systematic Reviews, and Meta-Analysis: Applications in Veterinary Medicine. Sargeant JM, O'Connor AM. Sargeant JM, et al. Front Vet Sci. 2020 Jan 28;7:11. doi: 10.3389/fvets.2020.00011. eCollection 2020. Front Vet Sci. 2020. PMID: 32047759 Free PMC article.
  • A practical guide to systematic literature reviews and meta-analyses in infection prevention: Planning, challenges, and execution. Schweizer ML, Nair R. Schweizer ML, et al. Am J Infect Control. 2017 Nov 1;45(11):1292-1294. doi: 10.1016/j.ajic.2017.08.004. Epub 2017 Sep 13. Am J Infect Control. 2017. PMID: 28918302 Review.
  • A systematic literature review on the impact of AI models on the security of code generation. Negri-Ribalta C, Geraud-Stewart R, Sergeeva A, Lenzini G. Negri-Ribalta C, et al. Front Big Data. 2024 May 13;7:1386720. doi: 10.3389/fdata.2024.1386720. eCollection 2024. Front Big Data. 2024. PMID: 38803522 Free PMC article.
  • Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products. Zhou Y, Peng S, Wang H, Cai X, Wang Q. Zhou Y, et al. Genes (Basel). 2024 Apr 8;15(4):468. doi: 10.3390/genes15040468. Genes (Basel). 2024. PMID: 38674402 Free PMC article. Review.
  • A method of Mapping Process for scientific production using the Smart Bibliometrics. Pessin VZ, Santos CAS, Yamane LH, Siman RR, Baldam RL, Júnior VL. Pessin VZ, et al. MethodsX. 2023 Sep 6;11:102367. doi: 10.1016/j.mex.2023.102367. eCollection 2023 Dec. MethodsX. 2023. PMID: 37732291 Free PMC article.
  • Method of preparing an international and national literature review for novice researchers. Libório MP, Martins CAPS, Laudares S, Ekel PI. Libório MP, et al. MethodsX. 2023 Mar 29;10:102165. doi: 10.1016/j.mex.2023.102165. eCollection 2023. MethodsX. 2023. PMID: 37091956 Free PMC article.
  • Carrera-Rivera A., Larrinaga F., Lasa G. Context-Awareness for the design of Smart-Product Service Systems: Literature Review. Comput. Ind. 2022
  • Cong J., Chen C.-H., Zheng P., Li X., Wang Z. A holistic relook at engineering design methodologies for smart product-service systems development. J. Cleaner Prod. 2020;272 doi: 10.1016/j.jclepro.2020.122737. - DOI
  • Cui Y., Kara S., Chan K.C. Manufacturing big data ecosystem: A systematic literature review. Rob. Comput. Integr. Manuf. 2020;62
  • Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021;133:285–296.
  • Kitchenham B., Brereton O.P., Budgen D., Turner M., Bailey J., Linkman S. Systematic literature reviews in software engineering–a systematic literature review. Inf. Softw. Technol. 2009;51(1):7–15.

LinkOut - more resources

Full text sources.

  • Elsevier Science
  • Europe PubMed Central
  • PubMed Central

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • Search Menu
  • Sign in through your institution
  • Advance Articles
  • Editor's Choice
  • Supplements
  • E-Collections
  • Virtual Roundtables
  • Author Videos
  • Author Guidelines
  • Submission Site
  • Open Access Options
  • About The European Journal of Public Health
  • About the European Public Health Association
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Terms and Conditions
  • Explore Publishing with EJPH
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Introduction, conclusions, recommendations and limitations of the study, supplementary data, data availability.

  • < Previous

A systematic review of literature examining the application of a social model of health and wellbeing

  • Article contents
  • Figures & tables
  • Supplementary Data

Rachel Rahman, Caitlin Reid, Philip Kloer, Anna Henchie, Andrew Thomas, Reyer Zwiggelaar, A systematic review of literature examining the application of a social model of health and wellbeing, European Journal of Public Health , Volume 34, Issue 3, June 2024, Pages 467–472, https://doi.org/10.1093/eurpub/ckae008

  • Permissions Icon Permissions

Following years of sustained pressure on the UK health service, there is recognition amongst health professionals and stakeholders that current models of healthcare are likely to be inadequate going forward. Therefore, a fundamental review of existing social models of healthcare is needed to ascertain current thinking in this area, and whether there is a need to change perspective on current thinking.

Through a systematic research review, this paper seeks to address how previous literature has conceptualized a social model of healthcare and, how implementation of the models has been evaluated. Analysis and data were extracted from 222 publications and explored the country of origin, methodological approach, and the health and social care contexts which they were set.

The publications predominantly drawn from the USA, UK, Australia, Canada and Europe identified five themes namely: the lack of a clear and unified definition of a social model of health and wellbeing; the need to understand context; the need for cultural change; improved integration and collaboration towards a holistic and person-centred approach; measuring and evaluating the performance of a social model of health.

The review identified a need for a clear definition of a social model of health and wellbeing. Furthermore, consideration is needed on how a model integrates with current models and whether it will act as a descriptive framework or, will be developed into an operational model. The review highlights the importance of engagement with users and partner organizations in the co-creation of a model of healthcare.

Following years of sustained and increasing pressure brought about through inadequate planning and chronic under-resourcing including the unprecedented challenges of the Covid-19 pandemic, the UK NHS is at crisis point. 1 The incidents of chronic disease continue to increase alongside an ageing population who have more complex health and wellbeing needs, whilst recruitment and retention of staff continue to be insufficient to meet these increased demands. 1 Furthermore, the Covid-19 pandemic has only served to exacerbate pressures, resulting in delays in; patient presentation, 2 poor public mental health 3 strain and burnout amongst workforce. 4 However, preceding the pandemic there was already recognition of a need for a change to the current biomedical model of care to better prevent and treat the needs of the population. 5

While it is recognized that demands on the healthcare system are increasing rapidly, the biomedical model used to deal with these issues (which is the current model of healthcare provision in the UK) has largely remained unchanged over the years. The biomedical model takes the perspective that ill-health stems from biological factors and operates on the theory that good health and wellbeing is merely the absence of illness. Application of the model therefore focuses treatment on the management of symptoms and cure of disease from a biological perspective. This suggests that the biomedical approach is mainly reactive in nature and whilst rapid advancements in technology such as diagnostics and robotics have significantly improved patient outcomes and identification of early onset of disease, it does not fully extend into managing the social determinants that can play an important role in the prevention of disease. Therefore, despite its contribution in advancing many areas of biological and health research, the biomedical model has come under increasing scrutiny. 6 This is in part due to the growing recognition of the impact of those wider social determinants on health, ill-health and wellbeing including physical, mental and social wellbeing which moves the focus beyond individual physical abilities or dysfunction. 7–9 In order to address these determinants, action needs to be taken through developing policies in a range of non-medical areas such as social, economic and environment so that they regulate the commercial and corporate determinants. In this sense, we can quickly see that the traditional biological model rapidly becomes inadequate. With the current model, health care and clinical staff can do little to affect these determinants and as such can do little to assist the individual patient or society. The efficiency and effectiveness of clinical work will undoubtedly improve if staff have the ability to observe and understand the wider social determinants and consequences of the individual patients’ condition. Therefore, in order to provide a basis for understanding the determinants of disease and arriving at rational treatments and patterns of health care, a medical model must also take into account the patient, the social context in which they live, and a system devised by society to deal with the disruptive effects of illness, that is, the physician’s role and that of the health care system. Models such as Engel’s biopsychosocial model, 9 , 10 the social model of disability, social–ecological models of health 10 , 11 including the World Health Organisation’s framework for action on social determinants of health 8 , 9 are all proposed as attempting to integrate these wider social determinants.

However, the ability of health systems to effectively transition away from a dominant biomedical model to the adoption of a social model of health and care have yet to be fully developed. Responsibility for taking action on these social determinants will need to come from other sectors and policy areas and so future health policy will need to evolve into a more comprehensive and holistic social model of health and wellbeing. Wales’ flagship Wellbeing of Future Generations Act 12 for instance outlines ways of working towards sustainable development and includes the need to collaborate with society and communities in developing and achieving wellbeing goals. However, developing and implementing an effective operational model that allows multi-stakeholder integration will prove far more difficult to achieve than creating the polices. Furthermore, if the implementation of a robust model of social health is achievable, it’s efficiency, effectiveness and ability to deliver has yet to be proven. Therefore, any future model will need to extend past its conceptual development and provide an ability to manage the complex interactions that will exist between the stakeholders and polices.

Therefore, the use of the term ‘model’ poses its own challenges and debates. Different disciplines attribute differing parameters to what constitutes a model and this in turn may influence the interpretations or expectations surrounding what a model should comprise of or deliver. 13 According to numerous authors, a model has no ontological category and as such anything from physical entities, theoretical concepts, descriptive frameworks or equations can feasibly be considered a model. 14 It appears therefore, that much discussion has focussed on the move towards a ‘descriptive’ Social Model of Health and Wellbeing in an attempt to view health more holistically and identify a wider range of determinants that can impact on the health of the population. However, in defining an operational social model of health that can facilitate organizational change, there may be a need to consider a more systems- or process-based approach.

As a result, this review seeks to systematically explore the academic literature in order to better understand how a social model of health and wellbeing is conceptualized, implemented, operationalized and evaluated in health and social care.

The review seeks to address the research questions:

How is ‘a social model of health and wellbeing’ conceptualized?

How have social models of health and wellbeing been implemented and evaluated?

A systematic search of the literature was carried out between 6 January 2022 and 20 January 2022. Using the search terms shown in table 1 , a systematic search was carried out using online databases PsycINFO, ASSIA, IBSS, Medline, Web of Science, CINHAL and SCOPUS. English language and peer-reviewed journals were selected as limiters.

Search terms

Selection and extraction criteria

The search strategy considered research that explicitly included, framed, or adopted a ‘social model of health and wellbeing’. Each paper was checked for relevance and screened. The authors reviewed the literature using the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) method using the updated guidelines from 2020. 15   Figure 1 represents the process followed.

PRISMA flow chart.

PRISMA flow chart.

Data extraction and analysis

A systematic search of the literature identified 222 eligible papers for inclusion in the final review. A data extraction table was used to extract information regarding location of the research, type of paper (e.g. review, empirical), service of interest and key findings. Quantitative studies were explored with a view to conducting a quantitative meta-analysis; however, given the disparate nature of the outcome measures, and research designs, this was deemed unfeasible. All included papers were coded using NVivo software with the identified research questions in mind, and re-analysed using Thematic Analysis 16 to explore common themes of relevance.

The majority of papers were from the USA (34%), with the UK (28%), Australia (16%), Canada (6%) and wider Europe (10%) also contributing to the field. The ‘other’ category (6%) was made up of single papers from other countries. Papers ranged in date from 1983 to 2021 with no noticeable temporal patterns in country of origin, health context or model definition. However, the volume of papers published relating to the social model for healthcare in each decade increased significantly, thus suggesting the increasing research interest towards the social model of healthcare. Table 2 shows the number of publications per decade that were identified from this study.

Publications identifying social models of healthcare.

Year of publicationNumber of publications identifying social models of healthcare
1980s5
1990s11
200070
201087
2020–2249
Year of publicationNumber of publications identifying social models of healthcare
1980s5
1990s11
200070
201087
2020–2249

Most of the papers were narrative reviews ( n  = 90) with a smaller number of systematic reviews ( n  = 9) and empirical research studies including qualitative ( n  = 47), quantitative ( n  = 39) and mixed methods ( n  = 14) research. The remaining papers ( n  = 23) comprised small samples of, for example, clinical commentaries, cost effectiveness analysis, discussion papers and impact assessment development papers. The qualitative meta-analysis identified five overarching themes in relation to the research questions, some with underlying sub-themes, which are outlined in figure 2 .

Overview of meta-synthesis themes.

Overview of meta-synthesis themes.

The lack of a clear and unified definition of a social model of health and wellbeing

There was common recognition amongst the papers that a key aim of applying a social model of health and wellbeing was to better address the social determinants of health. Papers identified and reviewed relevant frameworks and models, which they later used to conceptualize or frame their approach when attempting to apply a social model of health. Amongst the most commonly referenced was the WHO’s framework. 17 Engel’s biopsychosocial model 9 which was referred to as a seminal framework by many of the researchers. However, once criticism of the biopsychosocial model was its inability to fully address social needs. As a result, a number of papers reported the development of new or enhanced models that used the biopsychosocial model as their underpinning ‘social model’ 18 , 19 but then extended their work by including a wider set of social elements in their resulting models. 20 The Social ecological model, 11 the Society-Behaviour-Biology Nexus, 21 and the Environmental Affordances Model are such examples. 22 Further examples of ‘Social Models’ included the Model of Social Determinants of Health 23 which framed specific determinants of interest (namely social gradient, stress, early life, social exclusion, work, unemployment, social support, addiction, food and transport). Similarly, Dahlgren and Whitehead’s ‘social model’ 10 illustrates social determinants via a range of influential factors from the individual to the wider cultural and socioeconomic influences. However, none of these papers formally developed a working ‘definition’ of a social model of health and wellbeing, instead applying guiding principles and philosophies associated with a social model to their discussions or interventions. 24 , 25

The need to understand context

Numerous articles highlight that in order to move towards a social model of health and wellbeing, it is important to understand the context of the environment in which the model will need to operate. This includes balancing the needs of the individual with the resulting model to have been co-created, developed and implemented within the community whilst ensuring that the complexity of interaction between the social determinants of health and their influence on health and wellbeing outcomes are delivered effectively and efficiently.

The literature identified the complex multi-disciplinary nature of a variety of conditions or situations involving medical care. These included issues such as, but not exclusively, chronic pain, 26 cancer, 27 older adult care 28 and dementia, 29 thus indicating the complex arrangement of medical issues that a model will need to address and, where many authors acknowledged that the frequently used biomedical models failed to fully capture the holistic nature and need of patients. Papers outlined some of the key social determinants of health affecting the specific population of interest in their own context, highlighting the interactions between wider socioeconomic and cultural factors such as poverty, housing, isolation and transport and health and wellbeing outcomes. Interventions that had successfully addressed individual needs and successful embedded services in communities reported improved outcomes for end users and staff in the form of empowerment, agency, education and belonging. 30 There was also recognition that the transition to more community-based care could be challenging for health and social care providers who were having to work outside of their traditional models of care and accept a certain level of risk.

The need for cultural change

A number of papers referred to the need for a ‘culture change’ or ‘cultural shift’ in order to move towards a social model of health and wellbeing. Papers identified how ‘culture change models’ were implemented as a way of adapting to a social model. It was recognized that for culture change models to be effective, staff and the general public needed to be fully engaged with the entire move towards a social model, informing and shaping the mechanisms for the cultural shift as well as the application of the model itself.

Integration and collaboration towards a holistic and person-centred approach

The importance of integration and collaboration between health professionals, (which includes public, private and third sector organizations), services users and patients were emphasized in the ambition to achieve best practice when applying a social model of health and wellbeing. Papers identified the reported benefits of improved collaboration between, and integration of services which included improved continuity of care throughout complex pathways, 31 improved return to home or other setting on discharge, 25 and social connectedness. 32 Numerous papers discussed the importance of multi-disciplinary teams who were able to support individuals beyond the medicalized model.

A number of papers suggested specific professional roles or structures that would be ideal to act as champions or integrators of collaborative services and communities. 25 , 33 These could act as a link between secondary, primary and community level care helping to identify patient needs and supporting the integration of relevant services.

Measuring and evaluating a social model of health

Individual papers applying and evaluating interventions based on a social model used a variety of methods to evaluate success. Amongst these, some of the most common outcome measures included; general self-report measures of outcomes such as mental health and perceptions of safety, 34 wellbeing, 35 life satisfaction and health social networks and support 19 Some included condition specific self-report outcomes relevant to the condition in question (e.g. pregnancy, anxiety) and pain inventories. 36 Other papers considered the in-depth experiences of users or service implementers through qualitative techniques such as in-person interviews. 37 , 38

However, the complexity of developing effective methods to evaluate social models of health were recognized. The need to consider the complex interactions between social determinants, and health, wellbeing, economic and societal outcomes posed particular challenges in developing consistency across evaluations that would enable a conclusive evaluation of the benefits of social models to wider health systems and societal health. Some criticized the over-reliance of quantitative and evidence-based practice methods of evaluation highlighting how these could fail to fully capture the complexity of human behaviour and the manner in which their lives could be affected.

The aim of this systematic review was to better understand how a social model of health and wellbeing is conceptualized, implemented and evaluated in health and social care. The review sought to address the research questions identified in the ‘Introduction’ section of this paper.

With regards to the conceptualization of a social model of health and wellbeing, analysis of the literature suggests that whilst the ethos, values and aspirations of achieving a unified model appears to have consensus. However, a fundamental weakness exists in that there is no single unified definition or operational model of a social model of health and wellbeing applied to the health and social care sector. The decision about how best to conceptualize a ‘social model’ is important both in terms of its operational value but also the implication of the associated semantics. However, without a single or unified definition then implementation or further, operationalization of any model will be almost impossible to develop. Furthermore, use of the term ‘social model’ arguably loses site of the biological factors that are clearly relevant in many elements of clinical medicine. Furthermore, there is no clarification in the literature about what would ‘not’ be considered a social model of health and wellbeing, potentially leading to confusion within health and social care sectors when addressing their wider social remit. This raises questions and requires decisions about whether implementation of a social model of health and wellbeing will need to work alongside or replace the existing biomedical approach.

Authors have advocated that a social model provides a way of ‘thinking’ or articulating an organization’s values and culture. 24 Common elements of the values associated with a social model amongst the papers reviewed included recognition and awareness of the social determinants of health, increased focus on preventative rather than reactive care, and similarly the importance of quality of ‘life’ as opposed to a focus on quality of ‘care’. However, whilst this approach enables individual services to consider how well their own practices align with a social model, the authors suggest that this does not provide large organizations such as the NHS, with multifaceted services and complex internal and external connections and networks, sufficient guidance to enable large scale evaluation or transition to a widespread operational model of a social model of health and wellbeing. This raises questions about what the model should be: whether its function is to support communication of a complex ethos to encourage reflection and engagement of its staff and end users, or to develop the current illustrative framework into a predictive model that can be utilized as an evaluative tool to inform and measure the success of widespread systems change.

Regarding the potential implementation of a future social model of health and wellbeing, none of the papers evaluated the complex widespread organizational implementation of a social model, instead focusing on specific organizational contexts of services such as long-term care in care homes, etc. Despite this, common elements of successful implementation did emerge from the synthesis. This included the need to wholeheartedly engage and be inclusive of end users in policy and practice change to fully understand the complexity of their social worlds and to ensure that changes to practice and policy were ‘developed with’, as opposed to ‘create for’, the wider public. This also involved ensuring that health, social care and wider multi-disciplinary teams were actively included in the process of culture change from an early stage.

Implications for future research

The analysis identifies that a significant change of mindset and removal of perceived and actual hierarchical structures (that are historically embedded in health and social care structures) amongst both staff and public is needed although, eradicating socially embedded hierarchies will pose significant challenges in practice. Furthermore, the study revealed that many of the models proposed were conceptually underdeveloped and lacked the capability to be operationalized which in turn compromised their ability to be empirically tested. Therefore, in order that a future ‘implementable and operational’ model of social care and wellbeing can be created, further research into organizational behaviours, organizational learning and stakeholder theory (amongst others) applied to the social care and health environment is needed.

Towards defining a social model of health and wellbeing

In attempting to conceptualize a definition for a social model of health and wellbeing, it is important to note that the model needs to be sufficiently broad in scope in order to include the prevailing biomedical while also including the need to draw in the social determinants that provide a view and future trajectory towards social health and wellbeing. Therefore, the authors suggest that the ‘preventative’ approach brought by the improvements in the social health determinants (social, cultural, political, environmental ) need to be balanced effectively with the ‘remedial/preventative’ focus of the biomedical model (and the associated advancements in diagnostics, technology, vaccines, etc), ensuring that a future model drives cultural change; improved integration and collaboration towards a holistic and person-centred approach whilst ensuring engagement with citizens, users, multi-disciplinary teams and partner organizations to ensure that transition towards a social model of health and wellbeing is undertaken.

Through a comprehensive literature analysis, this paper has provided evidence that advocates a move towards a social model of health and wellbeing. However, the study has predominantly considered mainly literature from the USA, UK, Canada and Australia and therefore is limited in scope at this stage. The authors are aware of the need to consider research undertaken in non-English speaking countries where a considerable body of knowledge also exists and which will add to further discussion about how that work dovetails into this body of literature and, how it aligns with the biomedical perspective. There is a need for complex organizations such as the NHS and allied organizations to agree a working definition of their model of health and wellbeing, whether that be a social model of health and wellbeing, a biopsychosocial model, a combined model, or indeed a new or revised perspective. 39

One limitation seen of the models within this study is that at a systems level, most models were conceptual models that characterized current systems or conditions and interventions to the current system that result in localized improvements in systems’ performance. However, for meaningful change to occur, a ‘future state’ model may need to focus on a behavioural systems approach allowing modelling of the complete system to take place in order to understand how the elements within the model 40 behave under different external conditions and how these behaviours affect overall system performance.

Furthermore, considerable work will be required to engage on a more equal footing with the public, health and social care staff as well as wider supporting organizations in developing workable principles and processes that fully embrace the equality of a social model and challenging the ‘power’ imbalances of the current biomedical model.

Supplementary data are available at EURPUB online.

This research was funded/commissioned by Hywel Dda University Health Board. The research was funded in two phases.

Conflicts of interest: None declared.

The datasets generated and/or analysed during the current study are available in the Data Archive at Aberystwyth University and have been included in the supplementary file attached to this submission. A full table of references for studies included in the review will be provided as a supplementary document. The references below refer to citations in the report which are in addition to the included studies of the synthesis.

The review identified five themes namely: the lack of a clear definition of a social model of health and wellbeing; the need to understand context; the need for cultural change; improved integration and collaboration towards a holistic and person-centred approach; measuring and evaluating the performance of a social model of health.

The review identified a need for organizations to decide on how a social model is to be defined especially at the interfaces between partner organizations and communities.

The implications for public policy in this paper highlights the importance of engagement with citizens, users, multi-disciplinary teams and partner organizations to ensure that transition towards a social model of health and wellbeing is undertaken with holistic needs as a central value.

British Medical Association (ND). An NHS under pressure. Accessed via An NHS under pressure (bma.org.uk). https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/an-nhs-under-pressure (26 June 2023, date last accessed).

Nuffield Trust ( 2022 ). NHS performance summary. Accessed via NHS performance summary | The Nuffield Trust. https://www.nuffieldtrust.org.uk/news-item/nhs-performance-summary-january-february-2022 (26 June 2023, date last accessed).

NHS confederation , ( 2022 ) Running hot: The impact of the Covid-19 pandemic on mental health services. Accessed via Running hot | NHS Confederation. https://www.nhsconfed.org/publications/running-hot (26 June 2023, date last accessed).

Gemine R , Davies GR , Tarrant S , et al.    Factors associated with work-related burnout in NHS staff during COVID-19: a cross-sectional mixed methods study . BMJ Open   2021 ; 11 : e042591 .

Google Scholar

Iacobucci G.   Medical models of care needs updating say experts . BMJ   2018 ; 360 : K1034 .

Podgorski CA , Anderson SD , Parmar J.   A biopsychosocial-ecological framework for family-framed dementia care . Front Psychiatry   2021 ; 12 : 744806 .

Marmot M.   Social determinants of health inequalities . Lancet   2005 ; 365 : 1099 – 104 .

World Health Organisation ( 1946 ) Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference . New York: World Health Organization, 19–22 June, 1946.

World Health Organisation ( 2010 ). A conceptual framework for action on the social determinants of health. Accessed via A Conceptual Framework for Action on the Social Determinants of Health (who.int) (26 June 2023, date last accessed).

Engel G.   The need for a new medical model: a challenge for biomedicine . Science   1977 ; 196 : 129 – 36 .

Dahlgren G , Whitehead M. ( 2006 ). European strategies for tackling social inequities in health: Levelling up part 2. Studies on Social Economic Determinants of Population Health, 1–105. Available at: http://www.euro.who.int/__data/assets/pdf_file/0018/103824/E89384.pdf (12 October 2023, date last accessed).

McLeroy KR , Bibeau D , Steckler A , Glanz K.   An ecological perspective on health promotion programs . Health Educ Q   1988 ; 15 : 351 – 77 .

Welsh Government , Wellbeing of Future Generations Act 2015. Available at: https://www.gov.wales/sites/default/files/publications/2021-10/well-being-future-generations-wales-act-2015-the-essentials-2021.pdf (12 October 2023, date last accessed).

Stanford Encyclopaedia of Philosophy ( 2006 , 2020). Models in Science. Available at: https://plato.stanford.edu/entries/models-science/ (26 June 2023, date last accessed).

Page MJ , McKenzie JE , Bossuyt PM , et al.    The PRISMA 2020 statement: an updated guideline for reporting systematic reviews . BMJ   2021 ; 372 : n71 .

Braun V , Clarke V.   Using thematic analysis in psychology . Qual Res Psychol   2006 ; 3 : 77 – 101 .

Thomas J , Harden A.   Methods for the thematic synthesis of qualitative research in systematic reviews . BMC Med Res Methodol   2008 ; 8 : 45 .

Solar O , Irwin A. ( 2016 ) “A conceptual framework for action on the social determinants of health. Geneva, Switzerland: WHO; 2010”. (Social determinants of health discussion paper 2 (policy and practice)). Available at: http://www.who.int/sdhconference/resources/ConceptualframeworkforactiononSDH_eng.pdf (12 October 2023, date last accessed).

Farre A , Rapley T.   The new old (and old new) medical model: four decades navigating the biomedical and psychosocial understandings of health and illness . Healthcare   2017 ; 5 : 88 .

Smedema SM.   Evaluation of a concentric biopsychosocial model of well-being in persons with spinal cord injuries . Rehabil Psychol   2017 ; 62 : 186 – 97 . PMID: 28569533.

Robles B , Kuo T , Thomas Tobin CS.   What are the relationships between psychosocial community characteristics and dietary behaviors in a racially/ethnically diverse urban population in Los Angeles county? . Int J Environ Res Public Health   2021 ; 18 : 9868 .

Glass TA , McAtee MJ.   Behavioral science at the crossroads in public health: extending horizons, envisioning the future . Soc Sci Med   2006 ; 62 : 1650 – 71 .

Mezuk B , Abdou CM , Hudson D , et al.    "White Box" epidemiology and the social neuroscience of health behaviors: the environmental affordances model . Soc Ment Health   2013 ; 3 : 10.1177/2156869313480892

Wilkinson RG , Marmot M , editors. Social Determinants of Health: The Solid Facts . Copenhagen, Denmark: World Health Organization , 2003 .

Google Preview

Mannion R , Davies H.   Understanding organisational culture for healthcare quality improvement . BMJ   2018 ; 363 : k4907 .

Blount A , Bayona J.   Toward a system of integrated primary care . Fam Syst Health   1994 ; 12 : 171 – 82 .

Berger MY , Gieteling MJ , Benninga MA.   Chronic abdominal pain in children . BMJ   2007 ; 334 : 997 – 1002 . PMID: 17494020; PMCID: PMC1867894.

Berríos-Rivera R , Rivero-Vergne A , Romero I.   The pediatric cancer hospitalization experience: reality co-constructed . J Pediatr Oncol Nurs   2008 ; 25 : 340 – 53 .

Doty MM , Koren MJ , Sturla EL. ( 2008 ). Culture change in nursing homes: How far have we come? Findings from the Commonwealth Fund 2007 National Survey. The Commonwealth Fund, 91. Available at: http://www.commonwealthfund.org/Content/Publications/Fund-Reports/2008/May/Culture-Change-in-NursingHomes-How-Far-Have-We-Come-Findings-FromThe-Commonwealth-Fund-2007-Nati.aspx (16 October 2023, date last accessed).

Robinson L , Tang E , Taylor J.   Dementia: timely diagnosis and early intervention . BMJ   2015 ; 350 : h3029 .

Baxter S , Johnson M , Chambers D , et al.    Understanding new models of integrated care in developed countries: a systematic review . Health Serv Deliv Res   2018 ; 6 : 1 .

Seys D , Panella M , VanZelm R , et al.    Care pathways are complex interventions in complex systems: new European Pathway Association framework . Int J Care Coord   2019 ; 22 : 5 – 9 .

Agarwal G , Brydges M.   Effects of a community health promotion program on social factors in a vulnerable older adult population residing in social housing” . BMC Geriatr   2018 ; 18 : 95 . PMID: 29661136; PMCID: PMC5902999.

Franklin CM , Bernhardt JM , Lopez RP , et al.    Interprofessional teamwork and collaboration between community health workers and healthcare teams: an integrative review . Health Serv Res Manag Epidemiol   2015 ; 2 : 2333392815573312 . PMID: 28462254; PMCID: PMC5266454.

Gagné T , Henderson C , McMunn A.   Is the self-reporting of mental health problems sensitive to public stigma towards mental illness? A comparison of time trends across English regions (2009-19) . Soc Psychiatry Psychiatr Epidemiol   2023 ; 58 : 671 – 80 . PMID: 36473961; PMCID: PMC9735159.

Geyh S , Nick E , Stirnimann D , et al.    Biopsychosocial outcomes in individuals with and without spinal cord injury: a Swiss comparative study . Spinal Cord   2012 ; 50 : 614 – 22 .

Davies C , Knuiman M , Rosenberg M.   The art of being mentally healthy: a study to quantify the relationship between recreational arts engagement and mental well-being in the general population . BMC Public Health   2016 ; 16 : 15 . PMID: 26733272; PMCID: PMC4702355.

Duberstein Z , Brunner J , Panisch L , et al.    The biopsychosocial model and perinatal health care: determinants of perinatal care in a community sample . Front Psychiatry   2021 ; 12 : 746803 .

The King’s Fund , ( 2021 ). Health inequalities in a nutshell. Accessed via Health inequalities in a nutshell | The King's Fund (kingsfund.org.uk) https://www.kingsfund.org.uk/projects/nhs-in-a-nutshell/health-inequalities (23 October 2023, date last accessed)

Blount A.   Integrated primary care: organizing the evidence . Fam Syst Health   2003 ; 21 : 121 – 33 .

Month: Total Views:
January 2024 176
February 2024 297
March 2024 435
April 2024 655
May 2024 537
June 2024 360

Email alerts

Citing articles via.

  • Contact EUPHA
  • Recommend to your Library

Affiliations

  • Online ISSN 1464-360X
  • Print ISSN 1101-1262
  • Copyright © 2024 European Public Health Association
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 12 June 2024

Microsurgery in periodontics and oral implantology: a systematic review of current clinical applications and outcomes

  • Hamoun Sabri   ORCID: orcid.org/0000-0001-6581-2104 1 ,
  • Sara Alhachache 2 ,
  • Pramiti Saxena 1 ,
  • Prerana Dubey 1 ,
  • Paolo Nava   ORCID: orcid.org/0009-0009-6177-3000 1 ,
  • Syed Hanan Rufai 1 &
  • Farzin Sarkarat 3  

Evidence-Based Dentistry ( 2024 ) Cite this article

34 Accesses

Metrics details

  • Dental implants
  • Dentoalveolar surgery

The aim of this systematic review was to comprehensively explore the current trends and therapeutic approaches in which an operating microscope (OM) is used in periodontics and dental implant surgeries.

Materials and methods

A systematic search strategy was built to detect studies including various surgical techniques performed under an OM. PubMed, EMBASE, and SCOPUS databases were searched. No limitations in terms of time and language were applied. The data regarding the study design, type of procedure, treatment groups, and surgical outcomes were collected and analyzed descriptively. In addition, a bibliometric analysis was performed concerning the co-authorship and keyword co-occurrence network.

Out of 1985 articles, finally, 55 met the inclusion criteria. Current periodontal and implant microsurgery trends consist of: periodontal therapy, dental implant microsurgery, soft tissue grafting and periodontal plastic surgery, bone augmentation, ridge preservation, and ortho-perio microsurgery. The bibliometric analysis revealed “guided tissue regeneration”, “periodontal regeneration” and “root coverage” being the most repeated keywords (landmark nodes). 132 authors within 29 clusters were identified, publishing within the frameworks of “periodontal and implant microsurgery”.

Within its limitations, this systematic review provides an overview of the latest trends in periodontal and implant microsurgery when considering the use of an OM as the magnification tool. Also, it discusses the reported success and outcomes of the mentioned procedures.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 4 print issues and online access

251,40 € per year

only 62,85 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

systematic literature review the method

Similar content being viewed by others

systematic literature review the method

Black staining: an overview for the general dental practitioner

systematic literature review the method

Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration

systematic literature review the method

Clinical applications of stem cell-derived exosomes

Data availability.

The data is available upon request from the authors.

Cortellini P, Tonetti MS. Microsurgical approach to periodontal regeneration. Initial evaluation in a case cohort. J Periodontol. 2001;72:559–69.

Article   CAS   PubMed   Google Scholar  

Yu SH, Oh TJ, Wang HL, Chan HL. Amnion-Chorion Membrane in Open-Wound Approach for Localized Horizontal Ridge Augmentation: A Case Series Report. Clin Adv Periodontics. 2022;12:101–5.

Article   PubMed   Google Scholar  

Srivastava R, Mohan R, Saravana Balaji MD, Vijay VK, Srinivasan S, Navarasu M. A Randomized Controlled Trial on a Minimally Invasive Microsurgical Versus Conventional Procedure for the Management of Localized Gingival Recession in Esthetic Zone using Alloderm. J Pharm Bioallied Sci. 2021;13:S476–83.

Article   PubMed   PubMed Central   Google Scholar  

Di Gianfilippo R, Wang I, Steigmann L, Velasquez D, Wang H-L, Chan H-L. Efficacy of microsurgery and comparison to macrosurgery for gingival recession treatment: a systematic review with meta-analysis. Clin Oral Investig. 2021;25:4269–80.

Sultan N, Jafri Z, Sawai M, Bhardwaj A. Minimally invasive periodontal therapy. J Oral Biol Craniofacial Res. 2020;10:161–5.

Article   Google Scholar  

Sabri H, SamavatiJame F, Sarkarat F, Wang HL, Zadeh HH. Clinical efficacy of Vestibular Incision Subperiosteal Tunnel Access (VISTA) for treatment of multiple gingival recession defects: a systematic review, meta-analysis and meta-regression. Clin Oral Investig. 2023;27:7171–87.

Tamai S. History of microsurgery. Plast Reconstructive Surg. 2009;124:e282–94.

Article   CAS   Google Scholar  

Shanelec DA. Periodontal microsurgery. J Esthet Restor Dent. 2003;15:402–7. discussion 408.

Tibbetts LS, Shanelec D. Periodontal microsurgery. Dent Clin North Am. 1998;42:339–59.

Daniel RK. Microsurgery: through the looking glass. N. Engl J Med. 1979;300:1251–7.

Carr GB, Murgel CA. The use of the operating microscope in endodontics. Dent Clin. 2010;54:191–214.

Google Scholar  

Sitbon Y, Attathom T, St-Georges A. Minimal intervention dentistry II: part 1. Contribution of the operating microscope to dentistry. Br Dent J. 2014;216:125–30.

Shanelec DA, Tibbetts LS. A perspective on the future of periodontal microsurgery. Periodontology. 1996;11:58–64.

Chambrone L, Pini Prato GP. Clinical insights about the evolution of root coverage procedures: The flap, the graft, and the surgery. J Periodontol. 2019;90:9–15.

Azaripour A, Kissinger M, Farina VSL, Van Noorden CJ, Gerhold‐Ay A, Willershausen B, et al. Root coverage with connective tissue graft associated with coronally advanced flap or tunnel technique: a randomized, double‐blind, mono‐centre clinical trial. J Clin Periodontol. 2016;43:1142–50.

Burkhardt R, Lang NP. Coverage of localized gingival recessions: comparison of micro‐and macrosurgical techniques. J Clin Periodontol. 2005;32:287–93.

Gargallo-Albiol J, Sinjab KH, Barootchi S, Chan H-L, Wang H-L. Microscope and micro-camera assessment of Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study. Clin Oral Implants Res. 2019;30:682–90.

Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. J Dent Res. 2014;93:539–46.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.

Cortellini P, Nieri M, Pini Prato G, Tonetti MS. Single minimally invasive surgical technique with an enamel matrix derivative to treat multiple adjacent intra‐bony defects: Clinical outcomes and patient morbidity. J Clin Periodontol. 2008;35:605–13.

Cortellini P, Tonetti MS. Improved wound stability with a modified minimally invasive surgical technique in the regenerative treatment of isolated interdental intrabony defects. J Clin Periodontol. 2009;36:157–63.

Cortellini P, Pini-Prato G, Nieri M, Tonetti MS. Minimally invasive surgical technique and enamel matrix derivative in intrabony defects: 2. Factors associated with healing outcomes. Int J Periodontics Restor Dent. 2009;29:257–65.

Bertossi D, Vercellotti T, Podesta A, Nocini PF. Orthodontic Microsurgery for Rapid Dental Repositioning in Dental Malpositions. J Oral Maxillofac Surg. 2011;69:747–53.

Cortellini P, Tonetti M, Prato GP. The partly epithelialized free gingival graft (pe-fgg) at lower incisors. A pilot study with implications for alignment of the mucogingival junction. J Clin Periodontol. 2012;39:674–80.

Penmetsa GS, Panda KD, Manthena AKR, Korukonda RR, Gadde P. Evaluating the efficacy of different magnification variables during root planing procedure under a surgical operating microscope in chronic periodontitis: A randomized clinical trial. J Indian Soc Periodontol. 2020;24:32–36.

Rodriguez JAM, Ruiz AJO. Apical approach in periodontal reconstructive surgery with enamel matrix derivate and enamel matrix derivate plus bone substitutes: a randomized, controlled clinical trial. Clin Oral Investig. 2022;26:2793–805.

Shanelec DA, Tibbetts LS. Implant Microsurgery: Immediate Implant Placement With Implant‐Supported Provisional. Clin Adv Periodontics. 2011;1:161–72.

Sabri H, Barootchi S, Heck T, Wang HL. Single‐rooted extraction socket classification: A systematic review and proposal of a new classification system based on morphologic and patient‐related factors. J Esthet Restor Dent. 2023;35:168–82.

Pandolfi A. A modified approach to horizontal augmention of soft tissue around the implant: omega roll envelope flap. Description of surgical technique. La Clin Terapeutica. 2018;169:e165–9.

CAS   Google Scholar  

Jain D, Mohan R, Singh VD. Comparison of microsurgical and macrosurgical technique using bioactive synthetic bone graft and collagen membrane for an implant site development: A randomized controlled clinical trial. J Indian Soc Periodontol. 2019;23:448–460.

Sirinirund B, Chan H-L, Velasquez D. Microscope-Assisted Maxillary Sinus Augmentation: A Case Series. Int J Periodontics Restor Dent. 2021;41:531–7.

Shakibaie- MB. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study. Int J Periodontics Restor Dent. 2013;33:223–8.

Shakibaie B. Microscope-controlled internal sinus floor elevation (MCI-SFE): A new technique to evaluate the sinus membrane during transcrestal lifting. Int J Microdentistry. 2013;4:12–19.

Shakibaie B, Sabri H, Blatz MB, Barootchi S. Comparison of the minimally-invasive roll-in envelope flap technique to the holding suture technique in implant surgery: A prospective case series. J Esthet Restor Dent. 2023;35:625–31.

Chambrone L, Tatakis DN. Periodontal soft tissue root coverage procedures: a systematic review from the AAP Regeneration Workshop. J Periodontol. 2015;86:S8–51.

Richardson CR, Allen EP, Chambrone L, et al. Periodontal Soft Tissue Root Coverage Procedures: Practical Applications From the AAP Regeneration Workshop. Clin Adv Periodontics. 2015;5:2–10.

Harris RJ. A comparison of two techniques for obtaining a connective tissue graft from the palate. Int J Periodontics Restor Dent. 1997;17:260–71.

Stefanini M, Barootchi S, Tavelli L, Marzadori M, Mazzotti C, Mounssif I, et al. Difficulty score for the treatment of isolated gingival recessions with the coronally advanced flap: a preliminary reliability study. Clin Oral Investig. 2022;27:559–69.

Zuhr O, Bäumer D, Hürzeler M. The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: critical elements in design and execution. J Clin Periodontol. 2014;41:S123–42.

Gil Escalante M, Tatakis DN. Gingival cyst of the adult as early sequela of connective tissue grafting. Case Rep Dent. 2015;2015:473689.

Maia VTG, Kahn S, Souza ABD, Fernandes G. De‐epithelialized connective tissue graft and the reminiscent epithelial content after harvested by the Harris’ technique: a histological and morphometrical case series. Clin Adv Periodontics. 2021;11:150–4.

Kahn S, Araújo ITE, Dias AT, Balduíno A, Chambrone L, de Oliveira Fernandes GV. Histologic and histomorphometric analysis of connective tissue grafts harvested by the parallel incision method: a pilot randomized controlled trial comparing macro-and microsurgical approaches. Quintessence Int. 2021;52:772.

PubMed   Google Scholar  

Patel C, Mehta R, Joshi S, Hirani T, Joshi C. Comparative evaluation of treatment of localized gingival recessions with coronally advanced flap using microsurgical and conventional techniques. Contemp Clin Dent. 2018;9:613.

Francetti L, Del Fabbro M, Calace S, Testori T, Weinstein RL. Microsurgical treatment of gingival recession: a controlled clinical study. Int J Periodontics Restor Dent. 2005;25:181–8.

Francetti L, Del Fabbro M, Testori T, Weinstein RL. Periodontal microsurgery: report of 16 cases consecutively treated by the free rotated papilla autograft technique combined with the coronally advanced flap. Int J Periodontics Restor Dent. 2004;24:272–9.

Kahn S, WJdPR Rodrigues, MdO Barceleiro. Periodontal plastic microsurgery in the treatment of deep gingival recession after orthodontic movement. Case Rep. Dent. 2013;2013:851413.

PubMed   PubMed Central   Google Scholar  

Yadav D, Singh S, Roy S. Periodontal microsurgery for management of multiple marginal tissue recession using Zucchelli’s modification of coronally advanced flap and pericardium membrane in an esthetic zone. J Indian Soc Periodontol. 2019;23:284.

Kumar A, Bains VK, Jhingran R, Srivastava R, Madan R, Rizvi I. Patient-centered microsurgical management of gingival recession using coronally advanced flap with either platelet-rich fibrin or connective tissue graft: A comparative analysis. Contemp Clin Dent. 2017;8:293.

Thankkappan P, Roy S, Mandlik VB. Comparative evaluation of management of gingival recession using subepithelial connective tissue graft and collagen membrane by periodontal microsurgical technique: A clinical study of 40 cases. J Indian Soc Periodontol. 2016;20:189.

Agarwal SK, Jhingran R, Bains VK, Srivastava R, Madan R, Rizvi I. Patient-centered evaluation of microsurgical management of gingival recession using coronally advanced flap with platelet-rich fibrin or amnion membrane: A comparative analysis. Eur J Dent. 2016;10:121–33.

Kaval B, Renaud DE, Scott DA, Buduneli N. The role of smoking and gingival crevicular fluid markers on coronally advanced flap outcomes. J Periodontol. 2014;85:395–405.

Andrade PF, Grisi MF, Marcaccini AM, et al. Comparison between micro‐and macrosurgical techniques for the treatment of localized gingival recessions using coronally positioned flaps and enamel matrix derivative. J Periodontol. 2010;81:1572–9.

Nizam N, Bengisu O, Sönmez Ş. Micro- and Macrosurgical Techniques in the Coverage of Gingival Recession Using Connective Tissue Graft: 2 Years Follow-Up. J Esthet Restor Dent. 2015;27:71–83.

Kareem N, Mahendra J, Kumar KA. Triangular coronally advanced flap: Conventional versus Microsurgery. J Indian Soc Periodontol. 2018;22:73.

Bittencourt S, Del Peloso Ribeiro É, Sallum EA, Nociti FH Jr, Casati MZ. Surgical microscope may enhance root coverage with subepithelial connective tissue graft: A randomized‐controlled clinical trial. J Periodontol. 2012;83:721–30.

Pandey S, Mehta D. Treatment of localized gingival recession using the free rotated papilla autograft combined with coronally advanced flap by conventional (macrosurgery) and surgery under magnification (microsurgical) technique: A comparative clinical study. J Indian Soc Periodontol. 2013;17:765.

Chandra A, Gupta HL, Kumar P. Esthetic root coverage by sub epithelial connective tissue graft microsurgery: a case report.IJSS Case Reports & Reviews 2015;2:16–9.

Jaiswal PG, Puri SS, Bhongade ML. Evaluation of effectiveness of subepithelial connective tissue graft in combination with coronally positioned flap in the treatment of isolated gingival recession in esthetic areas by using surgical microscope. J Datta Meghe Inst Med Sci Univ. 2017;12:79.

Jindal U, Pandit N, Bali D, Malik R, Gugnani S. Comparative evaluation of recession coverage with sub-epithelial connective tissue graft using macrosurgical and microsurgical approaches: A randomized split mouth study. J Indian Soc Periodontol. 2015;19:203–7.

Mohan R, Jain R. Microsurgical Approach for Root Coverage of Receding Gingiva in the Esthetic Zone. Arch Reconstr Microsurg. 2013;22:69–73.

Georgieva I. Coronally advanced flap technique for root coverage in the aesthetic zone of upper jaw. J IMAB Annu Proc Sci Pap. 2020;26:3267–70.

Dhir V, Jha A. Microsurgical treatment of gingival recession by subepithelial connective tissue graft: a case report. Med J Armed Forces India. 2011;67:293.

Nivetha R. Clinical outcome of coronally advanced flap and modified coronally advanced flap using microsurgery technique in the treatment of miller’s class I and II gingival recession: A Comparative study. Madurai: Best Dental Science College; 2018.

Kahn S, de Oliveira LZ, Dias AT, Fernandes GVO. Clinical evaluation and biological understanding of the early step-by-step healing after periodontal microsurgery: A case report with PES analysis comparing initial and 31-day result. J Adv Periodontol Implant Dent. 2022;14:141–5.

Katariya C, Rajasekar A. Comparison between conventional and micro-assisted periodontal surgery: Case series. J Adv Pharm Technol Res. 2022;13:S348–52.

Karmakar S, Kamath DSG, Shetty NJ, Natarajan S. Treatment of Multiple Adjacent Class I and Class II Gingival Recessions by Modified Microsurgical Tunnel Technique and Modified Coronally Advanced Flap Using Connective Tissue Graft: A Randomized Mono-center Clinical Trial. J Int Soc Prev Community Dent. 2022;12:38–48.

Mohan R, Srivastava R, Gundappa M. Microsurgical Reconstruction of Receded Gingiva Using Alloderm In Esthetic Zone. Juniper Online J Orthopedic Orthoplastic Surg. 2017;1:30–2.

Karring T, Östergaard E, Löe H. Conservation of tissue specifically after heterotopic transplantation of gingiva and alveolar mucosa. J Periodontal Res. 1971;6:282–93.

Induchoodan A, Remya R. Interdental Papilla Reconstruction using Modified Nordland’s Microsurgical Technique: A Case Study. Int J Drug Res Dent Sci. 2021;3:97–105.

Akiyama K. Papilla reconstruction using the dental operating microscope. Int. J. Microdentistry. 2009;1:25–9.

Singh D, Jhingran R, Bains VK, Madan R, Srivastava R. Efficacy of platelet-rich fibrin in interdental papilla reconstruction as compared to connective tissue using microsurgical approach. Contemp Clin Dent. 2019;10:643.

Reddy SSP, Manohar B. Microsurgical approach for the management of gingival cleft: A case series and decision-making process. Clin Adv Periodontics. 2024. https://doi.org/10.1002/cap.10277 .

Mamoun J. Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques. J Korean Assoc Oral Maxillofac Surg. 2017;43:204–11.

Mamoun J. Use of high-magnification loupes or surgical operating microscope when performing prophylaxes, scaling or root planing procedures. N. Y State Dent J. 2013;79:48.

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285–96.

Sabri H, Wang HL, Peri-implantitis: A. bibliometric network analysis of top 100 most-cited research articles. Clin Implant Dent Relat Res. 2023;25:284–302.

Sabri H, Manouchehri N, Tavelli L, Kan JYK, Wang HL, Barootchi S. Five decades of research on immediate implant therapy: A modern bibliometric network analysis via Altmetric and level of evidence mapping. Clin Oral Implants Res. 2024. https://doi.org/10.1111/clr.14269 .

Ribeiro FV, Casarin RCV, Junior FHN, Sallum EA, Casati MZ. The Role of Enamel Matrix Derivative Protein in Minimally Invasive Surgery in Treating Intrabony Defects in Single-Rooted Teeth: A Randomized Clinical Trial. J Periodontol. 2011;82:522–32.

Ribeiro FV, Casarin RCV, Palma MAG, Junior FHN, Sallum EA, Casati RZ. Clinical and Patient-Centered Outcomes After Minimally Invasive Non-Surgical or Surgical Approaches for the Treatment of Intrabony Defects: A Randomized Clinical Trial. J Periodontol. 2011;82:1256–66.

Aslan S, Buduneli N, Cortellini P. Clinical outcomes of the entire papilla preservation technique with and without biomaterials in the treatment of isolated intrabony defects: A randomized controlled clinical trial. J Clin Periodontol. 2020;47:470–8.

Aslan S, Buduneli N, Cortellini P. Reconstructive surgical treatment of isolated deep intrabony defects with guided tissue regeneration using entire papilla preservation technique: A prospective case series. J Periodontol. 2021;92:488–95.

Sabri H, Sarkarat F, Mortezagholi B, Aghajani D. Non‐surgical management of oro‐antral communication using platelet‐rich fibrin: A review of the literature. Oral Surg. 2022;15:455–64.

Cortellini P, Tonetti MS. Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. J Clin Periodontol. 2011;38:365–73.

Ahmad N, Tewari S, Narula SC, Sharma RK, Tanwar N. Platelet-rich fibrin along with a modified minimally invasive surgical technique for the treatment of intrabony defects: a randomized clinical trial. J Periodontal Implant Sci. 2019;49:355–65.

Azar EL, Rojas MA, Mandalunis P, Gualtieri A, Carranza N. Histological evaluation of subepithelial connective tissue grafts harvested by two different techniques: Preliminary study in humans. Acta Odontol Latinoam. 2019;32:10–16.

Rauten AM, Surlin P, Oprea B, Siloşi I, Moisa M, Caramizaru D, et al. Matrix metalloproteinase 9 levels in gingival crevicular fluid in patients after periodontal microsurgery for orthodontic induced gingival hypertrophy. Rom J Morphol Embryol. 2011;52:431–3.

Download references

The author(s) received no specific funding for this work.

Author information

Authors and affiliations.

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA

Hamoun Sabri, Pramiti Saxena, Prerana Dubey, Paolo Nava & Syed Hanan Rufai

Department of Periodontics, University of Louisville School of Dental Medicine, Louisville, KY, USA

Sara Alhachache

Department of Oral and Maxillofacial Surgery, Gulf Medical University, Ajman, United Arab Emirates

Farzin Sarkarat

You can also search for this author in PubMed   Google Scholar

Contributions

HS: Conceptualization, manuscript writing, data analysis, SA: Manuscript writing, data collection, final revision, PS: Manuscript writing, data collection, final revision, PD: Manuscript writing, data collection, final revision, PN: data collection, final revision, SHR: data collection, final revision, FS: Conceptualization, manuscript writing, critical review of final version.

Corresponding author

Correspondence to Hamoun Sabri .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Sabri, H., Alhachache, S., Saxena, P. et al. Microsurgery in periodontics and oral implantology: a systematic review of current clinical applications and outcomes. Evid Based Dent (2024). https://doi.org/10.1038/s41432-024-01024-4

Download citation

Received : 06 March 2024

Accepted : 03 May 2024

Published : 12 June 2024

DOI : https://doi.org/10.1038/s41432-024-01024-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

systematic literature review the method

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.8(11); 2016 Nov

Logo of cureus

How to Conduct a Systematic Review: A Narrative Literature Review

Nusrat jahan.

1 Psychiatry, Mount Sinai Chicago

Sadiq Naveed

2 Psychiatry, KVC Prairie Ridge Hospital

Muhammad Zeshan

3 Department of Psychiatry, Bronx Lebanon Hospital Icahn School of Medicine at Mount Sinai, Bronx, NY

Muhammad A Tahir

4 Psychiatry, Suny Upstate Medical University, Syracuse, NY

Systematic reviews are ranked very high in research and are considered the most valid form of medical evidence. They provide a complete summary of the current literature relevant to a research question and can be of immense use to medical professionals. Our goal with this paper is to conduct a narrative review of the literature about systematic reviews and outline the essential elements of a systematic review along with the limitations of such a review.

Introduction and background

A literature review provides an important insight into a particular scholarly topic. It compiles published research on a topic, surveys different sources of research, and critically examines these sources [ 1 ]. A literature review may be argumentative, integrative, historical, methodological, systematic, or theoretical, and these approaches may be adopted depending upon the types of analysis in a particular study [ 2 ].

Our topic of interest in this article is to understand the different steps of conducting a systematic review. Systematic reviews, according to Wright, et al., are defined as a “review of the evidence on a clearly formulated question that uses systematic and explicit methods to identify, select and critically appraise relevant primary research, and to extract and analyze data from the studies that are included in the review” [ 3 ]. A systematic review provides an unbiased assessment of these studies [ 4 ]. Such reviews emerged in the 1970s in the field of social sciences. Systematic reviews, as well as the meta-analyses of the appropriate studies, can be the best form of evidence available to clinicians [ 3 ]. The unsystematic narrative review is more likely to include only research selected by the authors, which introduces bias and, therefore, frequently lags behind and contradicts the available evidence [ 5 ].

Epidemiologist Archie Cochrane played a vital role in formulating the methodology of the systematic review [ 6 ]. Dr. Cochrane loved to study patterns of disease and how these related to the environment. In the early 1970s, he found that many decisions in health care were made without reliable, up-to-date evidence about the treatments used [ 6 ].

A systematic review may or may not include meta-analysis, depending on whether results from different studies can be combined to provide a meaningful conclusion. David Sackett defined meta-analysis as a “specific statistical strategy for assembling the results of several studies into a single estimate” [ 7 - 8 ].

While the systematic review has several advantages, it has several limitations which can affect the conclusion. Inadequate literature searches and heterogeneous studies can lead to false conclusions. Similarly, the quality of assessment is an important step in systematic reviews, and it can lead to adverse consequences if not done properly.

The purpose of this article is to understand the important steps involved in conducting a systematic review of all kinds of clinical studies. We conducted a narrative review of the literature about systematic reviews with a special focus on articles that discuss conducting reviews of randomized controlled trials. We discuss key guidelines and important terminologies and present the advantages and limitations of systematic reviews.

Narrative reviews are a discussion of important topics on a theoretical point of view, and they are considered an important educational tool in continuing medical education [ 9 ]. Narrative reviews take a less formal approach than systematic reviews in that narrative reviews do not require the presentation of the more rigorous aspects characteristic of a systematic review such as reporting methodology, search terms, databases used, and inclusion and exclusion criteria [ 9 ]. With this in mind, our narrative review will give a detailed explanation of the important steps of a systematic review.

Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) checklist

Systematic reviews are conducted based on predefined criteria and protocol. The PRISMA-P checklist, developed by Moher, et al., contains 17 items (26 including sub-items) comprising the important steps of a systematic review, including information about authors, co-authors, their mailing and email addresses, affiliations, and any new or updated version of a previous systematic review [ 9 ]. It also identifies a plan for documenting important protocol amendments, registry names, registration numbers, financial disclosures, and other support services [ 10 ]. Moher, et al. also state that methods of systematic reviews involve developing eligibility criteria and describing information sources, search strategies, study selection processes, outcomes, assessment of bias in individual studies, and data synthesis [ 10 ].

Research question

Writing a research question is the first step in conducting a systematic review and is of paramount importance as it outlines both the need and validity of systematic reviews (Nguyen, et al., unpublished data). It also increases the efficiency of the review by limiting the time and cost of identifying and obtaining relevant literature [ 11 ]. The research question should summarize the main objective of a systematic review.

An example research question might read, “How does attention-deficit/hyperactivity disorder (ADHD) affect the academic performance of middle school children in North America?” The question focuses on the type of data, analysis, and topic to be discussed (i.e., ADHD among North American middle school students). Try to avoid research questions that are too narrow or broad—they can lead to the selection of only a few studies and the ability to generalize results to any other populations may be limited. An example of a research question that is too narrow would be, “What is the prevalence of ADHD in children and adolescents in Chicago, IL?” Alternately, if the research question is too broad, it can be difficult to reach a conclusion due to poor methodology. An example of a research question that is too broad in scope would be, “What are the effects of ADHD on the functioning of children and adolescents in North America?”

Different tools that can be used to help devise a research question, depending on the type of question, are: population, intervention, comparator, and outcomes (PICO); sample, phenomenon of interest, design, evaluation, and research type (SPIDER); setting, perspective, intervention, comparison, and evaluation (SPICE); and expectation, client group, location, impact, professionals, and service (ECLIPSE).

The PICO approach is mostly used to compare different interventions with each other. It helps to formulate a research question related to prognosis, diagnosis, and therapies [ 12 ].

Scenario: A 50-year-old white woman visited her psychiatrist with a diagnosis of major depressive disorder. She was prescribed fluoxetine, which she feels has been helpful. However, she experienced some unpleasant side effects of nausea and abdominal discomfort. She has recently been told by a friend about the use of St. John’s wort in treating depression and would like to try this in treating her current depression. (Formulating research questions, unpublished data).

In the above-mentioned scenario, the sample population is a 50-year-old female with major depressive disorder; the intervention is St. John’s wort; the comparison is fluoxetine; and the outcome would be efficacy and safety. In order to see the outcome of both efficacy and safety, we will compare the efficacy and safety of both St. John’s wort and fluoxetine in a sample population for treating depression. This scenario represents an example where we can apply the PICO approach to compare two interventions.

In contrast, the SPIDER approach is focused more on study design and samples rather than populations [ 13 ]. The SPIDER approach can be used in this research question: “What is the experience of psychiatry residents attending a transgender education?” The sample is psychiatry residents; the phenomenon of interest is transgender education; the design is a survey; the evaluation looks at the experience; and the research type is qualitative. 

The SPICE approach can be used to evaluate the outcome of a service, intervention, or project [ 14 ]. The SPICE approach applies to the following research question: “In psychiatry clinics, does the combined use of selective serotonin reuptake inhibitor (SSRI) and psychotherapy reduce depression in an outpatient clinic versus SSRI therapy alone?” The setting is the psychiatry clinic; the perspective/population is the outpatient; the intervention is combined psychotherapy and SSRI; the comparison is SSRI alone; and the evaluation is reduced depression. 

The ECLIPSE approach is useful for evaluating the outcome of a policy or service (Nguyen, et al., unpublished data). ECLIPSE can apply in the following research question: “How can a resident get access to medical records of patients admitted to inpatient from other hospitals?” The expectation is: “What are you looking to improve/change to increase access to medical records for patients admitted to inpatient?” The client group is the residents; the location is the inpatient setting; the impact would be the residents having easy access to medical records from other hospitals; and the professionals in this scenario would be those involved in improving the service experiences such as hospital administrators and IT staff.

Inclusion and exclusion criteria

Establishing inclusion and exclusion criteria come after formulating research questions. The concept of inclusion and exclusion of data in a systematic review provides a basis on which the reviewer draws valid and reliable conclusions regarding the effect of the intervention for the disorder under consideration [ 11 ]. Inclusions and exclusion are based on preset criteria for specific systematic review. It should be done before starting the literature search in order to minimize the possibility of bias.

Eligibility criteria provide the boundaries of the systematic review [ 15 ]. Participants, interventions, and comparison of a research question provide the basis for eligibility criteria [ 15 ]. The inclusion criteria should be able to identify the studies of interest and, if the inclusion criteria are too broad or too narrow, it can lead to an ineffective screening process.

Protocol registration

Developing and registering research protocol is another important step of conducting a systematic review. The research protocol ensures that a systematic review is carefully planned and explicitly documented before the review starts, thus promoting consistency in conduct for the review team and supporting the accountability, research integrity, and transparency of the eventually completed review [ 10 ]. PROSPERO and the Cochrane Database of Systematic Reviews are utilized for registering research protocols and research questions, and they check for prior existing duplicate protocols or research questions. PROSPERO is an international database of prospectively registered systematic reviews related to health care and social sciences (PRISMA, 2016). It is funded by the National Institute for Health Research. The Cochrane Collaboration concentrates on producing systematic reviews of interventions and diagnostic test accuracy but does not currently produce reviews on questions of prognosis or etiology [ 16 ].

A detailed and extensive search strategy is important for the systematic review since it minimizes bias in the review process [ 17 ].

Selecting and searching appropriate electronic databases is determined by the topic of interest. Important databases are: MEDLARS Online (MEDLINE), which is the online counterpart to the Medical Literature Analysis and Retrieval System (MEDLARS); Excerpta Medica Database (EMBASE); and Google Scholar. There are multiple electronic databases available based on the area of interest. Other important databases include: PsycINFO for psychology and psychiatry; Allied and Complementary Medicine Database (AMED) for complementary medicine; Manual, Alternative, and Natural Therapy Index System (MANTIS) for alternative medical literature; and Cumulative Index to Nursing and Allied Health Literature (CINAHL) for nursing and allied health [ 15 ].

Additional studies relevant for the review may be found by looking at the references of studies identified by different databases [ 15 ]. Non-indexed articles may be found by searching the content of journals, conferences proceedings, and abstracts. It will also help with letters and commentaries which may not get indexed [ 15 ]. Reviewing clinical trial registries can provide information about any ongoing trials or unpublished research [ 15 ]. A gray literature search can access unpublished papers, reports, and conference reports, and it generally covers studies that are published in an informal fashion, rather than in an indexed journal [ 15 ]. Further search can be performed by selecting important key articles and going through in-text citations [ 15 ].

Using Boolean operators, truncation, and wildcards

Boolean operators use the relationship between different search words to help with the search strategy. These are simple words (i.e., AND, OR, and NOT) which can help with more focused and productive results (poster, Jahan, et al.: How to conduct a systematic review. APPNA 39th Summer Convention. Washington, DC. 2016). The Boolean operator AND finds articles with all the search words. The use of OR broadens the focus of the search, and it will include articles with at least one search term. The researchers can also ignore certain results from the records by using NOT in the search strategy.

An example of AND would be using “depression” AND “children” in the search strategy with the goal of studying depression in children. This search strategy will include all the articles about both depression and children. The researchers may use OR if the emphasis of the study is mood disorders or affective disorders in adolescents. In that case, the search strategy will be “mood disorders” OR “affective disorders” AND “adolescents.” This search will find all the articles about mood disorders or affective disorders in adolescents. The researchers can use NOT if they only want to study depression in children and want to ignore bipolar disorder from the search. An example search in this scenario would be “depression” NOT “bipolar disorder” AND “children.” This will help ignore studies related to bipolar disorder in children.

Truncation and wildcards are other tools to make search strategy more comprehensive and focused. While the researchers search a database for certain articles, they frequently face terminologies that have the same initial root of a word but different endings. An example would be "autism," "autistic," and "autism spectrum disorder." These words have a similar initial root derived from “autis” but they end differently in each case. The truncation symbol (*) retrieves articles that contain words beginning with “autis” plus any additional characters. Wildcards are used for words with the same meanings but different spellings due to various reasons. For the words with spelling variations of a single letter, wildcard symbols can be used. When the researcher inputs “M+N” in the search bar, this returns results containing both “man” or “men” as the wildcard accounts for the spelling variations between the letters M and N.

Study selection

Study selection should be performed in a systematic manner, so reviewers deal with fewer errors and a lower risk of bias (online course, Li T, Dickersin K: Introduction to systematic review and meta-analysis. 2016. https://www.coursera.org/learn/systematic-review #). Study selection should involve two independent reviewers who select studies using inclusion and exclusion criteria. Any disagreements during this process should be resolved by discussion or by a third reviewer [ 10 ]. Specific study types can be selected depending on the research question. For example, questions on incidence and prevalence can be answered by surveys and cohort studies. Clinical trials can provide answers to questions related to therapy and screening. Queries regarding diagnostic accuracy can be answered by clinical trials and cross-sectional studies (online course, Li T, Dickersin K: Introduction to systematic review and meta-analysis. 2016. https://www.coursera.org/learn/systematic-review #). Prognosis and harm-related questions should use cohort studies and clinical trials, and etiology questions should use case-control and cohort studies (online course, Li T, Dickersin K: Introduction to systematic review and meta-analysis. 2016. https://www.coursera.org/learn/systematic-review #).

Data screening and data extractions are two of the major steps in conducting a systematic review [ 18 ]. Data screening involves searching for relevant articles in different databases using keywords. The next step of data screening is manuscript selection by reviewing each manuscript in the search results to compare that manuscript against the inclusion criteria [ 18 ]. The researchers should also review the references of the papers selected before selecting the final paper, which is the last step of data screening [ 18 ].

The next stage is extracting and appraising the data of the included articles [ 18 ]. A data extraction form should be used to help reduce the number of errors, and more than one person should record the data [ 17 ]. Data should be collected on specific points like population type, study authors, agency, study design, humanitarian crisis, target age groups, research strengths from the literature, setting, study country, type(s) of public health intervention, and health outcome(s) addressed by the public health intervention. All this information should then be put into an electronic database [ 18 ].

Assessing bias

Bias is a systematic error (or deviation from the truth) in results or inferences. Biases can change the results of any study and lead to an underestimation or overestimation of the true intervention effect [ 19 ]. Biases can impact any aspect of a review, including selecting studies, collecting and extracting data, and making a conclusion. Biases can vary in magnitude; some are small, with negligible effect, but some are substantial to a degree where an apparent finding may be entirely due to bias [ 19 ]. There are different types of bias, including, but not limited to, selection, detection, attrition, reporting, and performance.

Selection bias occurs when a sample selected is not representative of the whole general population. If randomization of the sample is done correctly, then chances of selection bias can be minimized [ 20 ].

Detection bias refers to systematic differences between groups in how outcomes are determined. This type of bias is based on knowledge of the intervention provided and its outcome [ 19 ].

Attrition bias refers to systematic differences between groups in withdrawals from a study [ 19 ]. The data will be considered incomplete if some subjects are withdrawn or have irregular visits during data collection.

Reporting bias refers to systematic differences between reported and unreported findings, and it is commonly seen during article reviews. Reporting bias is based on reviewer judgment about the outcome of selected articles [ 20 ].

Performance bias develops due to the knowledge of the allocated interventions by participants and personnel during the study [ 20 ]. Using a double-blind study design helps prevent performance bias, where neither the experimenter nor the subjects know which group contains controls and which group contains the test article [ 14 ].

Last step of systematic review: discussion

The discussion of a systematic review is where a summary of the available evidence for different outcomes is written and discussed [ 10 ]. The limitations of a systematic review are also discussed in detail. Finally, a conclusion is drawn after evaluating the results and considering limitations [ 10 ].

Discussion of the current article

Systematic reviews with or without a meta-analysis are currently ranked to be the best available evidence in the hierarchy of evidence-based practice [ 21 ]. We have discussed the methodology of a systematic review. A systematic review is classified in the category of filtered information because it appraises the quality of the study and its application in the field of medicine [ 21 ]. However, there are some limitations of the systematic review, as we mentioned earlier in our article. A large randomized controlled trial may provide a better conclusion than a systematic review of many smaller trials due to their larger sample sizes [ 22 ], which help the researchers generalize their conclusions for a bigger population. Other important factors to consider include higher dropout rates in large studies, co-interventions, and heterogeneity among studies included in the review.

As we discussed the limitations of the systematic review and its effect on quality of evidence, there are several tools to rate the evidence, such as the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system [ 22 ]. GRADE provides a structured approach to evaluating the risk of bias, serious inconsistency between studies, indirectness, imprecision of the results, and publication bias [ 22 ]. Another approach used to rate the quality of evidence is a measurement tool to assess systematic reviews (AMSTAR) [ 23 ]. It is also available in several languages [ 23 ].

Conclusions

Despite its limitations, a systematic review can add to the knowledge of the scientific community especially when there are gaps in the existing knowledge. However, conducting a systematic review requires different steps that involve different tools and strategies. It can be difficult at times to access and utilize these resources. A researcher can understand and strategize a systematic review following the different steps outlined in this literature review. However, conducting a systematic review requires a thorough understanding of all the concepts and tools involved, which is an extensive endeavor to be summed up in one article.

The Cochrane Handbook for Systematic Reviews of Interventions and the Center for Reviews and Dissemination (CRD) provide excellent guidance through their insightful and detailed guidelines. We recommend consulting these resources for further guidance.

Given that our article is a narrative review of the scholarly literature, it contains the same limitations as noted for any narrative review. We hope that our review of the means and methods for conducting a systematic review will be helpful in providing basic knowledge to utilize the resources available to the scientific community.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

Loading metrics

Open Access

Peer-reviewed

Research Article

Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Affiliation Child and Adolescent Mental Health, Department of Brain Sciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

Roles Conceptualization, Supervision, Validation, Writing – review & editing

* E-mail: [email protected]

Affiliation Behavioural Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom

ORCID logo

  • Max L. Y. Chang, 
  • Irene O. Lee

PLOS

  • Published: June 4, 2024
  • https://doi.org/10.1371/journal.pmen.0000022
  • Peer Review
  • Reader Comments

Fig 1

Internet usage has seen a stark global rise over the last few decades, particularly among adolescents and young people, who have also been diagnosed increasingly with internet addiction (IA). IA impacts several neural networks that influence an adolescent’s behaviour and development. This article issued a literature review on the resting-state and task-based functional magnetic resonance imaging (fMRI) studies to inspect the consequences of IA on the functional connectivity (FC) in the adolescent brain and its subsequent effects on their behaviour and development. A systematic search was conducted from two databases, PubMed and PsycINFO, to select eligible articles according to the inclusion and exclusion criteria. Eligibility criteria was especially stringent regarding the adolescent age range (10–19) and formal diagnosis of IA. Bias and quality of individual studies were evaluated. The fMRI results from 12 articles demonstrated that the effects of IA were seen throughout multiple neural networks: a mix of increases/decreases in FC in the default mode network; an overall decrease in FC in the executive control network; and no clear increase or decrease in FC within the salience network and reward pathway. The FC changes led to addictive behaviour and tendencies in adolescents. The subsequent behavioural changes are associated with the mechanisms relating to the areas of cognitive control, reward valuation, motor coordination, and the developing adolescent brain. Our results presented the FC alterations in numerous brain regions of adolescents with IA leading to the behavioural and developmental changes. Research on this topic had a low frequency with adolescent samples and were primarily produced in Asian countries. Future research studies of comparing results from Western adolescent samples provide more insight on therapeutic intervention.

Citation: Chang MLY, Lee IO (2024) Functional connectivity changes in the brain of adolescents with internet addiction: A systematic literature review of imaging studies. PLOS Ment Health 1(1): e0000022. https://doi.org/10.1371/journal.pmen.0000022

Editor: Kizito Omona, Uganda Martyrs University, UGANDA

Received: December 29, 2023; Accepted: March 18, 2024; Published: June 4, 2024

Copyright: © 2024 Chang, Lee. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The behavioural addiction brought on by excessive internet use has become a rising source of concern [ 1 ] since the last decade. According to clinical studies, individuals with Internet Addiction (IA) or Internet Gaming Disorder (IGD) may have a range of biopsychosocial effects and is classified as an impulse-control disorder owing to its resemblance to pathological gambling and substance addiction [ 2 , 3 ]. IA has been defined by researchers as a person’s inability to resist the urge to use the internet, which has negative effects on their psychological well-being as well as their social, academic, and professional lives [ 4 ]. The symptoms can have serious physical and interpersonal repercussions and are linked to mood modification, salience, tolerance, impulsivity, and conflict [ 5 ]. In severe circumstances, people may experience severe pain in their bodies or health issues like carpal tunnel syndrome, dry eyes, irregular eating and disrupted sleep [ 6 ]. Additionally, IA is significantly linked to comorbidities with other psychiatric disorders [ 7 ].

Stevens et al (2021) reviewed 53 studies including 17 countries and reported the global prevalence of IA was 3.05% [ 8 ]. Asian countries had a higher prevalence (5.1%) than European countries (2.7%) [ 8 ]. Strikingly, adolescents and young adults had a global IGD prevalence rate of 9.9% which matches previous literature that reported historically higher prevalence among adolescent populations compared to adults [ 8 , 9 ]. Over 80% of adolescent population in the UK, the USA, and Asia have direct access to the internet [ 10 ]. Children and adolescents frequently spend more time on media (possibly 7 hours and 22 minutes per day) than at school or sleeping [ 11 ]. Developing nations have also shown a sharp rise in teenage internet usage despite having lower internet penetration rates [ 10 ]. Concerns regarding the possible harms that overt internet use could do to adolescents and their development have arisen because of this surge, especially the significant impacts by the COVID-19 pandemic [ 12 ]. The growing prevalence and neurocognitive consequences of IA among adolescents makes this population a vital area of study [ 13 ].

Adolescence is a crucial developmental stage during which people go through significant changes in their biology, cognition, and personalities [ 14 ]. Adolescents’ emotional-behavioural functioning is hyperactivated, which creates risk of psychopathological vulnerability [ 15 ]. In accordance with clinical study results [ 16 ], this emotional hyperactivity is supported by a high level of neuronal plasticity. This plasticity enables teenagers to adapt to the numerous physical and emotional changes that occur during puberty as well as develop communication techniques and gain independence [ 16 ]. However, the strong neuronal plasticity is also associated with risk-taking and sensation seeking [ 17 ] which may lead to IA.

Despite the fact that the precise neuronal mechanisms underlying IA are still largely unclear, functional magnetic resonance imaging (fMRI) method has been used by scientists as an important framework to examine the neuropathological changes occurring in IA, particularly in the form of functional connectivity (FC) [ 18 ]. fMRI research study has shown that IA alters both the functional and structural makeup of the brain [ 3 ].

We hypothesise that IA has widespread neurological alteration effects rather than being limited to a few specific brain regions. Further hypothesis holds that according to these alterations of FC between the brain regions or certain neural networks, adolescents with IA would experience behavioural changes. An investigation of these domains could be useful for creating better procedures and standards as well as minimising the negative effects of overt internet use. This literature review aims to summarise and analyse the evidence of various imaging studies that have investigated the effects of IA on the FC in adolescents. This will be addressed through two research questions:

  • How does internet addiction affect the functional connectivity in the adolescent brain?
  • How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The review protocol was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (see S1 Checklist ).

Search strategy and selection process

A systematic search was conducted up until April 2023 from two sources of database, PubMed and PsycINFO, using a range of terms relevant to the title and research questions (see full list of search terms in S1 Appendix ). All the searched articles can be accessed in the S1 Data . The eligible articles were selected according to the inclusion and exclusion criteria. Inclusion criteria used for the present review were: (i) participants in the studies with clinical diagnosis of IA; (ii) participants between the ages of 10 and 19; (iii) imaging research investigations; (iv) works published between January 2013 and April 2023; (v) written in English language; (vi) peer-reviewed papers and (vii) full text. The numbers of articles excluded due to not meeting the inclusion criteria are shown in Fig 1 . Each study’s title and abstract were screened for eligibility.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pmen.0000022.g001

Quality appraisal

Full texts of all potentially relevant studies were then retrieved and further appraised for eligibility. Furthermore, articles were critically appraised based on the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework to evaluate the individual study for both quality and bias. The subsequent quality levels were then appraised to each article and listed as either low, moderate, or high.

Data collection process

Data that satisfied the inclusion requirements was entered into an excel sheet for data extraction and further selection. An article’s author, publication year, country, age range, participant sample size, sex, area of interest, measures, outcome and article quality were all included in the data extraction spreadsheet. Studies looking at FC, for instance, were grouped, while studies looking at FC in specific area were further divided into sub-groups.

Data synthesis and analysis

Articles were classified according to their location in the brain as well as the network or pathway they were a part of to create a coherent narrative between the selected studies. Conclusions concerning various research trends relevant to particular groupings were drawn from these groupings and subgroupings. To maintain the offered information in a prominent manner, these assertions were entered into the data extraction excel spreadsheet.

With the search performed on the selected databases, 238 articles in total were identified (see Fig 1 ). 15 duplicated articles were eliminated, and another 6 items were removed for various other reasons. Title and abstract screening eliminated 184 articles because they were not in English (number of article, n, = 7), did not include imaging components (n = 47), had adult participants (n = 53), did not have a clinical diagnosis of IA (n = 19), did not address FC in the brain (n = 20), and were published outside the desired timeframe (n = 38). A further 21 papers were eliminated for failing to meet inclusion requirements after the remaining 33 articles underwent full-text eligibility screening. A total of 12 papers were deemed eligible for this review analysis.

Characteristics of the included studies, as depicted in the data extraction sheet in Table 1 provide information of the author(s), publication year, sample size, study location, age range, gender, area of interest, outcome, measures used and quality appraisal. Most of the studies in this review utilised resting state functional magnetic resonance imaging techniques (n = 7), with several studies demonstrating task-based fMRI procedures (n = 3), and the remaining studies utilising whole-brain imaging measures (n = 2). The studies were all conducted in Asiatic countries, specifically coming from China (8), Korea (3), and Indonesia (1). Sample sizes ranged from 12 to 31 participants with most of the imaging studies having comparable sample sizes. Majority of the studies included a mix of male and female participants (n = 8) with several studies having a male only participant pool (n = 3). All except one of the mixed gender studies had a majority male participant pool. One study did not disclose their data on the gender demographics of their experiment. Study years ranged from 2013–2022, with 2 studies in 2013, 3 studies in 2014, 3 studies in 2015, 1 study in 2017, 1 study in 2020, 1 study in 2021, and 1 study in 2022.

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.t001

(1) How does internet addiction affect the functional connectivity in the adolescent brain?

The included studies were organised according to the brain region or network that they were observing. The specific networks affected by IA were the default mode network, executive control system, salience network and reward pathway. These networks are vital components of adolescent behaviour and development [ 31 ]. The studies in each section were then grouped into subsections according to their specific brain regions within their network.

Default mode network (DMN)/reward network.

Out of the 12 studies, 3 have specifically studied the default mode network (DMN), and 3 observed whole-brain FC that partially included components of the DMN. The effect of IA on the various centres of the DMN was not unilaterally the same. The findings illustrate a complex mix of increases and decreases in FC depending on the specific region in the DMN (see Table 2 and Fig 2 ). The alteration of FC in posterior cingulate cortex (PCC) in the DMN was the most frequently reported area in adolescents with IA, which involved in attentional processes [ 32 ], but Lee et al. (2020) additionally found alterations of FC in other brain regions, such as anterior insula cortex, a node in the DMN that controls the integration of motivational and cognitive processes [ 20 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g002

thumbnail

The overall changes of functional connectivity in the brain network including default mode network (DMN), executive control network (ECN), salience network (SN) and reward network. IA = Internet Addiction, FC = Functional Connectivity.

https://doi.org/10.1371/journal.pmen.0000022.t002

Ding et al. (2013) revealed altered FC in the cerebellum, the middle temporal gyrus, and the medial prefrontal cortex (mPFC) [ 22 ]. They found that the bilateral inferior parietal lobule, left superior parietal lobule, and right inferior temporal gyrus had decreased FC, while the bilateral posterior lobe of the cerebellum and the medial temporal gyrus had increased FC [ 22 ]. The right middle temporal gyrus was found to have 111 cluster voxels (t = 3.52, p<0.05) and the right inferior parietal lobule was found to have 324 cluster voxels (t = -4.07, p<0.05) with an extent threshold of 54 voxels (figures above this threshold are deemed significant) [ 22 ]. Additionally, there was a negative correlation, with 95 cluster voxels (p<0.05) between the FC of the left superior parietal lobule and the PCC with the Chen Internet Addiction Scores (CIAS) which are used to determine the severity of IA [ 22 ]. On the other hand, in regions of the reward system, connection with the PCC was positively connected with CIAS scores [ 22 ]. The most significant was the right praecuneus with 219 cluster voxels (p<0.05) [ 22 ]. Wang et al. (2017) also discovered that adolescents with IA had 33% less FC in the left inferior parietal lobule and 20% less FC in the dorsal mPFC [ 24 ]. A potential connection between the effects of substance use and overt internet use is revealed by the generally decreased FC in these areas of the DMN of teenagers with drug addiction and IA [ 35 ].

The putamen was one of the main regions of reduced FC in adolescents with IA [ 19 ]. The putamen and the insula-operculum demonstrated significant group differences regarding functional connectivity with a cluster size of 251 and an extent threshold of 250 (Z = 3.40, p<0.05) [ 19 ]. The molecular mechanisms behind addiction disorders have been intimately connected to decreased striatal dopaminergic function [ 19 ], making this function crucial.

Executive Control Network (ECN).

5 studies out of 12 have specifically viewed parts of the executive control network (ECN) and 3 studies observed whole-brain FC. The effects of IA on the ECN’s constituent parts were consistent across all the studies examined for this analysis (see Table 2 and Fig 3 ). The results showed a notable decline in all the ECN’s major centres. Li et al. (2014) used fMRI imaging and a behavioural task to study response inhibition in adolescents with IA [ 25 ] and found decreased activation at the striatum and frontal gyrus, particularly a reduction in FC at inferior frontal gyrus, in the IA group compared to controls [ 25 ]. The inferior frontal gyrus showed a reduction in FC in comparison to the controls with a cluster size of 71 (t = 4.18, p<0.05) [ 25 ]. In addition, the frontal-basal ganglia pathways in the adolescents with IA showed little effective connection between areas and increased degrees of response inhibition [ 25 ].

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g003

Lin et al. (2015) found that adolescents with IA demonstrated disrupted corticostriatal FC compared to controls [ 33 ]. The corticostriatal circuitry experienced decreased connectivity with the caudate, bilateral anterior cingulate cortex (ACC), as well as the striatum and frontal gyrus [ 33 ]. The inferior ventral striatum showed significantly reduced FC with the subcallosal ACC and caudate head with cluster size of 101 (t = -4.64, p<0.05) [ 33 ]. Decreased FC in the caudate implies dysfunction of the corticostriatal-limbic circuitry involved in cognitive and emotional control [ 36 ]. The decrease in FC in both the striatum and frontal gyrus is related to inhibitory control, a common deficit seen with disruptions with the ECN [ 33 ].

The dorsolateral prefrontal cortex (DLPFC), ACC, and right supplementary motor area (SMA) of the prefrontal cortex were all found to have significantly decreased grey matter volume [ 29 ]. In addition, the DLPFC, insula, temporal cortices, as well as significant subcortical regions like the striatum and thalamus, showed decreased FC [ 29 ]. According to Tremblay (2009), the striatum plays a significant role in the processing of rewards, decision-making, and motivation [ 37 ]. Chen et al. (2020) reported that the IA group demonstrated increased impulsivity as well as decreased reaction inhibition using a Stroop colour-word task [ 26 ]. Furthermore, Chen et al. (2020) observed that the left DLPFC and dorsal striatum experienced a negative connection efficiency value, specifically demonstrating that the dorsal striatum activity suppressed the left DLPFC [ 27 ].

Salience network (SN).

Out of the 12 chosen studies, 3 studies specifically looked at the salience network (SN) and 3 studies have observed whole-brain FC. Relative to the DMN and ECN, the findings on the SN were slightly sparser. Despite this, adolescents with IA demonstrated a moderate decrease in FC, as well as other measures like fibre connectivity and cognitive control, when compared to healthy control (see Table 2 and Fig 4 ).

thumbnail

https://doi.org/10.1371/journal.pmen.0000022.g004

Xing et al. (2014) used both dorsal anterior cingulate cortex (dACC) and insula to test FC changes in the SN of adolescents with IA and found decreased structural connectivity in the SN as well as decreased fractional anisotropy (FA) that correlated to behaviour performance in the Stroop colour word-task [ 21 ]. They examined the dACC and insula to determine whether the SN’s disrupted connectivity may be linked to the SN’s disruption of regulation, which would explain the impaired cognitive control seen in adolescents with IA. However, researchers did not find significant FC differences in the SN when compared to the controls [ 21 ]. These results provided evidence for the structural changes in the interconnectivity within SN in adolescents with IA.

Wang et al. (2017) investigated network interactions between the DMN, ECN, SN and reward pathway in IA subjects [ 24 ] (see Fig 5 ), and found 40% reduction of FC between the DMN and specific regions of the SN, such as the insula, in comparison to the controls (p = 0.008) [ 24 ]. The anterior insula and dACC are two areas that are impacted by this altered FC [ 24 ]. This finding supports the idea that IA has similar neurobiological abnormalities with other addictive illnesses, which is in line with a study that discovered disruptive changes in the SN and DMN’s interaction in cocaine addiction [ 38 ]. The insula has also been linked to the intensity of symptoms and has been implicated in the development of IA [ 39 ].

thumbnail

“+” indicates an increase in behaivour; “-”indicates a decrease in behaviour; solid arrows indicate a direct network interaction; and the dotted arrows indicates a reduction in network interaction. This diagram depicts network interactions juxtaposed with engaging in internet related behaviours. Through the neural interactions, the diagram illustrates how the networks inhibit or amplify internet usage and vice versa. Furthermore, it demonstrates how the SN mediates both the DMN and ECN.

https://doi.org/10.1371/journal.pmen.0000022.g005

(2) How is adolescent behaviour and development impacted by functional connectivity changes due to internet addiction?

The findings that IA individuals demonstrate an overall decrease in FC in the DMN is supported by numerous research [ 24 ]. Drug addict populations also exhibited similar decline in FC in the DMN [ 40 ]. The disruption of attentional orientation and self-referential processing for both substance and behavioural addiction was then hypothesised to be caused by DMN anomalies in FC [ 41 ].

In adolescents with IA, decline of FC in the parietal lobule affects visuospatial task-related behaviour [ 22 ], short-term memory [ 42 ], and the ability of controlling attention or restraining motor responses during response inhibition tests [ 42 ]. Cue-induced gaming cravings are influenced by the DMN [ 43 ]. A visual processing area called the praecuneus links gaming cues to internal information [ 22 ]. A meta-analysis found that the posterior cingulate cortex activity of individuals with IA during cue-reactivity tasks was connected with their gaming time [ 44 ], suggesting that excessive gaming may impair DMN function and that individuals with IA exert more cognitive effort to control it. Findings for the behavioural consequences of FC changes in the DMN illustrate its underlying role in regulating impulsivity, self-monitoring, and cognitive control.

Furthermore, Ding et al. (2013) reported an activation of components of the reward pathway, including areas like the nucleus accumbens, praecuneus, SMA, caudate, and thalamus, in connection to the DMN [ 22 ]. The increased FC of the limbic and reward networks have been confirmed to be a major biomarker for IA [ 45 , 46 ]. The increased reinforcement in these networks increases the strength of reward stimuli and makes it more difficult for other networks, namely the ECN, to down-regulate the increased attention [ 29 ] (See Fig 5 ).

Executive control network (ECN).

The numerous IA-affected components in the ECN have a role in a variety of behaviours that are connected to both response inhibition and emotional regulation [ 47 ]. For instance, brain regions like the striatum, which are linked to impulsivity and the reward system, are heavily involved in the act of playing online games [ 47 ]. Online game play activates the striatum, which suppresses the left DLPFC in ECN [ 48 ]. As a result, people with IA may find it difficult to control their want to play online games [ 48 ]. This system thus causes impulsive and protracted gaming conduct, lack of inhibitory control leading to the continued use of internet in an overt manner despite a variety of negative effects, personal distress, and signs of psychological dependence [ 33 ] (See Fig 5 ).

Wang et al. (2017) report that disruptions in cognitive control networks within the ECN are frequently linked to characteristics of substance addiction [ 24 ]. With samples that were addicted to heroin and cocaine, previous studies discovered abnormal FC in the ECN and the PFC [ 49 ]. Electronic gaming is known to promote striatal dopamine release, similar to drug addiction [ 50 ]. According to Drgonova and Walther (2016), it is hypothesised that dopamine could stimulate the reward system of the striatum in the brain, leading to a loss of impulse control and a failure of prefrontal lobe executive inhibitory control [ 51 ]. In the end, IA’s resemblance to drug use disorders may point to vital biomarkers or underlying mechanisms that explain how cognitive control and impulsive behaviour are related.

A task-related fMRI study found that the decrease in FC between the left DLPFC and dorsal striatum was congruent with an increase in impulsivity in adolescents with IA [ 26 ]. The lack of response inhibition from the ECN results in a loss of control over internet usage and a reduced capacity to display goal-directed behaviour [ 33 ]. Previous studies have linked the alteration of the ECN in IA with higher cue reactivity and impaired ability to self-regulate internet specific stimuli [ 52 ].

Salience network (SN)/ other networks.

Xing et al. (2014) investigated the significance of the SN regarding cognitive control in teenagers with IA [ 21 ]. The SN, which is composed of the ACC and insula, has been demonstrated to control dynamic changes in other networks to modify cognitive performance [ 21 ]. The ACC is engaged in conflict monitoring and cognitive control, according to previous neuroimaging research [ 53 ]. The insula is a region that integrates interoceptive states into conscious feelings [ 54 ]. The results from Xing et al. (2014) showed declines in the SN regarding its structural connectivity and fractional anisotropy, even though they did not observe any appreciable change in FC in the IA participants [ 21 ]. Due to the small sample size, the results may have indicated that FC methods are not sensitive enough to detect the significant functional changes [ 21 ]. However, task performance behaviours associated with impaired cognitive control in adolescents with IA were correlated with these findings [ 21 ]. Our comprehension of the SN’s broader function in IA can be enhanced by this relationship.

Research study supports the idea that different psychological issues are caused by the functional reorganisation of expansive brain networks, such that strong association between SN and DMN may provide neurological underpinnings at the system level for the uncontrollable character of internet-using behaviours [ 24 ]. In the study by Wang et al. (2017), the decreased interconnectivity between the SN and DMN, comprising regions such the DLPFC and the insula, suggests that adolescents with IA may struggle to effectively inhibit DMN activity during internally focused processing, leading to poorly managed desires or preoccupations to use the internet [ 24 ] (See Fig 5 ). Subsequently, this may cause a failure to inhibit DMN activity as well as a restriction of ECN functionality [ 55 ]. As a result, the adolescent experiences an increased salience and sensitivity towards internet addicting cues making it difficult to avoid these triggers [ 56 ].

The primary aim of this review was to present a summary of how internet addiction impacts on the functional connectivity of adolescent brain. Subsequently, the influence of IA on the adolescent brain was compartmentalised into three sections: alterations of FC at various brain regions, specific FC relationships, and behavioural/developmental changes. Overall, the specific effects of IA on the adolescent brain were not completely clear, given the variety of FC changes. However, there were overarching behavioural, network and developmental trends that were supported that provided insight on adolescent development.

The first hypothesis that was held about this question was that IA was widespread and would be regionally similar to substance-use and gambling addiction. After conducting a review of the information in the chosen articles, the hypothesis was predictably supported. The regions of the brain affected by IA are widespread and influence multiple networks, mainly DMN, ECN, SN and reward pathway. In the DMN, there was a complex mix of increases and decreases within the network. However, in the ECN, the alterations of FC were more unilaterally decreased, but the findings of SN and reward pathway were not quite clear. Overall, the FC changes within adolescents with IA are very much network specific and lay a solid foundation from which to understand the subsequent behaviour changes that arise from the disorder.

The second hypothesis placed emphasis on the importance of between network interactions and within network interactions in the continuation of IA and the development of its behavioural symptoms. The results from the findings involving the networks, DMN, SN, ECN and reward system, support this hypothesis (see Fig 5 ). Studies confirm the influence of all these neural networks on reward valuation, impulsivity, salience to stimuli, cue reactivity and other changes that alter behaviour towards the internet use. Many of these changes are connected to the inherent nature of the adolescent brain.

There are multiple explanations that underlie the vulnerability of the adolescent brain towards IA related urges. Several of them have to do with the inherent nature and underlying mechanisms of the adolescent brain. Children’s emotional, social, and cognitive capacities grow exponentially during childhood and adolescence [ 57 ]. Early teenagers go through a process called “social reorientation” that is characterised by heightened sensitivity to social cues and peer connections [ 58 ]. Adolescents’ improvements in their social skills coincide with changes in their brains’ anatomical and functional organisation [ 59 ]. Functional hubs exhibit growing connectivity strength [ 60 ], suggesting increased functional integration during development. During this time, the brain’s functional networks change from an anatomically dominant structure to a scattered architecture [ 60 ].

The adolescent brain is very responsive to synaptic reorganisation and experience cues [ 61 ]. As a result, one of the distinguishing traits of the maturation of adolescent brains is the variation in neural network trajectory [ 62 ]. Important weaknesses of the adolescent brain that may explain the neurobiological change brought on by external stimuli are illustrated by features like the functional gaps between networks and the inadequate segregation of networks [ 62 ].

The implications of these findings towards adolescent behaviour are significant. Although the exact changes and mechanisms are not fully clear, the observed changes in functional connectivity have the capacity of influencing several aspects of adolescent development. For example, functional connectivity has been utilised to investigate attachment styles in adolescents [ 63 ]. It was observed that adolescent attachment styles were negatively associated with caudate-prefrontal connectivity, but positively with the putamen-visual area connectivity [ 63 ]. Both named areas were also influenced by the onset of internet addiction, possibly providing a connection between the two. Another study associated neighbourhood/socioeconomic disadvantage with functional connectivity alterations in the DMN and dorsal attention network [ 64 ]. The study also found multivariate brain behaviour relationships between the altered/disadvantaged functional connectivity and mental health and cognition [ 64 ]. This conclusion supports the notion that the functional connectivity alterations observed in IA are associated with specific adolescent behaviours as well as the fact that functional connectivity can be utilised as a platform onto which to compare various neurologic conditions.

Limitations/strengths

There were several limitations that were related to the conduction of the review as well as the data extracted from the articles. Firstly, the study followed a systematic literature review design when analysing the fMRI studies. The data pulled from these imaging studies were namely qualitative and were subject to bias contrasting the quantitative nature of statistical analysis. Components of the study, such as sample sizes, effect sizes, and demographics were not weighted or controlled. The second limitation brought up by a similar review was the lack of a universal consensus of terminology given IA [ 47 ]. Globally, authors writing about this topic use an array of terminology including online gaming addiction, internet addiction, internet gaming disorder, and problematic internet use. Often, authors use multiple terms interchangeably which makes it difficult to depict the subtle similarities and differences between the terms.

Reviewing the explicit limitations in each of the included studies, two major limitations were brought up in many of the articles. One was relating to the cross-sectional nature of the included studies. Due to the inherent qualities of a cross-sectional study, the studies did not provide clear evidence that IA played a causal role towards the development of the adolescent brain. While several biopsychosocial factors mediate these interactions, task-based measures that combine executive functions with imaging results reinforce the assumed connection between the two that is utilised by the papers studying IA. Another limitation regarded the small sample size of the included studies, which averaged to around 20 participants. The small sample size can influence the generalisation of the results as well as the effectiveness of statistical analyses. Ultimately, both included study specific limitations illustrate the need for future studies to clarify the causal relationship between the alterations of FC and the development of IA.

Another vital limitation was the limited number of studies applying imaging techniques for investigations on IA in adolescents were a uniformly Far East collection of studies. The reason for this was because the studies included in this review were the only fMRI studies that were found that adhered to the strict adolescent age restriction. The adolescent age range given by the WHO (10–19 years old) [ 65 ] was strictly followed. It is important to note that a multitude of studies found in the initial search utilised an older adolescent demographic that was slightly higher than the WHO age range and had a mean age that was outside of the limitations. As a result, the results of this review are biased and based on the 12 studies that met the inclusion and exclusion criteria.

Regarding the global nature of the research, although the journals that the studies were published in were all established western journals, the collection of studies were found to all originate from Asian countries, namely China and Korea. Subsequently, it pulls into question if the results and measures from these studies are generalisable towards a western population. As stated previously, Asian countries have a higher prevalence of IA, which may be the reasoning to why the majority of studies are from there [ 8 ]. However, in an additional search including other age groups, it was found that a high majority of all FC studies on IA were done in Asian countries. Interestingly, western papers studying fMRI FC were primarily focused on gambling and substance-use addiction disorders. The western papers on IA were less focused on fMRI FC but more on other components of IA such as sleep, game-genre, and other non-imaging related factors. This demonstrated an overall lack of western fMRI studies on IA. It is important to note that both western and eastern fMRI studies on IA presented an overall lack on children and adolescents in general.

Despite the several limitations, this review provided a clear reflection on the state of the data. The strengths of the review include the strict inclusion/exclusion criteria that filtered through studies and only included ones that contained a purely adolescent sample. As a result, the information presented in this review was specific to the review’s aims. Given the sparse nature of adolescent specific fMRI studies on the FC changes in IA, this review successfully provided a much-needed niche representation of adolescent specific results. Furthermore, the review provided a thorough functional explanation of the DMN, ECN, SN and reward pathway making it accessible to readers new to the topic.

Future directions and implications

Through the search process of the review, there were more imaging studies focused on older adolescence and adulthood. Furthermore, finding a review that covered a strictly adolescent population, focused on FC changes, and was specifically depicting IA, was proven difficult. Many related reviews, such as Tereshchenko and Kasparov (2019), looked at risk factors related to the biopsychosocial model, but did not tackle specific alterations in specific structural or functional changes in the brain [ 66 ]. Weinstein (2017) found similar structural and functional results as well as the role IA has in altering response inhibition and reward valuation in adolescents with IA [ 47 ]. Overall, the accumulated findings only paint an emerging pattern which aligns with similar substance-use and gambling disorders. Future studies require more specificity in depicting the interactions between neural networks, as well as more literature on adolescent and comorbid populations. One future field of interest is the incorporation of more task-based fMRI data. Advances in resting-state fMRI methods have yet to be reflected or confirmed in task-based fMRI methods [ 62 ]. Due to the fact that network connectivity is shaped by different tasks, it is critical to confirm that the findings of the resting state fMRI studies also apply to the task based ones [ 62 ]. Subsequently, work in this area will confirm if intrinsic connectivity networks function in resting state will function similarly during goal directed behaviour [ 62 ]. An elevated focus on adolescent populations as well as task-based fMRI methodology will help uncover to what extent adolescent network connectivity maturation facilitates behavioural and cognitive development [ 62 ].

A treatment implication is the potential usage of bupropion for the treatment of IA. Bupropion has been previously used to treat patients with gambling disorder and has been effective in decreasing overall gambling behaviour as well as money spent while gambling [ 67 ]. Bae et al. (2018) found a decrease in clinical symptoms of IA in line with a 12-week bupropion treatment [ 31 ]. The study found that bupropion altered the FC of both the DMN and ECN which in turn decreased impulsivity and attentional deficits for the individuals with IA [ 31 ]. Interventions like bupropion illustrate the importance of understanding the fundamental mechanisms that underlie disorders like IA.

The goal for this review was to summarise the current literature on functional connectivity changes in adolescents with internet addiction. The findings answered the primary research questions that were directed at FC alterations within several networks of the adolescent brain and how that influenced their behaviour and development. Overall, the research demonstrated several wide-ranging effects that influenced the DMN, SN, ECN, and reward centres. Additionally, the findings gave ground to important details such as the maturation of the adolescent brain, the high prevalence of Asian originated studies, and the importance of task-based studies in this field. The process of making this review allowed for a thorough understanding IA and adolescent brain interactions.

Given the influx of technology and media in the lives and education of children and adolescents, an increase in prevalence and focus on internet related behavioural changes is imperative towards future children/adolescent mental health. Events such as COVID-19 act to expose the consequences of extended internet usage on the development and lifestyle of specifically young people. While it is important for parents and older generations to be wary of these changes, it is important for them to develop a base understanding of the issue and not dismiss it as an all-bad or all-good scenario. Future research on IA will aim to better understand the causal relationship between IA and psychological symptoms that coincide with it. The current literature regarding functional connectivity changes in adolescents is limited and requires future studies to test with larger sample sizes, comorbid populations, and populations outside Far East Asia.

This review aimed to demonstrate the inner workings of how IA alters the connection between the primary behavioural networks in the adolescent brain. Predictably, the present answers merely paint an unfinished picture that does not necessarily depict internet usage as overwhelmingly positive or negative. Alternatively, the research points towards emerging patterns that can direct individuals on the consequences of certain variables or risk factors. A clearer depiction of the mechanisms of IA would allow physicians to screen and treat the onset of IA more effectively. Clinically, this could be in the form of more streamlined and accurate sessions of CBT or family therapy, targeting key symptoms of IA. Alternatively clinicians could potentially prescribe treatment such as bupropion to target FC in certain regions of the brain. Furthermore, parental education on IA is another possible avenue of prevention from a public health standpoint. Parents who are aware of the early signs and onset of IA will more effectively handle screen time, impulsivity, and minimize the risk factors surrounding IA.

Additionally, an increased attention towards internet related fMRI research is needed in the West, as mentioned previously. Despite cultural differences, Western countries may hold similarities to the eastern countries with a high prevalence of IA, like China and Korea, regarding the implications of the internet and IA. The increasing influence of the internet on the world may contribute to an overall increase in the global prevalence of IA. Nonetheless, the high saturation of eastern studies in this field should be replicated with a Western sample to determine if the same FC alterations occur. A growing interest in internet related research and education within the West will hopefully lead to the knowledge of healthier internet habits and coping strategies among parents with children and adolescents. Furthermore, IA research has the potential to become a crucial proxy for which to study adolescent brain maturation and development.

Supporting information

S1 checklist. prisma checklist..

https://doi.org/10.1371/journal.pmen.0000022.s001

S1 Appendix. Search strategies with all the terms.

https://doi.org/10.1371/journal.pmen.0000022.s002

S1 Data. Article screening records with details of categorized content.

https://doi.org/10.1371/journal.pmen.0000022.s003

Acknowledgments

The authors thank https://www.stockio.com/free-clipart/brain-01 (with attribution to Stockio.com); and https://www.rawpixel.com/image/6442258/png-sticker-vintage for the free images used to create Figs 2 – 4 .

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 2. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5 ed. Washington, D.C.: American Psychiatric Publishing; 2013.
  • 10. Stats IW. World Internet Users Statistics and World Population Stats 2013 [ http://www.internetworldstats.com/stats.htm .
  • 11. Rideout VJR M. B. The common sense census: media use by tweens and teens. San Francisco, CA: Common Sense Media; 2019.
  • 37. Tremblay L. The Ventral Striatum. Handbook of Reward and Decision Making: Academic Press; 2009.
  • 57. Bhana A. Middle childhood and pre-adolescence. Promoting mental health in scarce-resource contexts: emerging evidence and practice. Cape Town: HSRC Press; 2010. p. 124–42.
  • 65. Organization WH. Adolescent Health 2023 [ https://www.who.int/health-topics/adolescent-health#tab=tab_1 .

IMAGES

  1. Systematic Literature Review Methodology

    systematic literature review the method

  2. Process of the systematic literature review

    systematic literature review the method

  3. The methodology of the systematic literature review. Four phases of the

    systematic literature review the method

  4. Step-by-step description of the systematic review process. Adapted from

    systematic literature review the method

  5. Steps for systematic literature review (PRISMA method) Source: Scheme

    systematic literature review the method

  6. Systematic literature review phases.

    systematic literature review the method

VIDEO

  1. Systematic Literature Review Paper presentation

  2. CONDUCTING SYSTEMATIC LITERATURE REVIEW

  3. Write your thesis Submission 2 Literature Review Method

  4. Systematic Literature Review Part2 March 20, 2023 Joseph Ntayi

  5. Introduction Systematic Literature Review-Various frameworks Bibliometric Analysis

  6. Systematic Literature Review

COMMENTS

  1. Method Article How-to conduct a systematic literature review: A quick

    Method details Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12].An SLR updates the reader with current literature about a subject [6].The goal is to review critical points of current knowledge on a ...

  2. PDF Systematic Literature Reviews: an Introduction

    work is needed to define what review methods are appropriate for each type of research question in design research, and to adapt guidance to our own needs and specificities. ... the systematic literature reviews (SR). Compared to traditional literature overviews, which often leave a lot to the expertise of the authors, ...

  3. How to write the methods section of a systematic review

    Keep it brief. The methods section should be succinct but include all the noteworthy information. This can be a difficult balance to achieve. A useful strategy is to aim for a brief description that signposts the reader to a separate section or sections of supporting information. This could include datasets, a flowchart to show what happened to ...

  4. An overview of methodological approaches in systematic reviews

    1. INTRODUCTION. Evidence synthesis is a prerequisite for knowledge translation. 1 A well conducted systematic review (SR), often in conjunction with meta‐analyses (MA) when appropriate, is considered the "gold standard" of methods for synthesizing evidence related to a topic of interest. 2 The central strength of an SR is the transparency of the methods used to systematically search ...

  5. Guidance on Conducting a Systematic Literature Review

    Literature reviews establish the foundation of academic inquires. However, in the planning field, we lack rigorous systematic reviews. In this article, through a systematic search on the methodology of literature review, we categorize a typology of literature reviews, discuss steps in conducting a systematic literature review, and provide suggestions on how to enhance rigor in literature ...

  6. Systematic Review

    Systematic review vs. literature review. A literature review is a type of review that uses a less systematic and formal approach than a systematic review. Typically, an expert in a topic will qualitatively summarize and evaluate previous work, without using a formal, explicit method.

  7. How to write a systematic literature review [9 steps]

    Screen the literature. Assess the quality of the studies. Extract the data. Analyze the results. Interpret and present the results. 1. Decide on your team. When carrying out a systematic literature review, you should employ multiple reviewers in order to minimize bias and strengthen analysis.

  8. How to Do a Systematic Review: A Best Practice Guide for Conducting and

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question.

  9. Guidance on Conducting a Systematic Literature Review

    Step 3: Search the Literature. The quality of literature review is highly dependent on the literature collected for the review—"Garbage-in, garbage-out.". The literature search finds materials for the review; therefore, a systematic review depends on a systematic search of literature. Channels for literature search.

  10. Description of the Systematic Literature Review Method

    A systematic literature review (SLR) is an independent academic method that aims to identify and evaluate all relevant literature on a topic in order to derive conclusions about the question under consideration. "Systematic reviews are undertaken to clarify the state of existing research and the implications that should be drawn from this."

  11. (PDF) Systematic Literature Reviews: An Introduction

    Systematic literature reviews (SRs) are a way of synthesising scientific evidence to answer a particular research question in a way that is transparent and reproducible, while seeking to include ...

  12. Guidelines for writing a systematic review

    Systematic review: The most robust review method, usually with the involvement of more than one author, intends to systematically search for and appraise literature with pre-existing inclusion criteria. (Salem et al., 2023) Rapid review: Utilises Systematic Review methods but may be time limited. (Randles and Finnegan, 2022) Meta-analysis

  13. Introduction to systematic review and meta-analysis

    It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical ...

  14. Systematic reviews: Brief overview of methods, limitations, and

    CONCLUSION. Siddaway 16 noted that, "The best reviews synthesize studies to draw broad theoretical conclusions about what the literature means, linking theory to evidence and evidence to theory" (p. 747). To that end, high quality systematic reviews are explicit, rigorous, and reproducible. It is these three criteria that should guide authors seeking to write a systematic review or editors ...

  15. Literature review as a research methodology: An ...

    This is why the literature review as a research method is more relevant than ever. Traditional literature reviews often lack thoroughness and rigor and are conducted ad hoc, rather than following a specific methodology. ... Even though the systematic review method was developed in medical science, attempts have been made create guidelines ...

  16. How to Write a Systematic Review of the Literature

    This article provides a step-by-step approach to conducting and reporting systematic literature reviews (SLRs) in the domain of healthcare design and discusses some of the key quality issues associated with SLRs. SLR, as the name implies, is a systematic way of collecting, critically evaluating, integrating, and presenting findings from across ...

  17. Research Guides: Systematic Reviews: Types of Literature Reviews

    Rapid review. Assessment of what is already known about a policy or practice issue, by using systematic review methods to search and critically appraise existing research. Completeness of searching determined by time constraints. Time-limited formal quality assessment. Typically narrative and tabular.

  18. Types of literature review, methods, & resources

    Right Review, this decision support website provides an algorithm to help reviewers choose a review methodology from among 41 knowledge synthesis methods.. The Systematic Review Toolbox, an online catalogue of tools that support various tasks within the systematic review and wider evidence synthesis process.Maintained by the UK University of York Health Economics Consortium, Newcastle ...

  19. Home

    A systematic review is a literature review that gathers all of the available evidence matching pre-specified eligibility criteria to answer a specific research question. It uses explicit, systematic methods, documented in a protocol, to minimize bias, provide reliable findings, and inform decision-making.

  20. How-to conduct a systematic literature review: A quick guide for

    Abstract. Performing a literature review is a critical first step in research to understanding the state-of-the-art and identifying gaps and challenges in the field. A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in ...

  21. How-to conduct a systematic literature review: A quick guide for

    A systematic literature review is a method which sets out a series of steps to methodically organize the review. In this paper, we present a guide designed for researchers and in particular early-stage researchers in the computer-science field. The contribution of the article is the following:•Clearly defined strategies to follow for a ...

  22. systematic review of literature examining the application of a social

    Methods. A systematic search of the literature was carried out between 6 January 2022 and 20 January 2022. Using the search terms shown in table 1, a systematic search was carried out using online databases PsycINFO, ASSIA, IBSS, Medline, Web of Science, CINHAL and SCOPUS. English language and peer-reviewed journals were selected as limiters.

  23. Microsurgery in periodontics and oral implantology: a systematic review

    The aim of this systematic review was to comprehensively explore the current trends and therapeutic approaches in which an operating microscope (OM) is used in periodontics and dental implant ...

  24. Impact of Nurse Manager Leadership Styles on Work Engagement: A

    This systematic literature review was conducted in accordance with the methodology guidelines outlined in the Joanna Briggs Institute (JBI) Methodology for ... qualitative, and mixed-method) research examining leadership styles of nurses in management positions and registered nurses' work engagement published in peer-reviewed journals between ...

  25. How to Conduct a Systematic Review: A Narrative Literature Review

    Our goal with this paper is to conduct a narrative review of the literature about systematic reviews and outline the essential elements of a systematic review along with the limitations of such a review. Keywords: systematic reviews, meta-analysis, narrative literature review, prisma checklist. A literature review provides an important insight ...

  26. Method for conducting systematic literature review and meta-analysis

    Method details: the six basic steps Protocol - SLR methodology step 1. The need for a research protocol for SLR is for the consideration of transparency, transferability, and replicability of the work, which are the characteristics that make a literature review systematic [12].This helps to minimize the bias by conducting exhaustive literature searches.

  27. Promoting child and adolescent health through wearable technology: A

    This systematic review summarizes existing research by exploring the use of wearable technology in promoting health across diverse youth populations, including healthy and unhealthy individuals. It examines health promotion at various stages of the disease continuum, including pre-disease prevention, in-disease treatment, and postoperative ...

  28. A Systematic Literature Review of Novice Visual Representations of

    A Systematic Literature Review of Novice Visual Representations of Design Ideas: A Three-Pronged Design Sketching Framework. Mehdi ... with a focus on Gifted, Creative, and Talented Studies from Purdue University. He is a mixed-method researcher certified in quantitative and qualitative inquiry. His research interests around STEM-talent ...

  29. Functional connectivity changes in the brain of adolescents with

    Internet usage has seen a stark global rise over the last few decades, particularly among adolescents and young people, who have also been diagnosed increasingly with internet addiction (IA). IA impacts several neural networks that influence an adolescent's behaviour and development. This article issued a literature review on the resting-state and task-based functional magnetic resonance ...

  30. Actions targeting the integration of peer workforces in mental health

    Stigma, discrimination and a lack of acceptance by colleagues are also common themes. This systematic review seeks to identify organisational actions to support integration of peer workforces for improved mental health service delivery. Method: A systematic search was conducted through online databases (n = 8) between January 1980 to November ...