Grad Coach

Research Topics & Ideas: Environment

100+ Environmental Science Research Topics & Ideas

Research topics and ideas within the environmental sciences

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we’ll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental economics, and environmental ethics.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the environmental sciences. This is the starting point though. To develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. Also be sure to also sign up for our free webinar that explores how to develop a high-quality research topic from scratch.

Overview: Environmental Topics

  • Ecology /ecological science
  • Atmospheric science
  • Oceanography
  • Soil science
  • Environmental chemistry
  • Environmental economics
  • Environmental ethics
  • Examples  of dissertations and theses

Topics & Ideas: Ecological Science

  • The impact of land-use change on species diversity and ecosystem functioning in agricultural landscapes
  • The role of disturbances such as fire and drought in shaping arid ecosystems
  • The impact of climate change on the distribution of migratory marine species
  • Investigating the role of mutualistic plant-insect relationships in maintaining ecosystem stability
  • The effects of invasive plant species on ecosystem structure and function
  • The impact of habitat fragmentation caused by road construction on species diversity and population dynamics in the tropics
  • The role of ecosystem services in urban areas and their economic value to a developing nation
  • The effectiveness of different grassland restoration techniques in degraded ecosystems
  • The impact of land-use change through agriculture and urbanisation on soil microbial communities in a temperate environment
  • The role of microbial diversity in ecosystem health and nutrient cycling in an African savannah

Topics & Ideas: Atmospheric Science

  • The impact of climate change on atmospheric circulation patterns above tropical rainforests
  • The role of atmospheric aerosols in cloud formation and precipitation above cities with high pollution levels
  • The impact of agricultural land-use change on global atmospheric composition
  • Investigating the role of atmospheric convection in severe weather events in the tropics
  • The impact of urbanisation on regional and global atmospheric ozone levels
  • The impact of sea surface temperature on atmospheric circulation and tropical cyclones
  • The impact of solar flares on the Earth’s atmospheric composition
  • The impact of climate change on atmospheric turbulence and air transportation safety
  • The impact of stratospheric ozone depletion on atmospheric circulation and climate change
  • The role of atmospheric rivers in global water supply and sea-ice formation

Research topic evaluator

Topics & Ideas: Oceanography

  • The impact of ocean acidification on kelp forests and biogeochemical cycles
  • The role of ocean currents in distributing heat and regulating desert rain
  • The impact of carbon monoxide pollution on ocean chemistry and biogeochemical cycles
  • Investigating the role of ocean mixing in regulating coastal climates
  • The impact of sea level rise on the resource availability of low-income coastal communities
  • The impact of ocean warming on the distribution and migration patterns of marine mammals
  • The impact of ocean deoxygenation on biogeochemical cycles in the arctic
  • The role of ocean-atmosphere interactions in regulating rainfall in arid regions
  • The impact of ocean eddies on global ocean circulation and plankton distribution
  • The role of ocean-ice interactions in regulating the Earth’s climate and sea level

Research topic idea mega list

Tops & Ideas: Hydrology

  • The impact of agricultural land-use change on water resources and hydrologic cycles in temperate regions
  • The impact of agricultural groundwater availability on irrigation practices in the global south
  • The impact of rising sea-surface temperatures on global precipitation patterns and water availability
  • Investigating the role of wetlands in regulating water resources for riparian forests
  • The impact of tropical ranches on river and stream ecosystems and water quality
  • The impact of urbanisation on regional and local hydrologic cycles and water resources for agriculture
  • The role of snow cover and mountain hydrology in regulating regional agricultural water resources
  • The impact of drought on food security in arid and semi-arid regions
  • The role of groundwater recharge in sustaining water resources in arid and semi-arid environments
  • The impact of sea level rise on coastal hydrology and the quality of water resources

Research Topic Kickstarter - Need Help Finding A Research Topic?

Topics & Ideas: Geology

  • The impact of tectonic activity on the East African rift valley
  • The role of mineral deposits in shaping ancient human societies
  • The impact of sea-level rise on coastal geomorphology and shoreline evolution
  • Investigating the role of erosion in shaping the landscape and impacting desertification
  • The impact of mining on soil stability and landslide potential
  • The impact of volcanic activity on incoming solar radiation and climate
  • The role of geothermal energy in decarbonising the energy mix of megacities
  • The impact of Earth’s magnetic field on geological processes and solar wind
  • The impact of plate tectonics on the evolution of mammals
  • The role of the distribution of mineral resources in shaping human societies and economies, with emphasis on sustainability

Topics & Ideas: Soil Science

  • The impact of dam building on soil quality and fertility
  • The role of soil organic matter in regulating nutrient cycles in agricultural land
  • The impact of climate change on soil erosion and soil organic carbon storage in peatlands
  • Investigating the role of above-below-ground interactions in nutrient cycling and soil health
  • The impact of deforestation on soil degradation and soil fertility
  • The role of soil texture and structure in regulating water and nutrient availability in boreal forests
  • The impact of sustainable land management practices on soil health and soil organic matter
  • The impact of wetland modification on soil structure and function
  • The role of soil-atmosphere exchange and carbon sequestration in regulating regional and global climate
  • The impact of salinization on soil health and crop productivity in coastal communities

Topics & Ideas: Environmental Chemistry

  • The impact of cobalt mining on water quality and the fate of contaminants in the environment
  • The role of atmospheric chemistry in shaping air quality and climate change
  • The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture
  • Investigating the fate and transport of heavy metal contaminants in the environment
  • The impact of climate change on biochemical cycling in tropical rainforests
  • The impact of various types of land-use change on biochemical cycling
  • The role of soil microbes in mediating contaminant degradation in the environment
  • The impact of chemical and oil spills on freshwater and soil chemistry
  • The role of atmospheric nitrogen deposition in shaping water and soil chemistry
  • The impact of over-irrigation on the cycling and fate of persistent organic pollutants in the environment

Topics & Ideas: Environmental Economics

  • The impact of climate change on the economies of developing nations
  • The role of market-based mechanisms in promoting sustainable use of forest resources
  • The impact of environmental regulations on economic growth and competitiveness
  • Investigating the economic benefits and costs of ecosystem services for African countries
  • The impact of renewable energy policies on regional and global energy markets
  • The role of water markets in promoting sustainable water use in southern Africa
  • The impact of land-use change in rural areas on regional and global economies
  • The impact of environmental disasters on local and national economies
  • The role of green technologies and innovation in shaping the zero-carbon transition and the knock-on effects for local economies
  • The impact of environmental and natural resource policies on income distribution and poverty of rural communities

Topics & Ideas: Environmental Ethics

  • The ethical foundations of environmentalism and the environmental movement regarding renewable energy
  • The role of values and ethics in shaping environmental policy and decision-making in the mining industry
  • The impact of cultural and religious beliefs on environmental attitudes and behaviours in first world countries
  • Investigating the ethics of biodiversity conservation and the protection of endangered species in palm oil plantations
  • The ethical implications of sea-level rise for future generations and vulnerable coastal populations
  • The role of ethical considerations in shaping sustainable use of natural forest resources
  • The impact of environmental justice on marginalized communities and environmental policies in Asia
  • The ethical implications of environmental risks and decision-making under uncertainty
  • The role of ethics in shaping the transition to a low-carbon, sustainable future for the construction industry
  • The impact of environmental values on consumer behaviour and the marketplace: a case study of the ‘bring your own shopping bag’ policy

Examples: Real Dissertation & Thesis Topics

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various environmental science-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • The physiology of microorganisms in enhanced biological phosphorous removal (Saunders, 2014)
  • The influence of the coastal front on heavy rainfall events along the east coast (Henson, 2019)
  • Forage production and diversification for climate-smart tropical and temperate silvopastures (Dibala, 2019)
  • Advancing spectral induced polarization for near surface geophysical characterization (Wang, 2021)
  • Assessment of Chromophoric Dissolved Organic Matter and Thamnocephalus platyurus as Tools to Monitor Cyanobacterial Bloom Development and Toxicity (Hipsher, 2019)
  • Evaluating the Removal of Microcystin Variants with Powdered Activated Carbon (Juang, 2020)
  • The effect of hydrological restoration on nutrient concentrations, macroinvertebrate communities, and amphibian populations in Lake Erie coastal wetlands (Berg, 2019)
  • Utilizing hydrologic soil grouping to estimate corn nitrogen rate recommendations (Bean, 2019)
  • Fungal Function in House Dust and Dust from the International Space Station (Bope, 2021)
  • Assessing Vulnerability and the Potential for Ecosystem-based Adaptation (EbA) in Sudan’s Blue Nile Basin (Mohamed, 2022)
  • A Microbial Water Quality Analysis of the Recreational Zones in the Los Angeles River of Elysian Valley, CA (Nguyen, 2019)
  • Dry Season Water Quality Study on Three Recreational Sites in the San Gabriel Mountains (Vallejo, 2019)
  • Wastewater Treatment Plan for Unix Packaging Adjustment of the Potential Hydrogen (PH) Evaluation of Enzymatic Activity After the Addition of Cycle Disgestase Enzyme (Miessi, 2020)
  • Laying the Genetic Foundation for the Conservation of Longhorn Fairy Shrimp (Kyle, 2021).

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. To create a top-notch research topic, you will need to be precise and target a specific context with specific variables of interest . In other words, you’ll need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your environmental science dissertation or research project, be sure to check out our private coaching services below, as well as our Research Topic Kickstarter .

Need a helping hand?

quantitative research title about environmental science

You Might Also Like:

Topic Kickstarter: Research topics in education

10 Comments

wafula

research topics on climate change and environment

Masango Dieudonne

I wish to learn things in a more advanced but simple way and with the hopes that I am in the right place.

Olusegunbukola Olubukola janet

Thank so much for the research topics. It really helped

saheed

the guides were really helpful

Nandir Elaine shelbut

Research topics on environmental geology

Blessing

Thanks for the research topics….I need a research topic on Geography

EDDIE NOBUHLE THABETHE

hi I need research questions ideas

jeanne uwamahoro

I want the research on environmental planning and management

Mvuyisi

I want a topic on environmental sustainability

Micah Evelyn Joshua

It good coaching

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

50 Best Environmental Science Research Topics

May 31, 2023

Environmental science is a varied discipline that encompasses a variety of subjects, including ecology, atmospheric science, and geology among others. Professionals within this field can pursue many occupations from lab technicians and agricultural engineers to park rangers and environmental lawyers. However, what unites these careers is their focus on how the natural world and the human world interact and impact the surrounding environment. There is also one other significant commonality among environmental science careers: virtually all of them either engage in or rely on research on environmental science topics to ensure their work is accurate and up to date.

In this post, we’ll outline some of the best environmental science research topics to help you explore disciplines within environmental science and kickstart your own research. If you are considering majoring in environmental science or perhaps just need help brainstorming for a research paper, this post will give you a broad sense of timely environmental science research topics.

What makes a research topic good?

Before we dive into specific environmental science research topics, let’s first cover the basics: what qualities make for a viable research topic. Research is the process of collecting information to make discoveries and reach new conclusions. We often think of research as something that occurs in academic or scientific settings. However, everyone engages in informal research in everyday life, from reading product reviews to investigating statistics for admitted students at prospective colleges . While we all conduct research in our day-to-day lives, formal academic research is necessary to advance discoveries and scholarly discourses. Therefore, in this setting, good research hinges on a topic in which there are unanswered questions or ongoing debates. In other words, meaningful research focuses on topics where you can say something new.

However, identifying an interesting research topic is only the first step in the research process. Research topics tend to be broad in scope. Strong research is dependent on developing a specific research question, meaning the query your project will seek to answer. While there are no comprehensive guidelines for research questions, most scholars agree that research questions should be:

1) Specific

Research questions need to clearly identify and define the focus of your research. Without sufficient detail, your research will likely be too broad or imprecise in focus to yield meaningful insights. For example, you might initially be interested in addressing this question: How should governments address the effects of climate change? While that is a worthwhile question to investigate, it’s not clear enough to facilitate meaningful research. What level of government is this question referring to? And what specific effects of global warming will this research focus on? You would need to revise this question to provide a clearer focus for your research. A revised version of this question might look like this: How can state government officials in Florida best mitigate the effects of sea-level rise?

 2) Narrow

Our interest in a given topic often starts quite broad. However, it is difficult to produce meaningful, thorough research on a broad topic. For that reason, it is important that research questions be narrow in scope, focusing on a specific issue or subtopic. For example, one of the more timely environmental science topics is renewable energy. A student who is just learning about this topic might wish to write a research paper on the following question: Which form of renewable energy is best? However, that would be a difficult question to answer in one paper given the various ways in which an energy source could be “best.” Instead, this student might narrow their focus, assessing renewable energy sources through a more specific lens: Which form of renewable energy is best for job creation?

 3) Complex

As we previously discussed, good research leads to new discoveries. These lines of inquiry typically require a complicated and open-ended research question. A question that can be answered with just a “yes” or “no” (or a quick Google search) is likely indicative of a topic in which additional research is unnecessary (i.e. there is no ongoing debate) or a topic that is not well defined. For example, the following question would likely be too simple for academic research: What is environmental justice? You can look up a definition of environmental justice online. You would need to ask a more complex question to sustain a meaningful research project. Instead, you might conduct research on the following query: Which environmental issue(s) disproportionately impact impoverished communities in the Pacific Northwest? This question is narrower and more specific, while also requiring more complex thought and analysis to answer.

4) Debatable

Again, strong research provides new answers and information, which means that they must be situated within topics or discourses where there is ongoing debate. If a research question can only lead to one natural conclusion, that may indicate that it has already been sufficiently addressed in prior research or that the question is leading. For example, Are invasive species bad? is not a very debatable question (the answer is in the term “invasive species”!). A paper that focused on this question would essentially define and provide examples of invasive species (i.e. information that is already well documented). Instead, a researcher might investigate the effects of a specific invasive species. For example: How have Burmese pythons impacted ecosystems in the Everglades, and what mitigation strategies are most effective to reduce Burmese python populations?

Therefore, research topics, including environmental science topics, are those about which there are ample questions yet to be definitively answered. Taking time to develop a thoughtful research question will provide the necessary focus and structure to facilitate meaningful research.

10 Great Environmental Science Research Topics (With Explanations!)

Now that we have a basic understanding of what qualities can make or break a research topic, we can return to our focus on environmental science topics. Although “great” research topics are somewhat subjective, we believe the following topics provide excellent foundations for research due to ongoing debates in these areas, as well as the urgency of the challenges they seek to address.

1) Climate Change Adaptation and Mitigation

Although climate change is now a well-known concept , there is still much to be learned about how humans can best mitigate and adapt to its effects. Mitigation involves reducing the severity of climate change. However, there are a variety of ways mitigation can occur, from switching to electric vehicles to enforcing carbon taxes on corporations that produce the highest carbon emission levels. Many of these environmental science topics intersect with issues of public policy and economics, making them very nuanced and versatile.

In comparison, climate change adaptation considers how humans can adjust to life in an evolving climate where issues such as food insecurity, floods, droughts, and other severe weather events are more frequent. Research on climate change adaptation is particularly fascinating due to the various levels at which it occurs, from federal down to local governments, to help communities anticipate and adjust to the effects of climate change.

Both climate change mitigation and adaptation represent excellent environmental science research topics as there is still much to be learned to address this issue and its varied effects.

2) Renewable Energy

Renewable energy is another fairly mainstream topic in which there is much to learn and research. Although scientists have identified many forms of sustainable energy, such as wind, solar, and hydroelectric power, questions remain about how to best implement these energy sources. How can politicians, world leaders, and communities advance renewable energy through public policy? What impact will renewable energy have on local and national economies? And how can we minimize the environmental impact of renewable energy technologies? While we have identified alternatives to fossil fuels, questions persist about the best way to utilize these technologies, making renewable energy one of the best environmental science topics to research.

3) Conservation

Conservation is a broad topic within environmental science, focusing on issues such as preserving environments and protecting endangered species. However, conservation efforts are more challenging than ever in the face of a growing world population and climate change. In fact, some scientists theorize that we are currently in the middle of a sixth mass extinction event. While these issues might seem dire, we need scientists to conduct research on conservation efforts for specific species, as well as entire ecosystems, to help combat these challenges and preserve the planet’s biodiversity.

4) Deforestation

The Save the Rainforest movement of the 1980s and 90s introduced many people to the issue of deforestation. Today, the problems associated with deforestation, such as reduced biodiversity and soil erosion, are fairly common knowledge. However, these challenges persist due, in part, to construction and agricultural development projects. While we know the effects of deforestation, it is more difficult to identify and implement feasible solutions. This is particularly true in developing countries where deforestation is often more prevalent due to political, environmental, and economic factors. Environmental science research can help reduce deforestation by identifying strategies to help countries sustainably manage their natural resources.

Environmental Science Topics (Continued)

5) urban ecology.

When we think of “the environment,” our brains often conjure up images of majestic mountain ranges and lush green forests. However, less “natural” environments also warrant study: this is where urban ecology comes in. Urban ecology is the study of how organisms interact with one another and their environment in urban settings. Through urban ecology, researchers can address topics such as how greenspaces in cities can reduce air pollution, or how local governments can adopt more effective waste management practices. As one of the newer environmental science topics, urban ecology represents an exciting research area that can help humans live more sustainably.

6) Environmental Justice

While environmental issues such as climate change impact people on a global scale, not all communities are affected equally. For example, wealthy nations tend to contribute more to greenhouse-gas emissions. However, less developed nations are disproportionately bearing the brunt of climate change . Studies within the field of environmental justice seek to understand how issues such as race, national origin, and income impact the degree to which people experience hardships from environmental issues. Researchers in this field not only document these inequities, but also identify ways in which environmental justice can be achieved. As a result, their work helps communities have access to clean, safe environments in which they can thrive.

7) Water Management

Water is, of course, necessary for life, which is why water management is so important within environmental science research topics. Water management research ensures that water resources are appropriately identified and maintained to meet demand. However, climate change has heightened the need for water management research, due to the occurrence of more severe droughts and wildfires. As a result, water management research is necessary to ensure water is clean and accessible.

8) Pollution and Bioremediation

Another impact of the increase in human population and development is heightened air, water, and soil pollution. Environmental scientists study pollutants to understand how they work and where they originate. Through their research, they can identify solutions to help address pollution, such as bioremediation, which is the use of microorganisms to consume and break down pollutants. Collectively, research on pollution and bioremediation helps us restore environments so they are sufficient for human, animal, and plant life.

9) Disease Ecology

While environmental science topics impact the health of humans, we don’t always think of this discipline as intersecting with medicine. But, believe it or not, they can sometimes overlap! Disease ecology examines how ecological processes and interactions impact disease evolution. For example, malaria is a disease that is highly dependent on ecological variables, such as temperature and precipitation. Both of these factors can help or hinder the breeding of mosquitoes and, therefore, the transmission of malaria. The risk of infectious diseases is likely to increase due to climate change , making disease ecology an important research topic.

10) Ecosystems Ecology

If nothing else, the aforementioned topics and their related debates showcase just how interconnected the world is. None of us live in a vacuum: our environment affects us just as we affect it. That makes ecosystems ecology, which examines how ecosystems operate and interact, an evergreen research topic within environmental science.

40 More Environmental Science Research Topics

Still haven’t stumbled upon the right environmental science research topic? The following ideas may help spark some inspiration:

  • The effects of agricultural land use on biodiversity and ecosystems.
  • The impact of invasive plant species on ecosystems.
  • How wildfires and droughts shape ecosystems.
  • The role of fire ecology in addressing wildfire threats.
  • The impact of coral bleaching on biodiversity.
  • Ways to minimize the environmental impact of clean energies.
  • The effects of climate change on ocean currents and migration patterns of marine species.

Environmental Justice and Public Policy

  • Opportunities to equalize the benefits of greenspaces for impoverished and marginalized communities.
  • The impact of natural disasters on human migration patterns.
  • The role of national parks and nature reserves in human health.
  • How to address inequalities in the impact of air pollution.
  • How to prevent and address the looming climate refugee crisis.
  • Environmentally and economically sustainable alternatives to deforestation in less developed countries.
  • Effects of environmental policies and regulations on impoverished communities.
  • The role of pollutants in endocrine disruption.
  • The effects of climate change on the emergence of infectious diseases.

AP Environmental Science Research Topics (Continued)

Soil science.

  • Effects of climate change on soil erosion.
  • The role of land management in maintaining soil health.
  • Agricultural effects of salinization in coastal areas.
  • The effects of climate change on agriculture.

Urban Ecology

  • How road construction impacts biodiversity and ecosystems.
  • The effects of urbanization and city planning on water cycles.
  • Impacts of noise pollution on human health.
  • The role of city planning in reducing light pollution.

Pollution and Bioremediation

  • The role of bioremediation in removing “forever” chemicals from the environment.
  • Impacts of air pollution on maternal health.
  • How to improve plastic recycling processes.
  • Individual measures to reduce consumption and creation of microplastics.
  • Environmental impacts of and alternatives to fracking.

Environmental Law and Ethics

  • Ethical implications of human intervention in the preservation of endangered species.
  • The efficacy and impact of single-use plastic laws.
  • Effects of religious and cultural values in environmental beliefs.
  • The ethics of climate change policy for future generations.
  • Ethical implications of international environmental regulations for less developed countries.
  • The impact and efficacy of corporate carbon taxes.
  • Ethical and environmental implications of fast fashion.
  • The ethics and efficacy of green consumerism.
  • Impacts of the hospitality and travel industries on pollution and emissions.
  • The ethical implications of greenwashing in marketing.
  • Effects of “Right to Repair” laws on pollution.

Final Thoughts: Environmental Science Research Topics

Environmental science is a diverse and very important area of study that impacts all aspects of life on Earth. If you’ve found a topic you’d like to pursue, it’s time to hit the books (or online databases)! Begin reading broadly on your chosen topic so you can define a specific research question. If you’re unsure where to begin, contact a research librarian who can connect you with pertinent resources. As you familiarize yourself with the discourse surrounding your topic, consider what questions spring to mind. Those questions may represent gaps around which you can craft a research question.

Interested in conducting academic research? Check out the following resources for information on research opportunities and programs:

  • Research Opportunities for High School Students
  • Colleges with the Best Undergraduate Research Programs
  • College Success
  • High School Success

Emily Smith

Emily earned a BA in English and Communication Studies from UNC Chapel Hill and an MA in English from Wake Forest University. While at UNC and Wake Forest, she served as a tutor and graduate assistant in each school’s writing center, where she worked with undergraduate and graduate students from all academic backgrounds. She also worked as an editorial intern for the Wake Forest University Press as well as a visiting lecturer in the Department of English at WFU, and currently works as a writing center director in western North Carolina.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Homeschool Resources
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Outdoor Adventure
  • Private High School Spotlight
  • Research Programs
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Illustration

  • Research Paper Guides
  • Research Paper Topics

Environmental Research Topics: 235 Ideas for Students

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

Environmental Research Topics

Table of contents

Illustration

Use our free Readability checker

Are you looking for environmental research paper topics? With ongoing debates about global warming, air pollution, and other issues, there is no shortage of exciting topics to craft a research paper around. Whether you’re studying ecology, geology, or marine biology, developing the perfect environmental research topic to get your science research assignment off the ground can be challenging. Stop worrying – we got you covered. Continue reading to learn about 235 different ideas on environmental research topics. In this article, we will discuss environmental topics and show you how to choose an interesting research topic for your subject. We will also provide a list of various environmental topics from our research paper services . In addition, we will present you with environmental science research topics, discuss other ideas about the environment for research papers, and offer our final thoughts on these topics for research papers.

What Are Environmental Topics?

Environmental topics provide an analysis of environmental issues and their effect on people, culture, nature, or a particular place, often interdisciplinary, drawing from sciences, politics, economics, sociology, and public policy. Topics about environmental science may include environmental justice, engineering and communication, regulation, economics, and health. Environment research topics may focus on environmental sustainability, impact assessment, management systems, and resources. In addition, these areas for research papers offer a few opportunities to explore our relationship with the environment and consider how human activities influence it through climate change, pollution, or other factors such as natural resource usage as well as biodiversity loss.

What Makes a Good Environmental Research Topic? 

When choosing an environmental research topic, it is essential to consider what makes good environmental topics. Below is an expert list outlining what your topic should be like:

  • It should be interesting and relevant to your study field.
  • It's essential to consider the topic's potential implications on environment-related policies. Think about the possible positive or negative effects this topic could have when implemented in terms of protecting our environment.
  • A good topic should be specific enough to provide a focus for your research paper and allow you to explore a particular issue in depth.
  • The research topic should be feasible and manageable to ensure that you can find the necessary information and resources.
  • Environmental sciences research topics should be current and relevant to ecological developments.

How to Choose Environmental Science Topics?

When choosing research topics for environmental science, it is essential to research the available information and determine its relevance. It all depends on whether the research topic is feasible and has the potential for exploration. Environmental issue topics should be well-defined and interesting to the researcher. The reason is that the researcher should be able to provide solutions or make suggestions on improvement strategies. You can follow the below steps when choosing environmental science topics for research:

Step 1: Identify topics that are relevant to your research context. Step 2: Develop a list of research areas by extracting critical concepts from the available literature.

Step 3: Select interesting and feasible topics by considering the methods available for analysis.

Step 4: Analyze these topics to identify the gaps in current research and formulate questions for further investigation. Step 5: Review the available literature to gain insights about the chosen topic and develop a research proposal.

Step 6: Consult experts in this field to get feedback and refine the proposed research.

Don’t have time for writing your environmental research paper? Count on StudyCrumb. Send us a ‘ write a research paper for me ’ message and get professional assistance in a timely manner. 

List of Environment Research Paper Topics

Environmental topics for a research paper can be overwhelming to navigate due to the vast number of issues you can discuss in your article. To help narrow down your research paper search, below is a list of environmental research topics that include climate change, renewable energy, ecology, pollution, sustainability, endangered species, ecosystems, nature, and water management. You can choose one of them as a guide to writing an excellent essay

Environmental Research Topics on Climate Change

Climate change is one of the most pressing issues that humanity is currently facing due to increased temperature levels. Climate change is amongst the most debated environmental research topics among researchers, policymakers, and governments. Here are critical areas related to climate change that you can use for your environmental science research paper topics:

  • Causes and effects of climate change.
  • Climate change adaptation strategies.
  • Climate change impact on rural communities.
  • Role of renewable energy sources in mitigating climate change.
  • Carbon dioxide emission policies.
  • Global warming and its impact on ocean acidification.
  • Social effects of climate change.
  • Permafrost melting and its implications.
  • Role of international organizations in climate change.
  • Climate change and forest fire: examining the role of climate change on wildfire season, frequency, and burned area.

Environmental Science Research Topics on Renewable Energy

Renewable energy is essential due to its potential to reduce ecological damage from burning fossil fuels and provides valuable topics in environmental science. You can use renewable energy technologies as a cleaner alternative for generating electricity and heating. In addition, renewable energy is crucial for cooling homes and factories in the world. The following are environmental science topics for research paper on renewable energy:

  • Renewable energy types, sources, and their impact on the environment.
  • Economic benefits of renewable energy.
  • Research on new technologies in renewable energy.
  • Role of renewable energy in protecting businesses from legal actions.
  • Hydropower and its role in renewable energy.
  • Chemical batteries for renewable energy storage.
  • Green microgrids in optimizing renewable energy usage.
  • Ocean energy and its effects on the environment.
  • Geothermal drilling and its consequences.
  • Biomass resources and their use in renewable energy.

Environment Research Topics on Ecology

Ecology studies how living organisms interact with each other and their environment. Also, it is an important area of research for understanding how the environment affects the function of various species and ecosystems. It also gives a background for one of the best environment research paper topics. Below are topics for environmental research paper on ecology:

  • Biodiversity conservation strategies.
  • Impact of pollution on ecosystems.
  • Ecological research on saving endangered species from extinction.
  • Role of environment in migrations patterns of animals.
  • Habitat fragmentation effects on the environment.
  • Ecological implications of climate change.
  • Ecology and pest control strategies.
  • Ecological effects of deforestation.
  • Ecology and conservation of marine life.
  • Ecological consequences of urbanization.

Research Topics in Environmental Science About Pollution

Pollution is an issue at the forefront of scientific research. As one of the environmental science paper topics, it offers insights into how pollution destroys the environment and its negative impact on human and animal health. Stated below are hot environmental science research topics on pollution which you can use for your article:

  • Air pollution: causes & effects.
  • Water pollution and its consequences for people and other living organisms.
  • Issue of urban & industrial pollution.
  • Noise pollution and environment-related health risks.
  • Marine plastic pollution in oceans.
  • Radiological waste disposal policies.
  • Nuclear energy, radiation & health impacts.
  • Sustainable waste management solutions.
  • Impact of pollution on biodiversity.
  • Soil pollution and its effects on agriculture.

Environmental Topics for Research Papers on Sustainability

One of the many topics for environmental research papers is sustainability. Sustainability is an important topic to explore, as it involves finding a way for humans to reduce their ecological footprint and ensure that the environment can recover from our activities. Stated below are environmental topics for research paper on sustainability which you can explore:

  • Strategies for sustainable development.
  • Renewable energy sources and their effects.
  • Environmental sustainability and its economic benefits.
  • Sustainable energy sources and their effects.
  • Implications of sustainable agriculture on the environment.
  • Ecological impacts of sustainable forestry.
  • Social implications of renewable energy use.
  • Strategies for mitigating ecological impact from unsustainable development.
  • Psychological effects of ecological awareness on sustainable practices.
  • Influence of ecological sustainability on economic growth.

Environmental Topics to Write About Endangered Species

Endangered species are one of the environmental topics of great importance to research and find solutions for their conservation. Poaching, habitat destruction, and climate change negatively impact endangered species. Also, human activities have put other species at risk of extinction by competing for resources as well as introducing invasive species. Below is a list of cool environment topics to write about endangered species:

  • Endangered species conservation.
  • Causes & effects of habitat fragmentation.
  • Wildlife conservation strategies.
  • Climate change impacts on endangered species.
  • Illegal wildlife trade and trafficking.
  • Marine protected areas for conserving marine life.
  • Ecological restoration and reintroduction programs.
  • Endangered species in developing nations.
  • Human rights & animal welfare laws .
  • Captive breeding for conservation purposes.

Environmental Research Paper Topics on Ecosystems

Ecosystems are fascinating to explore in environmental paper topics because they contain a variety of living organisms and are a complex web of interactions between species, the environment, and humans. The subject provides environmental issues topics for research paper essential in exploring the dynamics of ecosystems and their importance. Below is a list of topics for environmental science research paper:

  • Ecosystem services & their value.
  • Climate change impacts on ecosystems.
  • Hydrological cycle & effects on ecosystems.
  • Ecological restoration & biodiversity conservation.
  • Invasive species & their impact on native species.
  • Biodiversity hotspots: areas of high endemism.
  • Soil degradation & its impact on ecosystems.
  • Sustainable forestry practices.
  • Ecological restoration of wetlands.

Environmental Topics About Nature

Nature is a broad topic that includes ecological conservation, protection, and sustainability issues. Environmental research topics about nature allow us to explore areas that focus on preserving and conserving the environment. Research papers about nature can provide insight into utilizing nature as a resource, both from a practical and ecological aspect. Below is a list of environment topics that you can explore in your essays:

  • Nature conservation & preservation strategies.
  • Climate change effects on natural environments.
  • Natural resource management strategies.
  • Policies for natural resources management.
  • Impact of human development on wildlands.
  • Sustainable use of natural resources.
  • Role of ethics in nature conservation.
  • De-extinction: pros & cons of bringing back extinct species.
  • Protected areas & conservation of rare species.

Environmental Issues Topics on Water Management

Water management is an issue that has a significant impact on the environment. Exploring a topic related to water management can provide experts, among others, with insights into environmental science issues and their implications. When it's time to write your project related to water management, you can explore the following topics for environmental issues:

  • Water pollution & its control.
  • Groundwater management strategies.
  • Climate change impact on water resources.
  • Integrated water resources management.
  • Wetland conservation & restoration projects.
  • Industrial effluents role in water pollution.
  • Desalination technologies for freshwater production.
  • Urbanization impact on groundwater resources.
  • Inland & coastal water management strategies.
  • Wastewater treatment & reuse technologies.

Environmental Science Topics in Different Areas

Environmental science studies ecological processes and their interactions with living organisms. Exploring environmental science related topics can provide valuable insights into environmental science issues, their ecological implications, and conservation efforts. In addition, these topics can also be explored in different areas, providing a comprehensive understanding of how different factors impact the environment. This section delves into various environmental science topics for projects related to law, justice, policy, economics, biology, chemistry, and health science.

Environmental Law Research Topics

Environmental law governs environmental processes and their interactions with living organisms. Delving into environmental law can uncover invaluable information on environment paper topics, ranging from legal matters and their consequences to preservation initiatives. Students can use the following environmental issue topics for research papers for their essays:

  • Climate change liability & lawsuits.
  • Strategies for conservation and protection under environmental law.
  • Consequences of non-compliance with regulations on the environment.
  • Impact of trade agreements on environment protection.
  • Regulatory strategies for hazardous waste disposal.
  • Strategies for enforcement and compliance with environment-related laws.
  • International environment treaties and their implications.
  • Effects of climate change legislation on the environment.
  • Corporate environmental policies and regulations and their effects.
  • Role of law in mitigating environment-related issues.

Environmental Justice Research Topics

Environmental justice seeks to ensure equitable treatment and meaningful involvement of all people in ecological protection, regardless of their race, sex, or economic status. Environment topics related to justice can provide valuable insights into ecological issues and their impacts. Listed below are justice-related Environmental topics to research:

  • Implications of unequal access to resources.
  • Disproportionate impacts of climate change on vulnerable populations.
  • Consequences of marginalization of marginalized communities from environmental processes.
  • Links between poverty and environment degradation.
  • Effects of non-participation in environment-related decision-making.
  • Policies to ensure access to clean air and water.
  • Impact of social inequality on environment protection.
  • Intersection between gender, race, and environment justice.
  • Ecological consequences of corporate negligence of marginalized communities.
  • Disproportionate implications of climate change on vulnerable populations.

Environmental Policy Research Paper Topics

Environmental policy is a set of laws, rules, and regulations created to protect the environment as well as its resources. Studying environment-related policies provides an area for students to explore a range of subjects related to the environment, ranging from local to global. Below are potential environmental sciences research topics for your reference.

  • Environmental policy initiatives' implications on global climate change.
  • Effectiveness of carbon taxes for air pollution control.
  • Land use and development impact on the environment.
  • Water quality in the united states, focusing on natural resource governance.
  • Educational initiative's impact on public opinion and policy outcomes.
  • Social aspects of policy making and implementation on the environment.
  • Promoting sustainability from a global perspective.
  • Potential for justice initiatives in promoting equitable and effective management.
  • Rise of green economy its impact.
  • Environment policies and their potential for success.

Environmental Economics Research Topics

Environmental economics seeks to understand environmental issues from an economic perspective. Examining environmental studies topics can offer insights into ecological conservation and sustainability while connecting protection efforts with economic interests and helping inform policies. The following are creative topics about environmental science related to economics:

  • Economic impacts of regulating the environment.
  • Strategies for environmentally sustainable economic growth.
  • Consequences of non-compliance with environment-related regulations.
  • Environment conservation and protection using economic incentives.
  • Taxes and subsidies and their implications on the environment.
  • Economic implications of climate change legislation.
  • The private sector role in environment conservation and protection.
  • Green finance role in mitigating ecological issues.
  • Economics of pollution control and management.
  • Conservation and protection of the environment in the face of economic interests.

>> Learn more: Economics Research Topics

Environmental Biology Research Topics

Environmental biology is a field of science that focuses on understanding the interactions between living organisms and their environment. It covers environmental biology topics such as biodiversity, conservation, pollution, management, health, and sustainability. The following are environment research paper topics related to biology:

  • Biodiversity conservation in managing the environment.
  • Role of biotechnology in reducing air pollution.
  • Environment degradation and its consequences on wildlife.
  • Role of microorganisms in maintaining soil fertility.
  • Ecological consequences of over-exploitation of natural resources.
  • Habitat fragmentation and its role in species conservation.
  • Education's role in environment conservation.
  • Environment degradation and its effects on food security.
  • Invasive species and their impacts on ecosystem.

Keep in mind that we have a whole blog on biological topics if you need more ideas in this field.

Environmental Chemistry Research Topics

Environmental chemistry research is a complex interdisciplinary field aiming to understand the behavior of a chemical process within an environment. It involves researching the impact of pollutants in the air, soil, water, and other ecological media. Possible research topics about the environment related to this field include:

  • Effect of agricultural chemicals on water systems.
  • Air pollution control strategies and their effectiveness.
  • Climate change impacts on aquatic ecosystems.
  • Sources and implications of persistent organic pollutants.
  • Air quality monitoring for urban areas.
  • Water quality monitoring in coastal areas.
  • Characterization and fate of toxic compounds in soil and groundwater.
  • Impact of hazardous chemical waste on the environment.
  • Monitoring and remediation of contaminated sites.
  • The roles of environmental chemistry in climate change research.

Need more ideas? There is one more blog with  chemistry research topics  on our platform.

Environmental Health Science Research Topics

Environmental health is a diverse field focusing on the natural environment as well as its effects on human health. It is an interdisciplinary field that offers environment topics for research, such as environmental epidemiology, toxicology, and ecology, in addition to risk assessment. Provided below is a list of topics for an environmental science project that is suitable for your research paper:

  • Air pollution effects on human health.
  • Climate change effects on health.
  • Water pollution and public health.
  • Noise pollution effects on well-being.
  • Mental health effects of environment-related toxins.
  • Human health effects of natural disasters.
  • Urbanization's effect on human health.
  • Sustainable development and public health.
  • Role of social media in promoting environmental health and awareness.
  • Biodiversity preservation and its impact on human health.

Other Ideas & Topics About Environment for Research Papers

Ecological crisis is a key issue that has continuously affected planet earth. People are becoming more aware of environmental problems as well as their impact on health, well-being, and quality of life. As such, ecological fields for research are becoming ever more critical. This section will explore interesting environmental topics related to current ecological issues, controversial, interesting topics, easy research questions for projects, as well as unique research areas which students might study. These environmental issue project ideas below will help you develop interesting fields for research papers.

Current Issues in Environmental Science

Current ecological issues are a hot topic that has become increasingly important. They provide outstanding environmental issues to write about due to their impact on the environment and human health. The following are environmental issue topics for paper writing that are currently in discussion:

  • Global warming and how to prevent its impact.
  • Sustainable energy and its role in protecting the environment.
  • Water conservation practices.
  • Renewable energy role in global ecological protection.
  • Carbon footprint and climate change.
  • Ozone layer depletion and its effects on human health.
  • Plastic pollution and its impact.
  • Land degradation and soil erosion.
  • Energy industry activities effects on ecological health.
  • Air pollution and its impact on human health.
  • Deforestation and its consequences.
  • Effect of agricultural practices on ecological health.
  • Overuse and exploitation of natural resources.
  • Industrial waste impact on health.
  • Green technology role in ecological protection.

Controversial Environmental Topics for Research Paper

Environmental controversies constitute a significant challenge facing society today. From climate change to air and water pollution, the effects of human activity on our natural environment are increasingly becoming a focus of public debate and research. Research papers on environmental controversial topics can help inform the public as well as policymakers about the potential impacts of human activities on the environment. The following are examples of environmental controversy topics for research paper:

  • Climate change: is human activity a primary cause of global warming.
  • Deforestation: are current logging practices sustainable in the long term.
  • Air pollution: what are the health impacts of air pollution.
  • Water pollution: how is water pollution impacting biodiversity and ecosystems.
  • Geothermal energy: what potential impacts does geothermal energy extraction have on the environment.
  • Renewable energy: are wind and solar energy carbon-neutral.
  • Arctic drilling: is drilling for oil in the arctic ocean a viable option given current climate conditions.
  • Nuclear power: what health risks are associated with nuclear power plants.
  • Biodiversity loss: what steps can you take to protect biodiversity from human activities.
  • Endangered species: how protecting endangered species can impact conservation efforts and how they live.
  • GMO foods: are genetically modified organisms safe for human consumption? how does GMO food affect humans.
  • Pesticides: how does pesticide use affect our health and the environment.
  • Ocean acidification: how is ocean acidification impacting marine ecosystems.
  • Waste management: what are the most effective ways to manage waste and reduce pollution.
  • Resource exploitation: how does the exploitation of natural resources impact local communities.

Interesting Environmental Research Topics

In the context of environmental subjects, research topics explore the effects of human activities on the environment as well as the potential solutions to the identified problems. In addition to providing insight into ecological protection and conservation, research areas in this category cover social issues related to environmentalism and ecological justice. Below are interesting environmental science topics to consider when looking for a research topic in the future:

  • Effects of environment-related toxins on human health.
  • Climate change effects on coastal habitats.
  • Agricultural activities impacts on the environment.
  • Groundwater contamination and its effects on water quality.
  • Pollution from factories and its impact on the environment.
  • Waste management strategies and their impacts.
  • Consequences of water contamination on local wildlife.
  • Impacts of mining.
  • Deforestation effects on ecosystems and species diversity.
  • Industrial fishing practices effects.
  • Sustainable forestry practices and their impact on ecosystems.
  • Nuclear energy production and its consequences.
  • Reducing emissions from vehicles and their effects on air quality.
  • Landfills implications on the environment.
  • Implications of plastic pollution.

Easy Environmental Research Questions for Projects

When it comes to environmental science topics for project work, there are plenty of easy options. Research projects in this category can explore ecological issues as well as their consequences or potential solutions to these problems. The following is a list of the top fifteen most accessible environment project topics for your research project.

  • Air pollution levels impact on urban areas.
  • Agricultural practices effects on the environment.
  • Developing strategies for sustainable development.
  • Causes of water contamination.
  • Factors contributing to global warming.
  • Natural disasters effects on the environment.
  • Land use changes effects on the environment.
  • Energy consumption impacts on the environment.
  • Climate change effects on the environment.
  • Industrialization and its consequences.
  • Impact of plastic pollution.
  • Health risks associated with air pollution.
  • Deforestation impacts on the environment.
  • Soil erosion and its effects on the environment.
  • Causes and consequences of species extinction.

Unique Environmental Research Topics for Students

As environmental issues become increasingly complex, research fields for students become more varied. Unique environmental research topics for college students can range from local ecological concerns to global ones. The following are fifteen unique environmental science research topics for high school students and college students:

  • Climate change impact on water quality.
  • Acid rain and its effects.
  • Urbanization's effect on biodiversity.
  • Effects of offshore drilling.
  • Ocean acidification and its impact.
  • Impact of privatization on natural resources.
  • Effectiveness of renewable energy sources.
  • Relationship between energy consumption and the environment.
  • Potential impacts regarding genetic engineering on biodiversity.
  • Toxic waste disposal and its impacts.
  • Environment-related policies impact on water quality.
  • Deforestation and its effects on soil quality.
  • Causes and consequences of ozone layer depletion.
  • Relationship between pollution and public health issues.

Final Thoughts on Environmental Topics for Research Papers

This article has provided 235 environmental science research topics for research papers as well as project work that high school and college students can use. Topics range from local issues, such as assessing air pollution levels in an urban area, to global concerns, like examining the ecological effects of plastic pollution. Whether its health risks are associated with air pollution in an environment or the impacts of industrialization, research can help shape your understanding of how to protect as well as preserve our planet. It is up to the students to identify good environmental research topics that are interesting and relevant to them and to delve deeper to understand the earth better.

Illustration

Get in touch with our academic writing service and receive expert help. Let us know your topic, pay for research paper and get an excellent result in no time.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

Social Work Research Topics

  • Search Menu
  • Sign in through your institution
  • Advance articles
  • Editor's Choice
  • Special Collections
  • Author Guidelines
  • Submission Site
  • Open Access
  • Reasons to submit
  • About BioScience
  • Journals Career Network
  • Editorial Board
  • Advertising and Corporate Services
  • Self-Archiving Policy
  • Potentially Offensive Content
  • Terms and Conditions
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Quantitative environmental science.

  • Article contents
  • Figures & tables
  • Supplementary Data

Scott L Collins, Quantitative Environmental Science, BioScience , Volume 71, Issue 12, December 2021, Page 1199, https://doi.org/10.1093/biosci/biab131

  • Permissions Icon Permissions

There is little argument that today's ecologists and conservation biologists are becoming more and more quantitative. A few years ago, I was part of a working group led by Stephanie Hampton that was held at the National Center for Ecological Analysis and Synthesis. The group focused on the training that is needed today for data-intensive environmental research. In a paper from that workshop that was published in BioScience ( https://doi.org/10.1093/biosci/bix025 ), we noted that quantitative skills to perform data-intensive research were generally lacking among most environmental scientists. We argued that, like writing skills, basic math skills should be taught across the curriculum. In addition, to be competitive in an increasingly quantitative world, students and professionals needed to acquire some degree of understanding of data management and processing, analysis, coding, and visualization along with communication skills for presentation and collaboration.

It is somewhat ironic that I was involved in developing these recommendations. I have a confession to make. This will come as no surprise to my colleagues and collaborators (and my graduate students), but my limited quantitative data processing skills have completely eroded over the decades since graduate school, when we ran SAS code on a mainframe computer. And yet, I completely agree that developing quantitative skills needs to be an essential component of undergraduate and graduate training. For example, this year, our National Science Foundation–sponsored Research Experience for Undergraduates (REU) program in dryland ecology held a 2-day Data Carpentries workshop for the REU students (and me). These very well structured and organized workshops provide an excellent entrée into data management and coding in R, the most popular data processing language for ecologists. The students then expanded their coding skills for data analysis and visualization during the rest of the summer session while I proceeded to forget everything I learned.

In this issue of BioScience , Nathan Emery and colleagues ( https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biab107 ) up the game considerably. Here, the authors primarily focus on data science, per se, including the skills noted by Hampton and colleagues, as well as “being able to scale analyses for high-performance computing, write scripts, and use command line interfaces, version control, and high-performance computing clusters.” That is, environmental scientists could be engaged in training the next generation of data scientists. These authors maintain that teaching such “quantitative literacy” requires competent instructors but that most environmental scientists do not have sufficient data skills to incorporate data science into their courses. Herein lies the problem: A large gap exists between computational needs and the skill set of most environmental scientists. Worse yet, many training opportunities are targeted primarily toward early career scientists reducing the likelihood that more senior scientists will gain little more than a rudimentary understanding of these tool skills.

All in all, the needs are obvious, the intentions are well meaning, but the solutions are complicated and challenging. Time during the semester is limited, and with more and more demand to teach writing, math, and data science across the curriculum, instructors will have to gain new skills and willingly adjust content to meet the needs of students entering an increasingly quantitative world.

Month: Total Views:
December 2021 395
January 2022 34
February 2022 23
March 2022 29
April 2022 53
May 2022 19
June 2022 20
July 2022 15
August 2022 24
September 2022 90
October 2022 37
November 2022 55
December 2022 5
January 2023 24
February 2023 21
March 2023 25
April 2023 33
May 2023 12
June 2023 15
July 2023 6
August 2023 23
September 2023 159
October 2023 47
November 2023 25
December 2023 26
January 2024 32
February 2024 38
March 2024 38
April 2024 18
May 2024 13
June 2024 8

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1525-3244
  • Copyright © 2024 American Institute of Biological Sciences
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 06 May 2020

Deforestation and world population sustainability: a quantitative analysis

  • Mauro Bologna 1   na1 &
  • Gerardo Aquino 2 , 3 , 4   na1  

Scientific Reports volume  10 , Article number:  7631 ( 2020 ) Cite this article

193k Accesses

57 Citations

1442 Altmetric

Metrics details

  • Applied mathematics
  • Environmental impact
  • Population dynamics
  • Statistical physics, thermodynamics and nonlinear dynamics

In this paper we afford a quantitative analysis of the sustainability of current world population growth in relation to the parallel deforestation process adopting a statistical point of view. We consider a simplified model based on a stochastic growth process driven by a continuous time random walk, which depicts the technological evolution of human kind, in conjunction with a deterministic generalised logistic model for humans-forest interaction and we evaluate the probability of avoiding the self-destruction of our civilisation. Based on the current resource consumption rates and best estimate of technological rate growth our study shows that we have very low probability, less than 10% in most optimistic estimate, to survive without facing a catastrophic collapse.

Similar content being viewed by others

quantitative research title about environmental science

The qualified prevalence of natural and planted tropical reforestation

quantitative research title about environmental science

Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon

quantitative research title about environmental science

Deforestation in Colombian protected areas increased during post-conflict periods

Introduction.

In the last few decades, the debate on climate change has assumed global importance with consequences on national and global policies. Many factors due to human activity are considered as possible responsible of the observed changes: among these water and air contamination (mostly greenhouse effect) and deforestation are the mostly cited. While the extent of human contribution to the greenhouse effect and temperature changes is still a matter of discussion, the deforestation is an undeniable fact. Indeed before the development of human civilisations, our planet was covered by 60 million square kilometres of forest 1 . As a result of deforestation, less than 40 million square kilometres currently remain 2 . In this paper, we focus on the consequence of indiscriminate deforestation.

Trees’ services to our planet range from carbon storage, oxygen production to soil conservation and water cycle regulation. They support natural and human food systems and provide homes for countless species, including us, through building materials. Trees and forests are our best atmosphere cleaners and, due to the key role they play in the terrestrial ecosystem, it is highly unlikely to imagine the survival of many species, including ours, on Earth without them. In this sense, the debate on climate change will be almost obsolete in case of a global deforestation of the planet. Starting from this almost obvious observation, we investigate the problem of the survival of humanity from a statistical point of view. We model the interaction between forests and humans based on a deterministic logistic-like dynamics, while we assume a stochastic model for the technological development of the human civilisation. The former model has already been applied in similar contexts 3 , 4 while the latter is based on data and model of global energy consumption 5 , 6 used as a proxy for the technological development of a society. This gives solidity to our discussion and we show that, keeping the current rate of deforestation, statistically the probability to survive without facing a catastrophic collapse, is very low. We connect such probability to survive to the capability of humankind to spread and exploit the resources of the full solar system. According to Kardashev scale 7 , 8 , which measures a civilisation’s level of technological advancement based on the amount of energy they are able to use, in order to spread through the solar system we need to be able to harness the energy radiated by the Sun at a rate of ≈4 × 10 26 Watt. Our current energy consumption rate is estimated in ≈10 13 Watt 9 . As showed in the subsections “Statistical Model of technological development” and “Numerical results” of the following section, a successful outcome has a well defined threshold and we conclude that the probability of avoiding a catastrophic collapse is very low, less than 10% in the most optimistic estimate.

Model and Results

Deforestation.

The deforestation of the planet is a fact 2 . Between 2000 and 2012, 2.3 million Km 2 of forests around the world were cut down 10 which amounts to 2 × 10 5 Km 2 per year. At this rate all the forests would disappear approximatively in 100–200 years. Clearly it is unrealistic to imagine that the human society would start to be affected by the deforestation only when the last tree would be cut down. The progressive degradation of the environment due to deforestation would heavily affect human society and consequently the human collapse would start much earlier.

Curiously enough, the current situation of our planet has a lot in common with the deforestation of Easter Island as described in 3 . We therefore use the model introduced in that reference to roughly describe the humans-forest interaction. Admittedly, we are not aiming here for an exact exhaustive model. It is probably impossible to build such a model. What we propose and illustrate in the following sections, is a simplified model which nonetheless allows us to extrapolate the time scales of the processes involved: i.e. the deterministic process describing human population and resource (forest) consumption and the stochastic process defining the economic and technological growth of societies. Adopting the model in 3 (see also 11 ) we have for the humans-forest dynamics

where N represent the world population and R the Earth surface covered by forest. β is a positive constant related to the carrying capacity of the planet for human population, r is the growth rate for humans (estimated as r  ~ 0.01 years −1 ) 12 , a 0 may be identified as the technological parameter measuring the rate at which humans can extract the resources from the environment, as a consequence of their reached technological level. r ’ is the renewability parameter representing the capability of the resources to regenerate, (estimated as r ’ ~ 0.001 years −1 ) 13 , R c the resources carrying capacity that in our case may be identified with the initial 60 million square kilometres of forest. A closer look at this simplified model and at the analogy with Easter Island on which is based, shows nonetheless, strong similarities with our current situation. Like the old inhabitants of Easter Island we too, at least for few more decades, cannot leave the planet. The consumption of the natural resources, in particular the forests, is in competition with our technological level. Higher technological level leads to growing population and higher forest consumption (larger a 0 ) but also to a more effective use of resources. With higher technological level we can in principle develop technical solutions to avoid/prevent the ecological collapse of our planet or, as last chance, to rebuild a civilisation in the extraterrestrial space (see section on the Fermi paradox). The dynamics of our model for humans-forest interaction in Eqs. ( 1 , 2 ), is typically characterised by a growing human population until a maximum is reached after which a rapid disastrous collapse in population occurs before eventually reaching a low population steady state or total extinction. We will use this maximum as a reference for reaching a disastrous condition. We call this point in time the “no-return point” because if the deforestation rate is not changed before this time the human population will not be able to sustain itself and a disastrous collapse or even extinction will occur. As a first approximation 3 , since the capability of the resources to regenerate, r ′, is an order of magnitude smaller than the growing rate for humans, r , we may neglect the first term in the right hand-side of Eq. ( 2 ). Therefore, working in a regime of the exploitation of the resources governed essentially by the deforestation, from Eq. ( 2 ) we can derive the rate of tree extinction as

The actual population of the Earth is N  ~ 7.5 × 10 9 inhabitants with a maximum carrying capacity estimated 14 of N c  ~ 10 10 inhabitants. The forest carrying capacity may be taken as 1 R c  ~ 6 × 10 7 Km 2 while the actual surface of forest is \(R\lesssim 4\times {10}^{7}\) Km 2 . Assuming that β is constant, we may estimate this parameter evaluating the equality N c ( t ) =  βR ( t ) at the time when the forests were intact. Here N c ( t ) is the instantaneous human carrying capacity given by Eq. ( 1 ). We obtain β  ~  N c / R c  ~ 170.

In alternative we may evaluate β using actual data of the population growth 15 and inserting it in Eq. ( 1 ). In this case we obtain a range \(700\lesssim \beta \lesssim 900\) that gives a slightly favourable scenario for the human kind (see below and Fig.  4 ). We stress anyway that this second scenario depends on many factors not least the fact that the period examined in 15 is relatively short. On the contrary β  ~ 170 is based on the accepted value for the maximum human carrying capacity. With respect to the value of parameter a 0 , adopting the data relative to years 2000–2012 of ref. 10 ,we have

The time evolution of system ( 1 ) and ( 2 ) is plotted in Figs.  1 and 2 . We note that in Fig.  1 the numerical value of the maximum of the function N ( t ) is N M  ~ 10 10 estimated as the carrying capacity for the Earth population 14 . Again we have to stress that it is unrealistic to think that the decline of the population in a situation of strong environmental degradation would be a non-chaotic and well-ordered decline, that is also way we take the maximum in population and the time at which occurs as the point of reference for the occurrence of an irreversible catastrophic collapse, namely a ‘no-return’ point.

figure 1

On the left: plot of the solution of Eq. ( 1 ) with the initial condition N 0  = 6 × 10 9 at initial time t  = 2000 A.C. On the right: plot of the solution of Eq. ( 2 ) with the initial condition R 0  = 4 × 10 7 . Here β  = 700 and a 0  = 10 −12 .

figure 2

On the left: plot of the solution of Eq. ( 1 ) with the initial condition N 0  = 6 × 10 9 at initial time t  = 2000 A.C. On the right: plot of the solution of Eq. ( 2 ) with the initial condition R 0  = 4 × 10 7 . Here β  = 170 and a 0  = 10 −12 .

Statistical model of technological development

According to Kardashev scale 7 , 8 , in order to be able to spread through the solar system, a civilisation must be capable to build a Dyson sphere 16 , i.e. a maximal technological exploitation of most the energy from its local star, which in the case of the Earth with the Sun would correspond to an energy consumption of E D  ≈ 4 × 10 26 Watts, we call this value Dyson limit. Our actual energy consumption is estimated in E c  ≈ 10 13 Watts (Statistical Review of World Energy source) 9 . To describe our technological evolution, we may roughly schematise the development as a dichotomous random process

where T is the level of technological development of human civilisation that we can also identify with the energy consumption. α is a constant parameter describing the technological growth rate (i.e. of T ) and ξ ( t ) a random variable with values 0, 1. We consider therefore, based on data of global energy consumption 5 , 6 an exponential growth with fluctuations mainly reflecting changes in global economy. We therefore consider a modulated exponential growth process where the fluctuations in the growth rate are captured by the variable ξ ( t ). This variable switches between values 0, 1 with waiting times between switches distributed with density ψ ( t ). When ξ ( t ) = 0 the growth stops and resumes when ξ switches to ξ ( t ) = 1. If we consider T more strictly as describing the technological development, ξ ( t ) reflects the fact that investments in research can have interruptions as a consequence of alternation of periods of economic growth and crisis. With the following transformation,

differentiating both sides respect to t and using Eq. ( 5 ), we obtain for the transformed variable W

where \(\bar{\xi }(t)=2[\xi (t)-\langle \xi \rangle ]\) and 〈ξ 〉 is the average of ξ ( t ) so that \(\bar{\xi }(t)\) takes the values ±1.

The above equation has been intensively studied, and a general solution for the probability distribution P ( W , t ) generated by a generic waiting time distribution can be found in literature 17 . Knowing the distribution we may evaluate the first passage time distribution in reaching the necessary level of technology to e.g. live in the extraterrestrial space or develop any other way to sustain population of the planet. This characteristic time has to be compared with the time that it will take to reach the no-return point. Knowing the first passage time distribution 18 we will be able to evaluate the probability to survive for our civilisation.

If the dichotomous process is a Poissonian process with rate γ then the correlation function is an exponential, i.e.

and Eq. ( 7 ) generates for the probability density the well known telegrapher’s equation

We note that the approach that we are following is based on the assumption that at random times, exponentially distributed with rate γ , the dichotomous variable \(\bar{\xi }\) changes its value. With this assumption the solution to Eq. ( 9 ) is

where I n ( z ) are the modified Bessel function of the first kind. Transforming back to the variable T we have

where for sake of compactness we set

In Laplace transform we have

The first passage time distribution, in laplace transform, is evaluated as 19

Inverting the Laplace transform we obtain

which is confirmed (see Fig.  3 ) by numerical simulations. The time average to get the point x for the first time is given by

which interestingly is double the time it would take if a pure exponential growth occurred, depends on the ratio between final and initial value of T and is independent of γ . We also stress that this result depends on parameters directly related to the stage of development of the considered civilisation, namely the starting value T 1 , that we assume to be the energy consumption E c of the fully industrialised stage of the civilisation evolution and the final value T , that we assume to be the Dyson limit E D , and the technological growth rate α . For the latter we may, rather optimistically, choose the value α  = 0.345, following the Moore Law 20 (see next section). Using the data above, relative to our planet’s scenario, we obtain the estimate of 〈 t 〉 ≈ 180 years. From Figs.  1 and 2 we see that the estimate for the no-return time are 130 and 22 years for β  = 700 and β  = 170 respectively, with the latter being the most realistic value. In either case, these estimates based on average values, being less than 180 years, already portend not a favourable outcome for avoiding a catastrophic collapse. Nonetheless, in order to estimate the actual probability for avoiding collapse we cannot rely on average values, but we need to evaluate the single trajectories, and count the ones that manage to reach the Dyson limit before the ‘no-return point’. We implement this numerically as explained in the following.

figure 3

(Left) Comparison between theoretical prediction of Eq. ( 15 ) (black curve) and numerical simulation of Eq. ( 3 ) (cyan curve) for γ  = 4 (arbitrary units). (Right) Comparison between theoretical prediction of Eq. ( 15 ) (red curve) and numerical simulation of Eq. ( 3 ) (black curve) for γ  = 1/4 (arbitrary units).

figure 4

(Left panel) Probability p suc of reaching Dyson value before reaching “no-return” point as function of α and a for β  = 170. Parameter a is expressed in Km 2 ys −1 . (Right panel) 2D plot of p suc for a  = 1.5 × 10 −4 Km 2 ys −1 as a function of α . Red line is p suc for β  = 170. Black continuous lines (indistinguishable) are p suc for β  = 300 and 700 respectively (see also Fig.  6 ). Green dashed line indicates the value of α corresponding to Moore’s law.

Numerical results

We run simulations of Eqs. ( 1 ), ( 2 ) and ( 5 ) simultaneously for different values of of parameters a 0 and α for fixed β and we count the number of trajectories that reach Dyson limit before the population level reaches the “no-return point” after which rapid collapse occurs. More precisely, the evolution of T is stochastic due to the dichotomous random process ξ ( t ), so we generate the T ( t ) trajectories and at the same time we follow the evolution of the population and forest density dictated by the dynamics of Eqs. ( 1 ), ( 2 ) 3 until the latter dynamics reaches the no-return point (maximum in population followed by collapse). When this happens, if the trajectory in T ( t ) has reached the Dyson limit we count it as a success, otherwise as failure. This way we determine the probabilities and relative mean times in Figs.  5 , 6 and 7 . Adopting a weak sustainability point of view our model does not specify the technological mechanism by which the successful trajectories are able to find an alternative to forests and avoid collapse, we leave this undefined and link it exclusively and probabilistically to the attainment of the Dyson limit. It is important to notice that we link the technological growth process described by Eq. ( 5 ) to the economic growth and therefore we consider, for both economic and technological growth, a random sequence of growth and stagnation cycles, with mean periods of about 1 and 4 years in accordance with estimates for the driving world economy, i.e. the United States according to the National Bureau of Economic Research 21 .

figure 5

Average time τ (in years) to reach Dyson value before hitting “no-return” point (success, left) and without meeting Dyson value (failure, right) as function of α and a for β  = 170. Plateau region (left panel) where τ  ≥ 50 corresponds to diverging τ , i.e. Dyson value not being reached before hitting “no-return” point and therefore failure. Plateau region at τ  = 0 (right panel), corresponds to failure not occurring, i.e. success. Parameter a is expressed in Km 2 ys −1 .

figure 6

Probability p suc of reaching Dyson value before hitting “no-return” point as function of α and a for β  = 300 (left) and 700 (right). Parameter a is expressed in Km 2 ys −1 .

figure 7

Probability of reaching Dyson value p suc before reaching “no-return” point as function of β and α for a  = 1.5 × 10 −4 Km 2 ys −1 .

In Eq. ( 1 , 2 ) we redefine the variables as N ′ =  N / R W and R ′ =  R / R W with \({R}_{W}\simeq 150\times {10}^{6}\,K{m}^{2}\) the total continental area, and replace parameter a 0 accordingly with a  =  a 0  ×  R W  = 1.5 × 10 −4 Km 2 ys −1 . We run simulations accordingly starting from values \({R{\prime} }_{0}\) and \({N{\prime} }_{0}\) , based respectively on the current forest surface and human population. We take values of a from 10 −5 to 3 × 10 −4 Km 2 ys −1 and for α from 0.01 ys −1 to 4.4 ys −1 . Results are shown in Figs.  4 and 6 . Figure  4 shows a threshold value for the parameter α , the technological growth rate, above which there is a non-zero probability of success. This threshold value increases with the value of the other parameter a . As shown in Fig.  7 this values depends as well on the value of β and higher values of β correspond to a more favourable scenario where the transition to a non-zero probability of success occurs for smaller α , i.e. for smaller, more accessible values, of technological growth rate. More specifically, left panel of Fig.  4 shows that, for the more realistic value β  = 170, a region of parameter values with non-zero probability of avoiding collapse corresponds to values of α larger than 0.5. Even assuming that the technological growth rate be comparable to the value α  = log(2)/2 = 0.345 ys −1 , given by the Moore Law (corresponding to a doubling in size every two years), therefore, it is unlikely in this regime to avoid reaching the the catastrophic ‘no-return point’. When the realistic value of a  = 1.5 × 10 4 Km 2 ys −1 estimated from Eq. ( 4 ), is adopted, in fact, a probability less than 10% is obtained for avoiding collapse with a Moore growth rate, even when adopting the more optimistic scenario corresponding to β  = 700 (black curve in right panel of Fig.  4 ). While an α larger than 1.5 is needed to have a non-zero probability of avoiding collapse when β  = 170 (red curve, same panel). As far as time scales are concerned, right panel of Fig.  5 shows for β  = 170 that even in the range α  > 0.5, corresponding to a non-zero probability of avoiding collapse, collapse is still possible, and when this occurs, the average time to the ‘no-return point’ ranges from 20 to 40 years. Left panel in same figure, shows for the same parameters, that in order to avoid catastrophe, our society has to reach the Dyson’s limit in the same average amount of time of 20–40 years.

In Fig.  7 we show the dependence of the model on the parameter β for a  = 1.5 × 10 −4 .

We run simulations of Eqs. ( 1 ), ( 2 ) and ( 5 ) simultaneously for different values of of parameters a 0 and α depending on β as explained in Methods and Results to generate Figs.  5 , 6 and 7 . Equations ( 1 ), ( 2 ) are integrated via standard Euler method. Eq. ( 5 ) is integrated as well via standard Euler method between the random changes of the variable ξ . The stochastic dichotomous process ξ is generated numerically in the following way: using the random number generator from gsl library we generate the times intervals between the changes of the dichotomous variable ξ  = 0, 1, with an exponential distribution(with mean values of 1 and 4 years respectively), we therefore obtain a time series of 0 and 1 for each trajectory. We then integrate Eq. ( 5 ) in time using this time series and we average over N  = 10000 trajectories. The latter procedure is used to carry out simulations in Figs.  3 and 4 as well in order to evaluate the first passage time probabilities. All simulations are implemented in C++.

Fermi paradox

In this section we briefly discuss a few considerations about the so called Fermi paradox that can be drawn from our model. We may in fact relate the Fermi paradox to the problem of resource consumption and self destruction of a civilisation. The origin of Fermi paradox dates back to a casual conversation about extraterrestrial life that Enrico Fermi had with E. Konopinski, E. Teller and H. York in 1950, during which Fermi asked the famous question: “where is everybody?”, since then become eponymous for the paradox. Starting from the closely related Drake equation 22 , 23 , used to estimate the number of extraterrestrial civilisations in the Milky Way, the debate around this topic has been particularly intense in the past (for a more comprehensive covering we refer to Hart 24 , Freitas 25 and reference therein). Hart’s conclusion is that there are no other advanced or ‘technological’ civilisations in our galaxy as also supported recently by 26 based on a careful reexamination of Drake’s equation. In other words the terrestrial civilisation should be the only one living in the Milk Way. Such conclusions are still debated, but many of Hart’s arguments are undoubtedly still valid while some of them need to be rediscussed or updated. For example, there is also the possibility that avoiding communication might actually be an ‘intelligent’ choice and a possible explanation of the paradox. On several public occasions, in fact, Professor Stephen Hawking suggested human kind should be very cautious about making contact with extraterrestrial life. More precisely when questioned about planet Gliese 832c’s potential for alien life he once said: “One day, we might receive a signal from a planet like this, but we should be wary of answering back”. Human history has in fact been punctuated by clashes between different civilisations and cultures which should serve as caveat. From the relatively soft replacement between Neanderthals and Homo Sapiens (Kolodny 27 ) up to the violent confrontation between native Americans and Europeans, the historical examples of clashes and extinctions of cultures and civilisations have been quite numerous. Looking at human history Hawking’s suggestion appears as a wise warning and we cannot role out the possibility that extraterrestrial societies are following similar advice coming from their best minds.

With the help of new technologies capable of observing extrasolar planetary systems, searching and contacting alien life is becoming a concrete possibility (see for example Grimaldi 28 for a study on the chance of detecting extraterrestrial intelligence), therefore a discussion on the probability of this occurring is an important opportunity to assess also our current situation as a civilisation. Among Hart’s arguments, the self-destruction hypothesis especially needs to be rediscussed at a deeper level. Self-destruction following environmental degradation is becoming more and more an alarming possibility. While violent events, such as global war or natural catastrophic events, are of immediate concern to everyone, a relatively slow consumption of the planetary resources may be not perceived as strongly as a mortal danger for the human civilisation. Modern societies are in fact driven by Economy, and, without giving here a well detailed definition of “economical society”, we may agree that such a kind of society privileges the interest of its components with less or no concern for the whole ecosystem that hosts them (for more details see 29 for a review on Ecological Economics and its criticisms to mainstream Economics). Clear examples of the consequences of this type of societies are the international agreements about Climate Change. The Paris climate agreement 30 , 31 is in fact, just the last example of a weak agreement due to its strong subordination to the economic interests of the single individual countries. In contraposition to this type of society we may have to redefine a different model of society, a “cultural society”, that in some way privileges the interest of the ecosystem above the individual interest of its components, but eventually in accordance with the overall communal interest. This consideration suggests a statistical explanation of Fermi paradox: even if intelligent life forms were very common (in agreement with the mediocrity principle in one of its version 32 : “there is nothing special about the solar system and the planet Earth”) only very few civilisations would be able to reach a sufficient technological level so as to spread in their own solar system before collapsing due to resource consumption.

We are aware that several objections can be raised against this argument and we discuss below the one that we believe to be the most important. The main objection is that we do not know anything about extraterrestrial life. Consequently, we do not know the role that a hypothetical intelligence plays in the ecosystem of the planet. For example not necessarily the planet needs trees (or the equivalent of trees) for its ecosystem. Furthermore the intelligent form of life could be itself the analogous of our trees, so avoiding the problem of the “deforestation” (or its analogous). But if we assume that we are not an exception (mediocrity principle) then independently of the structure of the alien ecosystem, the intelligent life form would exploit every kind of resources, from rocks to organic resources (animal/vegetal/etc), evolving towards a critical situation. Even if we are at the beginning of the extrasolar planetology, we have strong indications that Earth-like planets have the volume magnitude of the order of our planet. In other words, the resources that alien civilisations have at their disposal are, as order of magnitude, the same for all of them, including ourselves. Furthermore the mean time to reach the Dyson limit as derived in Eq.  6 depends only on the ratio between final and initial value of T and therefore would be independent of the size of the planet, if we assume as a proxy for T energy consumption (which scales with the size of the planet), producing a rather general result which can be extended to other civilisations. Along this line of thinking, if we are an exception in the Universe we have a high probability to collapse or become extinct, while if we assume the mediocrity principle we are led to conclude that very few civilisations are able to reach a sufficient technological level so as to spread in their own solar system before the consumption of their planet’s resources triggers a catastrophic population collapse. The mediocrity principle has been questioned (see for example Kukla 33 for a critical discussion about it) but on the other hand the idea that the humankind is in some way “special” in the universe has historically been challenged several times. Starting with the idea of the Earth at the centre of the universe (geocentrism), then of the solar system as centre of the universe (Heliocentrism) and finally our galaxy as centre of the universe. All these beliefs have been denied by the facts. Our discussion, being focused on the resource consumption, shows that whether we assume the mediocrity principle or our “uniqueness” as an intelligent species in the universe, the conclusion does not change. Giving a very broad meaning to the concept of cultural civilisation as a civilisation not strongly ruled by economy, we suggest for avoiding collapse 34 that only civilisations capable of such a switch from an economical society to a sort of “cultural” society in a timely manner, may survive. This discussion leads us to the conclusion that, even assuming the mediocrity principle, the answer to “Where is everybody?” could be a lugubrious “(almost) everyone is dead”.

Conclusions

In conclusion our model shows that a catastrophic collapse in human population, due to resource consumption, is the most likely scenario of the dynamical evolution based on current parameters. Adopting a combined deterministic and stochastic model we conclude from a statistical point of view that the probability that our civilisation survives itself is less than 10% in the most optimistic scenario. Calculations show that, maintaining the actual rate of population growth and resource consumption, in particular forest consumption, we have a few decades left before an irreversible collapse of our civilisation (see Fig.  5 ). Making the situation even worse, we stress once again that it is unrealistic to think that the decline of the population in a situation of strong environmental degradation would be a non-chaotic and well-ordered decline. This consideration leads to an even shorter remaining time. Admittedly, in our analysis, we assume parameters such as population growth and deforestation rate in our model as constant. This is a rough approximation which allows us to predict future scenarios based on current conditions. Nonetheless the resulting mean-times for a catastrophic outcome to occur, which are of the order of 2–4 decades (see Fig.  5 ), make this approximation acceptable, as it is hard to imagine, in absence of very strong collective efforts, big changes of these parameters to occur in such time scale. This interval of time seems to be out of our reach and incompatible with the actual rate of the resource consumption on Earth, although some fluctuations around this trend are possible 35 not only due to unforeseen effects of climate change but also to desirable human-driven reforestation. This scenario offers as well a plausible additional explanation to the fact that no signals from other civilisations are detected. In fact according to Eq. ( 16 ) the mean time to reach Dyson sphere depends on the ratio of the technological level T and therefore, assuming energy consumption (which scales with the size of the planet) as a proxy for T , such ratio is approximately independent of the size of the planet. Based on this observation and on the mediocrity principle, one could extend the results shown in this paper, and conclude that a generic civilisation has approximatively two centuries starting from its fully developed industrial age to reach the capability to spread through its own solar system. In fact, giving a very broad meaning to the concept of cultural civilisation as a civilisation not strongly ruled by economy, we suggest that only civilisations capable of a switch from an economical society to a sort of “cultural” society in a timely manner, may survive.

Waring, R. H. & Running, S. W. Forest Ecosystems: Analysis at Multiple Scales (Academic Press, 2007).

The State of the World’s Forests 2018. Forest Pathways to Sustainable Development, Food and Agriculture Organization of the United Nations Rome (2018).

Bologna, M. & Flores, J. C. A simple mathematical model of society collapse applied to Easter Island. EPL 81 , 48006 (2008).

Article   ADS   MathSciNet   Google Scholar  

Bologna, M., Chandia, K. J. & Flores, J. C. A non-linear mathematical model for a three species ecosystem: Hippos in Lake Edward. Journal of Theoretical Biology 389 , 83 (2016).

Article   MathSciNet   Google Scholar  

U.S. Energy Information Administration (EIA), https://www.eia.gov/international/data/world .

Vaclav, S. Energy transitions: history, requirements, prospects (ABC-CLIO, 2010).

Kardashev, N. Transmission of Information by Extraterrestrial civilisations. Soviet Astronomy 8 , 217 (1964).

ADS   Google Scholar  

Kardashev, N. On the Inevitability and the Possible Structures of Supercivilisations, The search for extraterrestrial life: Recent developments; Proceedings of the Symposium p. 497–504 (1985).

Statistical Review of World Energy source (2018).

NASA source https://svs.gsfc.nasa.gov/11393 .

Frank, A., Carroll-Nellenback, J., Alberti, M. & Kleidon, A. The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback. Astrobiology 18 , 503–517 (2018).

Article   ADS   CAS   Google Scholar  

Fort, J. & Mendez, V. Time-Delayed Theory of the Neolithic Transition in Europe. Phys. Rev. Lett. 82 , 867 (1999).

Molles, M. Ecology: Concepts and Applications (McGraw-Hill Higher Education, 1999).

Wilson, E. O. The Future of Life (Knopf, 2002).

Bongaarts, J. Human population growth and the demographic transition. Phil. Trans. R. Soc. B 364 , 2985–2990 (2009).

Article   Google Scholar  

Dyson, F. J. Search for Artificial Stellar Sources of Infra-Red Radiation. Science 131 , 1667–1668 (1960).

Bologna, M., Ascolani, G. & Grigolini, P. Density approach to ballistic anomalous diffusion: An exact analytical treatment. J. Math. Phys. 51 , 043303 (2010).

Hanggi, P. & Talkner, P. First-passage time problems for non-Markovian processes. Phys. Rev. A 32 , 1934 (1985).

Article   ADS   MathSciNet   CAS   Google Scholar  

Weiss G. H. Aspects and Applications of the Random Walk , (North Holland, 1994).

Moore, G. E. Cramming more components onto integrated circuits. Electronics 38 , 114 (1965).

Google Scholar  

Business Cycle Expansion and Contractions, https://web.archive.org/web/20090310081706/ ; http://www.nber.org/cycles.

Drake, F. The radio search for intelligent extraterrestrial life. In Current Aspects of Exobiology 323–345 (Pergamon Press, New York, 1965).

Burchell, M. J. W(h)ither the Drake equation? Intern. J. Astrobiology 5 , 243–250 (2006).

Article   ADS   Google Scholar  

Hart, M. H. Explanation for the Absence of Extraterrestrials on Earth. Quarterly Journal of the Royal Astronomical Society 16 , 128–135 (1975).

Freitas, R. A. There is no Fermi Paradox. Icarus 62 , 518–520 (1985).

Engler, J. O. & von Wehrden, H. Where is everybody?? An empirical appraisal of occurrence, prevalence and sustainability of technological species in the Universe. International Journal of Astrobiology 18 , 495–501 (2019).

Kolodny, O. & Feldman, M. W. A parsimonious neutral model suggests Neanderthal replacement was determined by migration and random species drift. Nature Comm. 8 , 1040 (2017).

Grimaldi, C. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way. Sci. Rep. 7 , 46273 (2017).

Daly, H. E. & Farley, J. Ecological Economics, Second Edition: Principles and Applications )Island Press, 2011).

Paris Agreement, United Nations Framework Convention on Climate Change (UNFCCC) https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf.

Tol, R. S. J. The structure of the climate debate. Energy Policy 104 , 431–438 (2017).

Rood, R. T. & Trefil, S. J. Are we alone? The possibility of extraterrestrial civilisations (Scribner, 1981).

Kukla, A. Extraterrestrials A Philosophical Perspective (Lexington Books, 2010).

Strunz, S., Marselle, M. & Schröter, M. Leaving the “sustainability or collapse” narrative behind. Sustainability Science 14 , 1717–1728 (2019).

Song, X.-P. et al . Global land change from 1982 to 2016. Nature 560 , 639–643 (2018).

Download references

Acknowledgements

M.B. and G.A. acknowledge Phy. C.A. for logistical support.

Author information

These authors contributed equally: Mauro Bologna and Gerardo Aquino.

Authors and Affiliations

Departamento de Ingeniería Eléctrica-Electrónica, Universidad de Tarapacá, Arica, Chile

Mauro Bologna

The Alan Turing Institute, London, UK

Gerardo Aquino

University of Surrey, Guildford, UK

Goldsmiths, University of London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

M.B. and G.A. equally contributed and reviewed the manuscript.

Corresponding author

Correspondence to Gerardo Aquino .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Bologna, M., Aquino, G. Deforestation and world population sustainability: a quantitative analysis. Sci Rep 10 , 7631 (2020). https://doi.org/10.1038/s41598-020-63657-6

Download citation

Received : 20 November 2019

Accepted : 02 April 2020

Published : 06 May 2020

DOI : https://doi.org/10.1038/s41598-020-63657-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Plant composition, water resources and built structures influence bird diversity: a case study in a high andean city with homogeneous soundscape.

  • Patricia Zaedy Curipaco Quinto
  • Harold Rusbelth Quispe-Melgar
  • Omar Siguas Robles

Urban Ecosystems (2024)

Mathematical model to study the impact of anthropogenic activities on forest biomass and forest-dependent wildlife population

  • Ibrahim M. Fanuel
  • Silas Mirau
  • Francis Moyo

International Journal of Dynamics and Control (2024)

Future-proofing ecosystem restoration through enhancing adaptive capacity

  • Marina Frietsch
  • Jacqueline Loos
  • Joern Fischer

Communications Biology (2023)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

quantitative research title about environmental science

open search

  • Current Students
  • Faculty / Staff
  • Paying for College
  • Alumni Services
  • Program Finder
  • Affordable, Flexible, Accessible
  • Distance Education
  • All Online Courses & Degrees
  • Baccalaureate Online
  • Graduate Online
  • Start Dates
  • Admissions, Costs & Aid
  • Partnerships
  • Faculty and Contacts
  • Academic and Career Support
  • Student Testimonials
  • Distance Education Advantage
  • In-Person Education
  • Sustainable Ventures
  • Careers & Outcomes
  • About Unity
  • Office of the President
  • Announcing Our Evolution
  • Sustainable Achievements & Initiatives
  • Reinventing College
  • Extended Reality (XR)
  • Commencement
  • Give to Unity Environmental University
  • Institutional Communications
  • Unity Environmental University News

Unity Environmental University

The Importance of Quantitative Methods in Environmental Science and Sustainability Measurement

March 23, 2017

Home  /  News  /  The Importance of Quantitative Methods in Environmental Science and Sustainability Measurement

Environmental science is a continuously evolving academic field that seeks to help us gain a progressively better understanding of our natural world and develop effective solutions for important sustainability issues. Challenging the status quo to address environmental problems requires solid evidence to persuade decision makers of the necessity of change. This makes quantitative literacy essential for sustainability professionals to interpret scientific data and implement management procedures.

With our world facing increasingly complex environmental issues, quantitative techniques reduce the numerous uncertainties by providing a reliable representation of reality, enabling us to proceed toward potential solutions with greater confidence. A wide range of statistical tools and approaches are now available for sustainability scientists to measure environmental indicators and inform responsible policy-making.

How Quantitative Methods Provide Context for Environmental Science and Sustainability

Environmental science brings a transdisciplinary systems approach to analyzing sustainability concerns. As the intrinsic concept of sustainability can be interpreted according to diverse values and definitions, quantitative methods based on rigorous scientific research are crucial for establishing an evidence-based consensus on pertinent issues that provide a foundation for meaningful policy implementation.

Statistical evidence is often necessary to defend conservation conclusions

Descriptive and inferential statistical evidence provides a strong foundation for defending conclusions to various audiences. Applying an appropriate range of data sources and quantitative models can produce logical inferences to estimate the probability of future results while quantifying the extent of uncertainty, limits, and future research needs. Given the urgency of environmental issues like climate change and the prevalence of skeptics, effectively summarizing and communicating irrefutable results of complex statistical analyses can make the difference in developing successful courses of action.

How an M.S. in Sustainability Integrates Quantitative Methods

In an M.S. in Sustainability , such as natural resource management, students acquire the fundamental quantitative literacy to correctly evaluate and interpret ecological literature. They learn how to design effective studies, integrate quantitative models, and apply advanced statistical approaches.

For example, Bayesian methods are used to enable scientists to systematically factor in various forms of prior evidence while observing how conclusions change with the new information. This allows a quicker reaction to emerging conditions. Bayesian statistical inference has successfully been applied in conservation biology, addressing many of the problems inherent in standard hypothesis testing while including important factors causing uncertainty. It provides an alternate framework for decision-making that permits more options and better conclusions.

Statistical Models Mitigate Environmental Science and Sustainability Uncertainty

The principles of statistics and probability, multivariate analysis, and spatial analysis methods provide a common ground for scientists, engineers, and other environmental professionals to communicate with each other. Despite the sophistication of the latest mathematical models, the enormous complexity of interactions between environmental systems introduces some level of uncertainty into all predictions.

The quantitative methods acquired in a Sustainability Master’s online combine information from various sources to create more informed predictions, while importantly providing the scientific reasoning to accurately describe what is known and what is not. This quantification of uncertainty makes it impossible to dismiss climate and conservation models, therefore providing a clearer impetus for change.

Interested in pursuing a rewarding career in environmental science and sustainability ?

Contact Unity College to learn about our online Master’s Professional Science programs.

apply here

Start Your Journey

get more info

Looking for Answers

Get More Info

© Unity Environmental University 2024. “America’s Environmental University.™”

Privacy Overview

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Environ Res Public Health

Logo of ijerph

The Health Effects of Climate Change: A Survey of Recent Quantitative Research

Margherita grasso.

1 Budgeting and Planning, Enel Engineering and Innovation, S.p.A., 20121 Milan, Italy; Email: moc.liamg@ossargalletsatirehgram

Matteo Manera

2 Department of Statistics, University of Milan-Bicocca, 20126 Milan, Italy

3 Fondazione Eni Enrico Mattei, 20136 Milan, Italy

Aline Chiabai

4 BC3 Basque Centre for Climate Change, E-48008 Bilbao, Spain; Email: [email protected] (A.C.); [email protected] (A.M.)

Anil Markandya

5 Department of Economics, University of Bath, BA2 7AY Bath, UK

In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

JEL Classification: C2; C3; I1; Q54

1. Introduction: Some Facts and Opinions on the Relationship Between Climate Change and Health

In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. According to [ 1 ], some 2.5 million people die every year from non-infectious diseases directly attributable to environmental factors such as air pollution, extreme weather events, stressful conditions in the workplace, exposure to chemicals such as lead, and exposure to environmental tobacco smoke.

In particular, lead exposure has been estimated to account for 2% of the ischaemic heart disease burden and 3% of the cerebrovascular disease burden [ 2 ]. Exposure to outdoor air pollution accounted for approximately 2% of the global cardiopulmonary disease burden [ 2 ]. In the U.S., about 12% of the ischaemic heart disease burden has been related to occupation, for the age group 20–69 years. This estimate has been based on the specific risk factors of job control, noise, shift work and environmental tobacco smoke at work [ 3 ]. In Finland, it has been estimated that occupational risks account for 17% of the deaths from ischaemic heart disease, and 11% of those from stroke [ 4 ]. In Denmark, the occurrence of cardiovascular diseases is related to the type of occupation. Specifically, a reduction of 16% (22%) in the cardiovascular disease burden can be attributable to men (women) with non-sedentary occupations [ 5 ]. Changes in climatic conditions and climate variability represent a further factor which can affect human health directly or indirectly via changes in biological and ecological processes that influence the transmission of several infectious diseases [ 2 ]. Direct effects on human health include, for example, thermal stresses due to increased frequency and intensity heat waves (cardiovascular and respiratory diseases, heat exhaustion), and deaths and injuries due to extreme weather events. Indirect effects include malnutrition, food-, water- and vector-borne diseases, together with increased morbidity due to the combined effect of exposure to high temperature and air pollution.

Empirical evidence suggests that malaria varies seasonally in highly endemic areas and is probably the vector-borne disease more sensitive to long-run climate changes. For example, the comparison of monthly climate and malaria data in highland Kakamega, Western Kenya, highlights a close association between malaria transmission and monthly maximum temperature anomalies over the years 1997–2000 [ 6 ]. The effects of soil moisture to determine the causal links between weather and malaria transmission has been studied by [ 7 ]. For the most common mosquito species Anopheles gambiae , the soil moisture predicts up to 45% and 56% of the variability of human biting rate and entomological inoculation rate, respectively. The link between malaria and extreme climatic events has long been the subject of study on the Indian subcontinent as well as in various other countries. Early in the twentieth century, the Punjab region experienced periodic epidemics of malaria. Excessive monsoon rainfall and the resultant high humidity were clearly identified as major factors in the occurrence of malaria epidemics. More recently, time-series analyses have shown that the risk of a malaria epidemic increased approximately five-fold during the year following an El Niño event in the Indian region [ 8 ]. Furthermore, a strong correlation is found between both annual rainfall and the number of rainy days and the incidence of malaria in most districts of Rajasthan and in some districts in Gujarat [ 9 ]. The relationship between reported malaria cases and El Niño has also been documented for Venezuela, where, during the whole twentieth century, malaria rates increased on average by over one-third in the year immediately following an El Niño event [ 10 ].

However, it is widely acknowledged that climate changes are only one of many important factors influencing the incidence of infectious diseases and that their effects are very unlikely to be independent of socio-demographic factors (e.g., human migrations, transportation, nutrition), or of environmental influences (e.g., deforestation, agricultural development, water projects, urbanization). In particular, it has been estimated that about 42% of the global malaria burden, or half a million deaths annually, could be prevented by environmental management, although this proportion varies significantly across different regions: it is 36% in the Eastern Mediterranean Region; 40% in the Western Pacific Region; 42% in sub-Saharan Africa; 42% in the South-East Asia Region; 50% in the European Region; 64% in the Region of the Americas [ 1 ].

Nevertheless, in the past fifteen years a large amount of research on the effects of climate change on human health has addressed two fundamental questions [ 2 ]. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate statistical models which are capable to predict the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this work is to review the most relevant contributions which have directly tackled those questions, with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases. Specific attention will be drawn on the methodological aspects of each study, which will be classified, according to the type of quantitative model considered, in the following categories [ 11 ]:

  • Time series models , among which ARMAX (Auto Regressive Moving Average with exogenous variables) models, ECM (Error Correction Models), and non-parametric forecasting models such as single and double exponential smoothing, Holt-Winters methods (additive, no seasonal, multiplicative);
  • Panel data and spatial models , such as fixed and random effects models, dynamic panel data models, spatial lag and spatial error models;
  • Non-statistical approaches , such as Integrated Assessment Models (IAMs), Computable General Equilibrium (CGE) models, Global Trade Analysis Project Models (GTAP), and Comparative Risk Assessments (CRA).

Since many different disciplines and approaches are involved, a broader view is necessary, in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; Early Warning Systems and infectious diseases; evaluating the risks to human health which are related to climate change; the implications of modifiable environmental risk factors.

The paper is organized as follows: Section 2 presents the most popular classes of quantitative models used to analyze the relationship between climate variations and the diffusion of non-infectious and infectious diseases. In particular this section briefly illustrates the different methodologies and discusses, for each approach, several examples from the relevant empirical literature. Section 3 integrates the results from multiple quantitative studies which are focused on malaria. Section 4 presents a critical summary of the recent literature related to the following more general aspects of the impacts of climate changes on human health. Section 5 concludes.

2. Quantitative Models for the Relationship Between Climate Change and Health: Methods and Examples

Quantitative models are important tools for analysing the complex relationship between climate changes and human health, since they allow researchers to link crucial climate variables (such as temperature and precipitations) at global or regional levels to the occurrence of the disease under scrutiny [ 2 ]. In this section, we briefly describe each approach, and for each approach we discuss several examples from the relevant empirical literature.

2.1. Time Series Models

2.1.1. methods.

In applied statistics, the standard model that takes into account the random nature and time correlations of the variable under study (e.g., the occurrence of a particular disease), Y t , t = 1,…, T , is the Auto Regressive Moving Average model, where the autoregressive component is of order p and the moving average part is of order q , or ARMA( p , q ) (see, among others, [ 12 ]):

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i001.jpg

In order to describe the relationship between the occurrence of a specific disease and climatic variables more accurately, an Auto Regressive Moving Average model with exogenous variables can be used. The notation ARMAX( p , q , b ) refers to a model with p autoregressive terms, q moving average terms and b exogenous variables:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i002.jpg

A number of variations of ARMA models are commonly used in statistics, according to whether the series Y t and X r,t are non-stationary, given the presence of deterministic and/or stochastic trends, or exhibit seasonalities.

The relationship between two non-stationary variables Y t and X t , both integrated and cointegrated, can be represented via an Error Correction Model (ECM), with possible asymmetric terms:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i003.jpg

where Δ X t = X t − X t− 1 ; Δ X + = Δ X if Δ X ≥ 0 and Δ X + = 0 otherwise; Δ X − = Δ X if Δ X < 0 and Δ X − = 0 otherwise; ECT t are the residuals from the cointegrating regression of Y t on X t ; ECT + = ECT if ECT ≥ 0 and ECT + = 0 otherwise; ECT − = ECT if ECT < 0 and ECT − = 0 otherwise. Parameters α + and α − are the short-run marginal effects, while parameters λ + and λ − are the speeds of adjustment of Y t from t− 1 to t to the equilibrium, once a disequilibrium has occurred in t− 1.

Many economic, socio-demographic, environmental and climatic variables exhibit seasonal behaviour. As in the case of trends, the time series literature distinguishes between deterministic and stochastic seasonality. A non-stationary time series Y t , observed at S equally spaced time intervals per year, is said to be seasonally integrated of order d , or SI( d ), if Δ S d Y t is a stationary and invertible ARMA process of the type described by equations (3) [ 13 ]. The simplest seasonal model for non-stationary variables is the seasonal random walk (SRW): Y t = Y t-S + ε t . The SRW model can be generalized to the seasonal integrated ARMA (SARIMA) model:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i004.jpg

where the AR polynomial α ( L ) and the MA polynomial θ ( L ) in the lag operator L have all roots outside the unit circle, i.e. , the AR part of equation (4) is stationary, while the MA part of equation (4) is invertible.

Exponential smoothing is a method of adaptive forecasting, which is useful in cases where the number of observations on which to base the forecasts is limited. The basic idea underlying exponential smoothing is that forecasts adjust on the basis of past forecast errors [ 14 ]. If Y t , t = 1,..., T , is the time series to be predicted and Y t * is the smoothed series, Y t * is calculated according to the following recursive model:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i005.jpg

where 0 < α ≤ 1 is the smoothing factor. The smaller is α, the smoother is Y t . Model (5) is referred to as single smoothing, and is appropriate for stationary, non-seasonal time series. By repeated substitutions in (5), Y t * can be written as a weighted average of past values of Y t , where the weights (1 −α ) t decline exponentially with time. The out-of-sample forecasts from single smoothing are constant for all observations and are given by: Y T+h * = Y T , for all h > 0, h = T + 1,…, T + H . The method known as double smoothing applies single smoothing twice and is appropriate for time series which are non-stationary for the presence of a linear deterministic trend.

A method which is suitable for a time series with a linear trend and additive seasonal variations is the so-called additive Holt-Winters. The smoothed series is given by:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i006.jpg

where a t and b t are the permanent component and trend parameters, while c T+h represent the additive seasonal factors.

If Y t is a time series characterized by the presence of a linear trend and multiplicative seasonal variability, the multiplicative Holt-Winters model is typically applied. In this case, the smoothed series is given by the following modified version of (6):

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i007.jpg

2.1.2. Examples

Time series models have been used extensively for predicting the evolution pattern of diseases, and more specifically to assess the relationship between environmental exposure and mortality or morbidity over long time periods. [ 15 ] found that the dynamics of the cutaneous leishmaniasis are strongly associated with climate indicators, such as temperature and ENSO, and that linear models can provide satisfactory forecasting of the incidence of the disease. These predictions are a necessary step for quantifying the potential impact of climate on health and the related costs. In the field of climate based Early Warning Systems (EWS), which are used to predict the occurrence of epidemics of infectious diseases, [ 16 ] review and compare linear and non-linear models for forecasting seasonal time series of diseases. Using American cutaneous leishmaniasis, as an example, the models are evaluated based on the predictive R 2 for forecasting the data “out-of-fit”. Seasonal autoregressive models that incorporate climatic covariates are found to provide the best forecasting performance. Additionally, a simulation exercise shows that the relationship of the disease time series with the climatic covariates is strong and consistent for the seasonal autoregressive (SAR) modeling approach. While the autoregressive part of the model is not significant, the exogenous forcing due to climate is always statistically significant. Prediction accuracy can vary from 50% to over 80% for diseases burdens at time scales of one year or shorter. Other time series studies in the context of cutaneous leishmaniasis include [ 17 , 18 ]. A different strategy for predicting the pattern of diseases is given by [ 19 ], who investigate the dynamics of diarrhea, acute respiratory infection (ARI), and malaria in Niono, Mali. The authors observe that these disease time-series often (i) suffer from non-stationarity; (ii) exhibit large inter-annual plus seasonal fluctuations; (iii) require disease-specific tailoring of forecasting methods. To accommodate these characteristics they suggest using a non-parametric technique, the multiplicative Holt-Winters method (MHW). This is a recursive method that can be described as follows: (i) based on past information and pseudo-parameters initialization the MHW produces point forecasts (the method also decompose the time series into level, trend (rate of change), seasonal, and approximately serially uncorrelated residual TS components); (ii) point forecasts are recursively revised through residuals bootstrap to produce median forecasts and their 95% confidence interval bounds; (iii) these median forecasts and contemporaneous time-series information is used by the MHW program to update the forecasts and prediction interval bounds. Step (i) also decompose the time series (TS) into level, trend (rate of change), seasonal, and approximately serially uncorrelated residual TS components.

Using longitudinal data from 01/1996 to 06/2004 the authors find that the MHW produces reasonably accurate median 2- and 3-month horizon forecasts for the considered non-stationary time-series, i.e. , 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors about 25%. In their experiments the Mean Absolute Percentage Error (MAPE) is smaller for the forecasts of monthly consultation rates for malaria and ARI, while the accuracy decreases for diarrhea’s consultation rates.

Other time series approaches have been used to explore the issue of extreme climatic events’ impacts. [ 20 ] perform time series analyses to estimate the temperature-mortality association for eleven eastern U.S. cities from 1973 to 1994. By using log-linear models for time series data the authors find the following evidence: (i) current and recent days’ temperature are the weather factor most strongly predictive of mortality; (ii) a threshold temperature appears to exist below which mortality tends to decrease as temperature increases from the coldest days, and above which mortality risk increases as temperature increases; (iii) a strong association exists between mortality associated to extreme temperatures and latitude.

[ 21 ] use time-series models to analyze mortality due to thermal stresses during heat waves compared to total mortality occurring throughout the whole summer, to understand what fraction of the total impact is attributable to temperature extremes. In the same context, [ 22 ] estimate the heat-related mortality due to climate change in Europe, using time-series data and taking into account the threshold temperature where mortality is lowest. The findings suggest that European population have adapted to average summer temperatures, and might adapt to future higher temperatures with only a minor increase in heat-related deaths. These studies suggest that the process of acclimatization should be taken into account when assessing the impact of heat waves and increased temperatures.

Finally we mention [ 23 ], who present a time-series analysis of the relationship between El Niño/Southern Oscillation (ENSO) and the prevalence of cholera in Bangladesh using mortality data recorded on a monthly period from 1893 to 1940. Singular spectrum analysis (SSA) is used to capture discontinuous dynamics and trends. The technique allows to decompose the irregular dynamics of the time series and to isolate the inter-annual variability of the data. Their findings suggest that ENSO is responsible for more than 70% of the dynamics of the disease, this relationship being discontinuous in time. In the context of cholera, other time series studies include [ 24 , 25 , 26 , 27 , 28 ]. In particular it is worth mentioning the study by [ 26 ], who propose a threshold model, applied to water-borne diseases and cholera, to treat the transition between different states in a more gradual way and to capture the change in the variance of disease.

2.2. Panel Data and Spatial Models

2.2.1. methods.

Many economic, socio-demographic, environmental and climatic variables are observed through time ( t = 1,..., T ) and across “individuals” ( i = 1,..., N ), where the notion of “individual” used in the present context is broad enough to embrace real individuals, households, countries, geographical areas, firms, economic sectors, etc . A variable observed through time and across individuals, Y it , is said to have a panel data structure [ 29 ].

Modern econometrics and statistics distinguish between two broad classes of static models for panel data, fixed effect and random effects models. Although both approaches share the same idea of taking into account one major feature of panel data, namely individual heterogeneity, they provide radically different ways of modelling individual variability. The fixed effects model assumes that individual heterogeneity can be represented via individual-specific constants, as:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i008.jpg

where u it is a classical error term. This model is appropriate if individual heterogeneity is systematically distributed among individuals, i.e. , the sample of data is non-random. Since individual heterogeneity is represented by the additional regressors α i , correlation between explanatory variables X it and individual heterogeneity is allowed for in the fixed effects model. On the contrary, the random effects model assumes that individual heterogeneity is randomly distributed among individuals, hence it has to be represented as a classical random normal variable µ i , which contributes to a composite error term, v it :

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i009.jpg

OLS is consistent for the parameters β r , r = 2,…, K , of model (8), while GLS is consistent for the parameters in model (9). Since individual heterogeneity is part of the model error term in equation (9), correlation between individual heterogeneity and the explanatory variables X it would lead to inconsistent estimates.

In applied statistics the autocorrelated structure of many time series variables is widely acknowledged. The simplest way to allow for data autocorrelation is to extend model (9) to include the lagged dependent variable as an additional regressor (dynamic panel data models). Unfortunately, the lagged dependent variable is correlated with the composite error term v it , leading to inconsistency of the LS estimators. This inconsistency is still present if the variables involved in model (9) are transformed in first differences, in order to eliminate the random effects μ i :

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i010.jpg

Equation (10) is typically estimated with instrumental variables techniques (e.g., Anderson-Hsiao and Arellano-Bond estimators).

When sample data have a natural location component, two problems arise, namely spatial heterogeneity and spatial dependence (see [ 30 ]; for an introduction to spatial econometric models see, among others, [ 31 , 32 ]). Spatial heterogeneity (SH) refers to the fact that many phenomena lead to structural instability over space, in the form of different response functions or systematically varying parameters. SH induces familiar problems such as heteroskedastic random coefficient variation and switching regressions. Spatial dependence (SD) occurs when sample data observations exhibit correlation with reference to points or location in space. Formally, one observation associated with a location i depends on other observations at locations j , j ≠ i , that is Y i = f (Y j ) , i = 1,…, N ; j ≠ i . In general, the dependence is among several observations, as the index i can take on any value from i = 1, ... , N .

Two reasons are commonly given to explain SD. First, data collection of observations associated with spatial units might reflect measurement errors. Second, the spatial dimension of socio-demographic, economic or regional activities (e.g., environment and climatic variables) may be an important aspect of a modelling problem.

In spatial data analysis the spatial structure of the observations is made explicit by means of spatial weight matrices. The elements of the weight matrix are non-stochastic and exogenous to the model and derived from alternative criteria, such as contiguity (neighbouring units should exhibit a higher degree of spatial dependence than units located far apart), Cartesian space (physical distance matters), non-geographic factors (economic/social proximity).

The presence of spatial correlation between the units of observations can be detected by means of tests which capture the extent to which similarity in values matches with similarity in locations. In this context, positive spatial correlation exists if likewise values tend to cluster in space; negative correlation exists if the locations are surrounded by neighbour with dissimilar values; zero spatial correlation implies that it is not possible to identify a specific spatial pattern of values. This situation is also described as spatial randomness, as values observed at a location do not depend on values observed at neighbouring locations.

2.2.2. Examples

A subject that is contiguous but relevant for the impact of climate on health and its ethical implications is the relationship between pollution and income. The authors of [ 33 ] used and extended spatial econometric analysis to investigate whether an inverse-U relationship exists between various pollution indicators and county per capita GDP in the U.S. (the so-called environmental Kuznets curve, EKC). The authors emphasize that the EKC is conditional on various structural features (e.g., technology, education, political practices) of each locality. Moreover, they expand the analysis including ethnic diversity among the covariates and by controlling for spatial dependence. Their initial results support the existence of the EKC relationship. The inclusion of spatial autocorrelation is found to raise the turning point of the curve. Another result is that more ethical diverse counties are more polluted. Finally, incorporating a cubic term for income, they find that the toxicity index eventually increases again as income continues to rise.

In [ 34 ] the patterns of diseases and mortality rates are analyzed in the framework of the literature on epidemiologic transition, as defined by [ 35 ]. The authors provide a cause-of-death analysis for WHO data on mortality by age and sex and recorded cause from 1950 to 2002, and use models for compositional data. Specific causes of death are modeled as a function of the overall level of mortality and the income per capita . The findings suggest that considerable variations in cause-of-death patterns across countries and over time are coupled with empirical regularities. Indeed, as mortality levels decline the composition of the causes changes. The effects of mortality declines are more noticeable for children and young adults (with a shift from Group 1 diseases—infectious and parasitic diseases, respiratory infections, maternal conditions, etc .—to Group 2 diseases—diabetes, endocrine disorders, etc .—and Group 3—injuries—in proportions that vary according to age and sex). In older adults, the composition of mortality remains stable while deaths shift to older ages. Moreover, in many societies, “protracted and polarized” epidemiologic transitions reflect heterogeneity of the social strata.

2.3. Non-Statistical Approaches

2.3.1. general equilibrium models: methods and examples.

A CGE model is composed by a system of linear and non-linear equations which describe consumers’ and producers’ behaviors which are explicitly derived as optimal solutions of utility maximization and cost minimization problems. The system of equations is numerically solved to simulate market equilibrium (see, among others, [ 36 ]). CGE models have been used to estimate the welfare costs (or benefits) of health impacts of climate variables.

The authors of [ 37 ] conduct first a meta-analysis of aggregated effects of a change in temperature on mortality for total, cardiovascular and respiratory mortality. Second, he combines these effects with projections of changes in baseline climate conditions of 20 cities, according to climate change scenarios of three General Circulation Models (GCMs). The author finds that for most of the cities included, global climate change is likely to lead to a reduction in mortality rates due to decreasing winter mortality. This effect is most pronounced for cardiovascular mortality in elderly people in cities which experience temperate or cold climates at present.

Similar to [ 37 ], [ 38 ] considers GCM (General Circulation Models) based studies’ results to estimate (and evaluate in monetary terms) the impacts of climate change for a wide range of market and non-market sectors (agriculture, forestry, water, energy, costal zones and ecosystems, as well as mortality due to vector-borne diseases, heat stress and cold stress). The author estimates that small increases in temperatures would bring some benefits (mainly for the developed world). The conclusion on the global impact of climate change depends crucially on the weights used to aggregate the regional values. Using the simple sum the benefits amount to 2% of GDP. Considering globally averaged prices to value non-markets goods the impact is a 3% reduction of global income. According to equity (ratio of global to regional per capita income) -weighted results the world impact is null. Global impacts become negative beyond 1 °C increase in temperatures.

In [ 39 ] its authors make use of the General Equilibrium Model (GTAP) in an unconventional approach in order to analyze how health impacts would affect the general economy. Their aim is to estimate the indirect costs on the economic system derived from the health effects as a result of an increase of one degree Celsius in global mean temperature. They estimate the impact on labor productivity and health care expenditures for both the public system and private households, as well as the impacts on GDP. Six health outcomes are considered (cardiovascular disease, respiratory disease, diarrhea, malaria, dengue and schistosomiasis). The impacts on health are taken from different studies (see, for instance, [ 38 , 40 , 41 ]) that estimate the change in mortality due to an increase of one degree in the global mean temperature. Using data of GTAP model of [ 42 , 43 ] (see the paper and the references therein for a more accurate description) the authors find an increase in mortality and morbidity due to respiratory illness, malaria, dengue fever and diarrhea, with increased costs of illness. In contrast, they evidence a decrease in cardiovascular diseases and schistosomiasis, which dominate the overall impact, leading to a negative trend in the additional expenditure for health care in all countries.

Although the results of [ 39 ] go on the same direction (but with stronger evidence) as the conclusions of earlier papers (e.g., [ 37 ] and [ 38 ]), they are controversial. Indeed, [ 44 ] challenges [ 38 , 39 , 45 ]. The authors argue that the results obtained by [ 39 ] are biased due to the omission of extreme weather events and human adaptation to gradual temperatures changes. The main concern is about the use of average temperatures instead of increased variability in local temperatures, which results in an increase of the frequency of extreme hot or cold. Another important issue to be considered in this context is related to the population expected to support heat- and cold-related stresses. In [ 39 ], as well as in [ 38 ], heat stresses are assumed to impact the urban population only, while cold-related diseases are expected to occur in both the rural and urban population. This assumption might have a strong influence on final results and needs therefore to be further analyzed, especially when considering countries with large rural population [ 46 ].

As seen above, [ 39 , 44 ] find contrasting evidence, which is partly related to whether or not extreme climatic events are considered. This suggests that what projected changes in temperatures are considered has a big impact on the results. A review of main findings of the economic literature on climate effects is given as a part of the research of [ 47 ].

2.3.2. Comparative Risk Analyses: Methods and Examples

The comparative risk assessment (CRA) approach has been developed in the late 90s by the WHO with aim of estimating the contribution of that different public health factors make to the global burden of diseases. The CRA is based on the following data for each risk factor: (i) the current and predicted risk distribution of the risk factor; (ii) the exposure-response relationship of the associated disease; (iii) the total burden of diseases (e.g., DALYs) lost to the various diseases associated with the risk factor. The proportion of the total burden of a disease that is attributable to e specific risk factor is called Impact Fraction and is defined as:

An external file that holds a picture, illustration, etc.
Object name is ijerph-09-01523-i011.jpg

Using CRA, which integrate climate models and the evaluation of the health effects of rising temperatures, [ 48 ] estimate the potential gains that would derive from combined preventive measures. The authors provide an estimation of the joint effects of 20 selected leading risk factors in 14 epidemiological sub-regions (as a proxy of the world). Among the major risk factors they include environmental risks (such as unsafe water, sanitation and hygiene) that are correlated with the climate. As a tool for the estimation they define the potential impact factor (PIF) as the reduction in population diseases burden or mortality that would occur if the current exposures to multiple risk factors were reduced to an alternative exposures distribution (see the article for a formal definition of the PIF). They find that globally 47% of premature deaths and 39% of total disease burden in 2000 resulted from the joint effects of the considered risk factors. Their results suggest that joint actions would result in a massive reduction of death due to the burden of diseases. Moreover, they find evidence that reducing multiple major risk factors would decrease some of the differences between regions.

In [ 2 ] projections of relative risk attributable to climate change under alternative exposure scenarios using global climate models and CRA are provided. The results are presented for broad WHO geographical regions, and include malaria, diarrhea, malnutrition and heat-related stresses. Referring to malaria, the empirical findings suggest that small temperature increases can significantly affect transmission of the disease. More specifically, temperature increases of 2–3 °C would increase the number of people who are at risk of malaria by around 3–5%. Moreover, the seasonal duration of malaria would increase in many endemic areas. The study presents some limitations which should be investigated in future research in order to estimate the burden of disease. The issue of improved access to water and sanitation systems is not considered, nor is the level of economic development, although these are important factors influencing the population vulnerability. A second limitation is that the correlation between different health outcomes is not evaluated. This is particularly important for malnutrition which is strictly related to occurrence of other diseases. Finally, the model for malaria relates climate variables to geographical areas at risk (and population), instead of disease incidence, and estimates the impacts related to changes in the average temperature while not accounting for climate variability.

The authors of [ 49 ] consider the estimates provided by [ 50 ] and remark that to generate consistent estimates the models need to incorporate: geographical variation in the vulnerability to climate; future changes in the disease rates due to factors other than climate (e.g., decreases rates of infectious diseases due to technological advances); assumptions on a country’s ability to control a disease such as malaria, dengue fever or diarrheal disease; uncertainties around the exposure-response relationship. Moreover, they claim that, even controlling for the above mentioned (potentially positive or negative) issues, no model can take into account the possibility of irreversibility or plausible low probability events with potentially high impact on human health. As a main consequence, threshold health effects to regulate “tolerable” amount of climate change cannot be identified. Nevertheless, they conclude that more research is needed to reduce the potential impacts of climate change on human health, including the development of improved methods for CRA.

Finally, [ 51 ] relate water-borne diseases with temperature in 14 world regions, showing that the disease incidence tends to increase with temperature. They use multiple regression analysis and include the effect of water supply and sanitation coverage, annual average temperature and per capita GDP, taking into account different IPCC climate scenarios. The results show large regional differences in the impacts.

3. Integrating Results from Multiple Quantitative Studies: The Case of Malaria

The increases in temperatures may cause changes in the environment with increased risk of malaria transmission. The correlation between the disease and the temperature increase is however complex and multifaceted as it requires a comprehension of how local vectors can spread and transmit. The study of [ 52 ] represents a good preliminary discussion of the issue. [ 53 ] review a number of studies focusing on the role of climate change in the geographical distributional patterns of malaria. We report here below a review of the main studies existing in this context by classifying them in the three categories of time series, panel data and non-statistical methods.

3.1. Time Series Studies

Various time series studies explore the relationship between average temperatures, mid-night temperatures, temperatures in conjunction with rainfall rates, as well as November and December temperatures on malaria. In particular, [ 54 , 55 , 56 , 57 , 58 ] find a significant impact of climate on malaria in Zimbabwe, the Debre Zeit sector of Ethiopia, Rwanda, and the Northwest Frontier Province in Pakistan, respectively. December temperatures coupled with humidity are used by [ 58 ] to predict incidence rates of malaria in Pakistan. Other studies consider temperature and deforestation in Tanzania [ 59 ] and Kenya [ 60 ]. According to the latter study forest clearing has been the cause for increases in malaria transmission. Kenya is considered also by [ 7 ]. The main findings of the article are that soil moisture correlates with the human-biting rate of mosquito vectors with a two-week delay. Also soil moisture and entomological inoculation rate are related, with infective parasites taking a six-week time to develop [ 61 ].

It has been hypothesized that increasing temperatures could be part of the reason why malaria can now survive at higher altitudes. Many other confounding factors, however, could be causing the increase in malaria in these areas [ 62 ]. The dynamics of the geographical spread of malaria are analyzed by [ 63 ]. The authors focus on the most important malaria species for humans, Plasmodium falciparum and Plasmodium vivax , whose range is limited at high altitudes by low temperatures. They investigate whether global warming could drive the geographical spread of the disease and produce an increase in incidence at higher-altitude sites. They use data for four high-altitude sites in East Africa from 1950 to 2006. A nonparametric analysis that decomposes the variability in the data into different components is performed and reveals that the dominant signal in three of the sites and the subdominant signal in the fourth one correspond to a warming trend. To assess the biological significance of this trend, the authors drive a dynamical model for the population dynamics of the mosquito vector with the temperature time series and the corresponding detrended versions. This approach suggests that the observed temperature changes would be significantly amplified by the mosquito population dynamics with a difference in the biological response at least one order of magnitude larger than that in the environmental variable. By using parametric models they also find the existence of significant (linear) trends.

In [ 64 ] whether the reemergence of malaria in Western Kenya could be attributed to changes in meteorological conditions is investigated. The existence of trends in a continuous 30-year monthly malaria incidence dataset (1966–1995) is tested for. Malaria incidence increased significantly during the 1966–1995 period. In contrast, no aspect of climate is found to have changed significantly-neither the temperature extremes (maximum and minimum) nor the periods when meteorological data were transformed into months when malaria transmission is possible. Therefore, the authors conclude that climate changes have not caused the highland malaria resurgence in Western Kenya. They suggest that two other factors may have influenced the increase in malaria hospitalizations: an increase in malaria severity indicated by an increased case-fatality rate (from 1.3% in the 1960s to 6% in the 1990s) that is most likely linked to chloroquine resistance. Secondly, travel to and from the Lake Victoria region by a minority of the tea estate workers also exerts an upward influence on malaria transmission in Kericho, Kenya, since such travel increases the numbers of workers asymptomatically carrying gametocytes, which infect.

3.2. Cross-Section and Panel Data Studies

The spatial variation of malaria is analyzed by [ 65 ], who examine malaria-related hospital admissions and in-hospital mortalities among children in Africa. The authors apply spatial regression models to quantify the spatial variation of the two outcomes. Using pediatric ward register data from Zomba district, Malawi, between 2002 and 2003, as a case study, they develop two spatial models. The first is a Poisson model applied to analyze hospitalization and minimum mortality rates, with age and sex as covariates. The second is a logistic model applied to individual level data to analyze case-fatality rate, adjusting for individual covariates. The results show that rates of hospital admission and in-hospital mortality decrease with age. Case fatality rate is associated with distance from the hospital, age, wet season, and increases if the patient is referred to the hospital from the primary health facilities. Furthermore, death rates are high on the first day, followed by relatively low rates as the length of hospital stay increases. The outcomes show substantial spatial heterogeneity, which may be attributable to the varying determinants of malaria risk, health services availability and accessibility, and health seeking behavior. Moreover, the increased risk of mortality of referred children may imply inadequate care being available. The authors suggest that reducing the burden of malaria requires integrated strategies that encompass availability of adequate care at primary facilities, introduce home or community case management and encouraging early referral. Those interventions would be needed to interrupt malaria transmission.

In a subsequent article [ 66 ], the author extends the analysis of [ 65 ] to profile spatial variation of malaria risk and analyze possible association of disease risk with environmental factors at sub-district level in northern Malawi. Using the same data on malaria incidence the author compares Bayesian Poisson regression models assuming different spatial structures. For each model he adjusts for environmental covariates initially identified through bivariate non-spatial models. The model with both spatially structured and unstructured heterogeneity is shown to provide the best fit, based on models comparison criteria. Malaria incidence appears to be associated with altitude (measured in meters above sea level), precipitation (measured in millimeters per annum) and soil water holding capacity. The risk increases with altitude (relative risk (RR): 1.092, with a 95% confidence interval (CI) between 1.020 and 1.169) and precipitation (RR: 1.031, with a 95% CI between 0.950 and 1.120). At medium level of soil water holding capacity relative to low level, the risk is reduced (RR: 0.521, with a 95% CI between 0.298 and 0.912), while at high level of soil water holding capacity relative to low level the risk is raised (RR: 1.649, with a 95% CI between 1.041 and 2.612). Compared to the commonly used standardized incidence ratios, the model-based approach appears to provide homogenous and easy to interpret risk estimates. Generally, the smoothed estimates show less spatial variation in risk, with slightly higher estimates of malaria risk (RR > 1) in low-lying areas mostly situated along the lakeshore regions, in particular in Karonga and Nkhatabay districts, and low risk (RR < 1) in high-lying areas along Nyika plateau and Vwaza highlands. The results suggest that the spatial variation in malaria risk in the region is a combination of various environmental factors, both observed and unobserved. The results also identify what are the areas of increased risk, where further epidemiological investigations could be carried out.

Another interesting study in this context is the one of [ 67 ], who project malaria transmission in new geographical regions in India. According to this study malaria is expected to move from central regions towards South Western and Northern Regions by 2050. Some studies about malaria also project a shift in the duration of transmission windows which might increase or decrease according to the different climatic conditions of a region (see, among others, [ 67 , 68 ]).

The work described in [ 69 ] considers the progressive rise in the incidence of malaria over the last decades in African highlands. The phenomenon is largely a consequence of agroforestry development, and is exacerbated by scarce health resources. Moreover, in these areas, where the pattern of malaria is unstable, the epidemic may be precipitated by relative subtle climate changes and therefore requires special monitoring. The authors use mathematical models to identify epidemic-prone regions in highlands Africa, and to quantify the difference expected to occur as a consequence of projected global climate change. To make estimates about the areas that are vulnerable to epidemic outbreaks of malaria, they use data and models from Geographic Information Systems (GIS) (computerized mapping systems) and Remotely Sensed (RS) imagery data from earth-orbiting satellites. Correlations among variables are found. However, the authors observe that since correlation doesn’t imply causality these results are not conclusive and require further investigation. To model the dynamics in highlands malaria in relation to climate change they use an integrated system, scenario-based approach (Integrated Assessment Models; see, among others, [ 45 , 47 ]). Evidence is found that the direct influence of climate may contribute to malaria risk. However, this effect cannot be claimed to be the most important determinant of malaria transmission. The effects of temperature on mosquito development, feeding frequency, longevity and incubation period are estimated. The model is linked to baseline climatology data from 1931 to 1960 and uses integrated techniques to generate climate scenarios. Their findings suggest that is not possible to prove that any single factor has caused the outbreaks in African highland. Projected climate changes are likely to modify the epidemics in the regions: 260–320 million more people are projected to be affected by malaria by 2080 as a consequence of new transmission zones [ 70 ].

3.3. Non-Statistical Studies: General Equilibrium

The authors of [ 37 ] propose a system-oriented analysis, based on scenarios of projected temperature, and that considers joint effects (rather than phenomena in isolation) to assess the future impacts of climate change. In his analysis he examines the effects of climate change on vector-borne diseases, on thermal-related mortality, and the effects of increasing ultra-violet levels due to ozone depletion on skin cancer. Considering malaria the author defines the basic reproduction rate in an area (R 0 ) as the vector capacity multiplied by the duration of the infectious period in humans. The factors that are involved in the calculation of (R 0 ) include: the mosquitoes/people ratio, the number of mosquito bites per person per day, the probability that an infected mosquito infects a human, the chances that a mosquito becomes infected during a blood meal, the incubation period, and the daily survival probability of the mosquito. Indirect factors include: the availability of breeding sites which is related to precipitation, human population density, human population migration, the feeding habits of the mosquitoes, the presence of other animals on which the mosquitoes feed, human exposure (which can be affected by the use of bed nets or other interventions), temperature the immunological and nutritional status of the population, the effectiveness of medical treatment, natural enemies of the mosquitoes, and control efforts. This model is further complicated by algorithms that predict changing genetic adaptations in the parasite and vector that lead to resistance. Based on this approach, evidence is found that the number of people in developing countries likely to be at risk of malaria infection will increase by 5–15% because of climate change, depending on which the Global Circulation Model (GCM) and climate change scenario is used. The areas that are expected to have the most increase in malaria transmission are ones at the fringes of transmission. Unless they are able to use effective control strategies, these regions have low levels of immunity and are likely to experience epidemics [ 37 ].

In general, there is considerable uncertainty about the magnitude of the overall impact of malaria. While some models project a net increase in the population exposed to malaria (and in the incidence rate) due to climate change [ 82 ], others have found only minor changes in malaria distribution [ 2 ]. This uncertainty is due to the complex dynamics underlying the transmission of this vector and to other important factors such as the socio-demographic and environmental factors which are playing a substantial role in the transmission mechanism.

4. Using Quantitative Results Toward Managing Human Health

The previous section has concentrated on recent quantitative contributions on the relationship between climate and health. However, since this issue involves different disciplines and approaches, a broader view becomes necessary, in order to provide a better understanding of the interactions between climate and health. In this section we present a critical summary of the recent literature related to the following more general aspects of the impacts of climate changes on human health: the economics of climate change; how to manage the health effects of climate change; Early Warning Systems and infectious diseases.

4.1. The Economics of Climate Change

Reference [ 47 ] is a key reference giving a complete framework of the economics of climate change. The book reviews scientific and geological basis of the studies on climate change’s impacts. For example, it lists the possible impacts associated to 1, 2 up to 5 °C of temperature increase. Restricting to the effects for health, these include a larger (and increasing exponentially with temperatures) number of deaths caused by diseases such as malaria, diarrhea and malnutrition at lower latitudes (Africa); and a reduction in winter deaths at higher latitudes (Northern Europe, USA). The author considers the ethical implications of the disproportionate distributions of impacts across regions and populations, and provides a series of policy recommendations. For the problem at stake, the chapter that concerns the economic analyses of climate change costs is specifically relevant.

The measurement of costs of climate (measured on income/consumption, health and environment dimensions) is a challenging task. The main reasons being that this kind of analyses involves the use of variables and projections that are highly uncertain (however, according to the author, omitting some of uncertain but potentially most damaging impacts has caused some early attempts to underestimate the costs of climate change). Moreover, the effects can be seen only over several decades and with a long-time delay. Based on a review of the studies of the costs of climate warming, the author concludes that the Integrated Assessment Models (IAM) constitute a valid methodological foundation; however first-round IAM studies consider the effects of climate at temperatures that are now likely to be exceeded. The mixed evidence found by different authors crucially relies on what increase in temperature is considered. Indeed, there is a common evidence that the warming above 3–4 °C would reduce global welfare, and that and temperatures increases of 5–6 °C are estimated to result in a 5%–10% reduction in global GDP relative to the “no-climate-change” scenario.

In the methodological framework of IAM, [ 47 ] estimates the BAU (business as usual) costs of climate: he estimates the costs to be equivalent to a per capita reduction of income of 5% at a minimum. This proportion could increase to 11% by considering the direct effects on environment and health (“non-market” impacts [ 83 ]). In case it turns out to be true that the responsiveness of climate system to greenhouse gas emissions is larger than what previously thought, the costs would increase even more. Finally there is a noticeable disproportion in the distribution of the burden of climate change impact among developing and rich countries. As regards health, the major impacts are in Sub-Saharan Africa and Asia, which are already facing a considerable burden of disease. Developing countries are actually tackling with more constraints. On the one hand they are expected to face high population growth with increased risk of poor housing, hunger and infectious diseases due to poor water and sanitation systems. On the other hand, their adaptive capacity is limited in terms of financial and infrastructural resources, health care system, poor health status of the population and poor capacity of collecting and analyzing data. Additional problems are related to income inequalities, migration and conflicts. As stated in [ 84 ], priorities for research should include the development of methods to provide more quantitative assessments of climate change impacts in low- and middle-income countries.

4.2. Managing the Health Effects of Climate Change

Global warming is expected to increasingly impact food security, water availability and quality, and exact a toll on public health, spurring chronic disease, malaria prevalence, and cardiovascular and respiratory diseases.

Current weather conditions heavily impact the health of poor people in developing nations, and climate change has a multiplying effect. A changing climate further affects the essential ingredients of maintaining good health: clean air and water, sufficient food and adequate shelter. A warmer and more variable climate leads to higher levels of some air pollutants and increases transmission of diseases through unclean water and contaminated food. It compromises agricultural production in some of the least developed countries, and it increases the hazards of weather-related disasters.

Therefore global warming, together with the changes in food and water supplies it causes, can indirectly spurs increases in such diseases as malnutrition, diarrhea, cardiovascular and respiratory diseases, and water borne and insect-transmitted diseases. This is especially worrisome because a massive number of people are already impacted by these diseases. Also, there is an inter-relationship among these health outcomes. For example malnutrition is linked with malaria and diarrhea which can cause significant weight loss in affected children when accompanied with food scarcity. Malaria and diarrhea can be both cause and effect of malnutrition.

“Managing the Health Effects of Climate Change” is a wide multidisciplinary overview of the major threats - both direct and indirect - to global health from climate change, carried out by [ 85 ]. Effects of predicted climate change are described by the authors and actions to be undertaken are discussed.

The starting point of the analysis is that during this century, the Earth’s average surface temperature rises are likely to exceed the safe threshold of 2 °C above preindustrial average temperatures. Rises will be greater at higher latitudes, with medium-risk scenarios predicting 2–3 °C rises on average by 2090 and 4–5 °C rises in northern Canada, Greenland, and Siberia.

Health effects of the predicted climate change will cause vector-borne diseases to expand their reach and death tolls, especially among elderly people. Moreover, the indirect effects of climate change on water, food security, and extreme climatic events are likely to have even bigger effects on global health.

An integrated and multidisciplinary approach to reduce the adverse health effects of climate change requires at least three levels of action. First, policies must be adopted to reduce carbon emissions and to increase carbon biosequestration, and thereby slow down global warming and eventually stabilize temperatures. Second, further research is needed to understand clearly the links between climate change and disease occurrence. Third, appropriate public health systems should be put into place to deal with adverse outcomes in terms of efficient and cost-effective adaptation measures at local, and national levels.

Reference [ 85 ] considers what the main obstacles to effective adaptation might be, focusing on six aspects that connect climate change to adverse health outcomes: changing patterns of disease and mortality, food, water and sanitation, shelter and human settlements, extreme events, and population and migration. Each is considered in relation to five key challenges to form a policy response framework: informational, poverty and equity-related, technological, sociopolitical, and institutional.

Our capacity to respond to the negative health effects of climate change relies on the generation of reliable, relevant, and up-to-date information. Strengthening informational, technological, and scientific capacity within developing countries is crucial for the success of a new public health movement. This capacity building will help to keep vulnerability to a minimum and build resilience in local, regional, and national infrastructures.

Few comprehensive assessments on the effect of climate change on health have been completed in low-income and middle-income countries, and none in Africa. The report endorses the [ 86 ] recommendations for full documentation of the risks to health and differences in vulnerability within and between populations; development of health protection strategies; identification of health co-benefits of actions to reduce greenhouse gas emissions; development of ways to support decisions and systems to predict the effect of climate change; and estimation of the financial costs of action and inaction. Policy responses to the public health implications of climate change will have to be formulated in conditions of uncertainty, which will exist about the scale and timing of the effects, as well as their nature, location, and intensity.

A key challenge is to improve surveillance and primary health information systems in the poorest countries, and to share the knowledge and adaptation strategies of local communities on a wide scale. Essential data need to include region-specific projections of changes in health-related exposures, projections of health outcomes under different future emissions and adaptation scenarios, crop yields, food prices, measures of household food security, local hydrological and climate data, estimates of the vulnerability of human settlements (e.g., in urban slums or communities close to coastal areas), risk factors, and response options for extreme climatic events, vulnerability to migration as a result of sea-level changes or storms, and key health, nutrition, and demographic indicators by country and locality.

In the view of the commission the key factors to management of health effects of climate change will be: reduction of poverty and inequity in health; incentives for the development of new technologies and application of existing technologies in developing countries; change in lifestyle; improved coordination and accountability of global governance; increase advocacy to reduce climate change trough public health awareness.

4.3. Developing Diseases and Early Warning Systems

Considerable research is currently being conducted to elucidate linkages between climate and epidemics. Of the 14 diseases meeting the defined criteria for potential for climate-informed Early Warning Systems EWS, few (African trypanosomiasis, leishmaniasis and yellow fever) are not associated with some sort of EWS research or development activity. For the West Nile virus, an operational and effective warning system has been developed which relies solely on detection of viral activity and it remains unclear whether the addition of climatic predictors would improve the predictive accuracy or lead-time. For the remaining diseases (cholera, malaria, meningitis, dengue, Japanese encephalitis, St Louis encephalitis, Rift Valley Fever, Murray Valley encephalitis, Ross River virus and influenza), research projects have demonstrated a temporal link between climatic factors and variations in disease rates. In some of these cases the power of climatic predictors to predict epidemics has been tested.

The research reviewed in this report demonstrates that climate information can be used to improve epidemic prediction, and therefore has the potential to improve disease control. In order to make full use of this resource, however, it is necessary to carry out further operational development. The true value of climate-based early warning systems will come when they are fully integrated as one component in well-supported systems for infectious disease surveillance and response.

5. Conclusions

This paper has focused on the critical evaluation of recent quantitative assessments of health risks associated with climate change. The main contribution of our paper is to offer an integrated vision of the main scientific conclusions on the effects of climate change on human health, which are supported by the use of formal qualitative analyses.

In this respect, the journal articles surveyed in this paper have been classified according to the quantitative models adopted, which have been identified in the broad classes of time-series models, cross-section, panel and spatial models, and non-statistical approaches, such as computable general equilibrium models and comparative risk assessments. Moreover, our paper has presented a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; Early Warning Systems and infectious diseases; evaluating the risks to human health which are related to climate change; the implications of modifiable environmental risk factors.

Climate change is already affecting human health, livelihoods, safety, and society and the expectation is that these effects will become greater. The climate impact is still difficult to assess with accuracy because it results from a complex interplay of factors. It is challenging to isolate the human impact of climate change definitively from other factors such as natural variability, population growth, land use and governance. In several areas, the base of scientific evidence is still not sufficient to make definitive estimates with great precision on the human impacts of climate change. However, data and models do exist which form a robust starting point for making estimates and projections that can inform public debate, policy-making and future research.

The pressure for increased precision in estimates presents a rallying cry for investment in research on the social implications of climate change. Three areas which require additional research in the near future are:

  • – The attribution of weather-related disasters to climate change, as no consensus estimate of the global attribution has yet been made;
  • – Estimate of economic losses today, as the current models are forward looking;
  • – Regional analysis, as the understanding of the human impact at regional level is often very limited but also crucial to guide effective adaptation interventions.

References and Notes

quantitative research title about environmental science

Quantitative Methods for Current Environmental Issues

  • Conference proceedings
  • © 2002
  • Clive W. Anderson 0 ,
  • Vic Barnett 1 ,
  • Philip C. Chatwin 2 ,
  • Abdel H. El-Shaarawi 3

School of Mathematics and Statistics, University of Sheffield, Sheffield, UK

You can also search for this editor in PubMed   Google Scholar

School of Mathematical Sciences, University of Nottingham, Nottingham, UK

National water research institute, burlington, canada.

Features the most recent quantitative methods for studying environmental issues

Includes contributions from the foremost researchers in the field

8324 Accesses

233 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Similar content being viewed by others, the insignificance of thresholds in environmental impact assessment: an illustrative case study in canada, basic mathematical errors may make ecological assessments unreliable, a methodology for sensitivity analysis based on regression: applications to handle uncertainty in natural resources characterization.

  • environment
  • environmental science
  • environmental sciences

Table of contents (12 papers)

Front matter, spatial and temporal models and methods, modeling spatio-temporally misaligned areal and point process environmental data.

  • Bradley P. Carlin, Andrew S. Mugglin, Li Zhu, Alan E. Gelfand

Space and Space-Time Modeling using Process Convolutions

  • Dave Higdon

Multivariate Kriging for Interpolating with Data from Different Sources

  • H. Wackernagel, L. Bertino, J. P. Sierra, J. González del Río

Environmental Sampling and Standards

Distance sampling: recent advances and future directions.

  • S. T. Buckland, L. Thomas, F. F. C. Marques, S. Strindberg, S. L. Hedley, J. H. Pollard et al.

Setting Environmental Standards: A Statistical Approach

  • Vic Barnett, Marion Bown

Atmosphere and Ocean

The interpretation and validation of measurements of the ocean wave directional spectrum.

  • Lucy R. Wyatt

Thermal Energy Emission and Propagation from Accidents

  • A. Pelliccioni, F. Altavilla, S. Berardi

Development and Application of an Extended Methodology to Validate Short-Range Atmospheric Dispersion Models

  • Harry Eleveld, Harry Slaper

Uncertainty and Sensitivity of Dispersion Model Results to Meteorological Inputs: Two Case Studies

  • Joseph C. Chang

Risk and Uncertainty

Statistics and the environmental sciences: approaches to model combination.

  • Gudmund Høst

Bayesian Analysis of Computer Code Outputs

  • Marc C. Kennedy, Anthony O’Hagan, Neil Higgins

The Realities of Decision Making on Risks

  • Jim McQuaid

Back Matter

Editors and affiliations.

Clive W. Anderson, Philip C. Chatwin

Vic Barnett

Abdel H. El-Shaarawi

Bibliographic Information

Book Title : Quantitative Methods for Current Environmental Issues

Editors : Clive W. Anderson, Vic Barnett, Philip C. Chatwin, Abdel H. El-Shaarawi

DOI : https://doi.org/10.1007/978-1-4471-0657-9

Publisher : Springer London

eBook Packages : Springer Book Archive

Copyright Information : Springer-Verlag London Limited 2002

Hardcover ISBN : 978-1-85233-294-5 Due: 15 January 2002

Softcover ISBN : 978-1-4471-1171-9 Published: 15 September 2011

eBook ISBN : 978-1-4471-0657-9 Published: 06 December 2012

Edition Number : 1

Number of Pages : X, 270

Topics : Statistical Theory and Methods , Math. Appl. in Environmental Science , Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences , Applications of Mathematics

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Top 100 Environmental Science Project Topics

image

Table of contents

  • 1 Climate Change
  • 2 Renewable Energy
  • 3 Urban Ecology
  • 4 Land and Water Use
  • 5 Pollution
  • 6 Environmental Science Topics for College Students
  • 7 Energy Resources and Consumption
  • 8 Population
  • 9 Noise and Light Pollution
  • 10.1 Conclusion

With the environment and global warming in its current predicament, it’s no surprise that environmental science job opportunities will be on the rise in the very near future.

With the environment and global warming in its current predicament, it’s no surprise that environmental science job opportunities will be on the rise in the very near future. Therefore, so are the numbers of students pursuing studies in this field. The last four decades have seen huge changes in the rate of global warming and so more than ever before, we need people to study topics in environmental science.

For anyone majoring in environmental science, anyone needing to write  environmental studies project topics for a science course, or essay writer who is working on topical essays this comprehensive article will talk you through the top ten project topics to pursue. For each project topic, we’ll give you ten ideas.

Climate Change

There’ll always be an environment, but it’s looking more and more likely that it won’t be like our current one in the future. With this in mind, here are the top ten environmental project topics for college students on climate change:

  • Is global warming a natural phenomenon?
  • The politicization of global warming.
  • How do eddy covariance towers work?
  • Planetary tilt – does it affect global warming?
  • The differences between climate change and the greenhouse effect.
  • Why is carbon dioxide a greenhouse gas?
  • How do changes to weather patterns affect the Earth’s climate?
  • The concept of polar amplification.
  • The barriers to climate change responses.
  • The “heat island” effect.

more_shortcode

Renewable Energy

Our advances through the industrial revolution and the use of fossil fuels are now coming back to bite us. Here are ten environmental topics for project on renewable energy:

  • The pros and cons of hydropower.
  • Solar energy and pollution.
  • Solar energy to help the economy.
  • Geothermal energy: an unlikely major energy source?
  • The problems caused by renewable energies.
  • Understanding geothermal energy.
  • Are hydrogen fuel cells a viable alternative?
  • The advantages and disadvantages of solar power.
  • Transporting geothermal energy: a study.
  • The challenges of large-scale biomass energy use.

Urban Ecology

Urban ecology is an important consideration for environmental science projects for college students who are eager to pay for essay to receive high grades for assignments. When we study the environment, we tend to think of green spaces and rural lands, but urban ecology is important too. As such, here are ten environmental science project ideas on this topic:

  • How do unequal urban planning and greenspace distribution affect temperatures in a city?
  • How does urbanization affect surrounding rural areas?
  • How is the local climate affected by buildings and pavements?
  • What is the urban heat island effect?
  • How are water sources affected by urbanization?
  • How has human development affected our green spaces?
  • How is social identity linked to urbanization?
  • What impact does transport have on rural locations?
  • How can the natural environment be integrated into urban planning and design projects?
  • What is water harvesting?

more_shortcode

Land and Water Use

When humans use natural resources, they also disrupt natural ecosystems. This is an important area of study as we try to claw back and save some of the world’s resources from being entirely depleted. Here are ten interesting  environment related topics for project on this subject:

  • How have overfishing and non-sustainable fishing methods affected our oceans?
  • How does using water for irrigation affect natural ecosystems?
  • The impacts of different societies’ ecological footprints in terms of waste production and resource demands.
  • How can we mitigate deforestation?
  • An analysis of The Green Revolution.
  • The impact of salt application to streams.
  • How does using an ANN (artificial neural network) for rainfall-runoff affect ecosystems?
  • How do land-use changes impact urban runoff?
  • Relationships between water quality, land use and land use change.
  • Land use effects on lake water quality.

Pollution is one of the planet and humanity’s worst enemies. Agriculture, transportation, and industry can cause horrific environmental catastrophes. Check out the possible environment science project topics on pollution:

  • The impact of pollution on health care.
  • The effects of environmental pollution and water pollution on marine life.
  • The effects of air pollution on the food chain.
  • How environmental pollution affects Arctic.
  • The health hazards associated with waste accumulation and water pollution.
  • How do human activities change the world’s oceans?
  • Conservation and how it helps to reduce air pollution.
  • The difficulty of establishing direct links between health problems, air pollution, and air quality.
  • Environmental policy regarding air pollution and acid rain.
  • The effect of acid rain in urban and natural areas.

Environmental Science Topics for College Students

Environmental studies at college is all about studying in-depth biological, chemical, and physical processes on Earth. Environmental sciences also incorporates social, cultural, and political processes that have an impact. When studying Environmental Science at college level, a project need to seek out ways to present complex relationships in a simple way. Here are some ideal environmental science projects for college students:

  • Genetically Modified (GM) foods and their impact on the environment.
  • The global impact of radiation and nuclear accidents.
  • The role of the UNEP in environmental conservation.
  • The impact of freak weather incidents.
  • Micro-plastics in drinking water – why and how have they got there?
  • The Nagasaki and Hiroshima bombings – what have we learned about nuclear bombs and the effects on the ecosystem?
  • The impact of Coronavirus and maintaining the ecosystem.
  • The role of the media in conservation campaigns.
  • Tourism and the impact of human activities on a local and global level.
  • How has the US departure from the Paris Climate Agreement changed things?

Energy Resources and Consumption

Lots of  environmental studies project topics goes into looking at energy resources and consumption, which makes this a great project topic. There is already a lot of information out there, which makes this easy to research.

  • What is the relationship between energy efficiency and energy conservation?
  • What are the economic, social, and environmental costs of solar energy?
  • Was coal pivotal in industrialization?
  • The impact of fracking on the environment.
  • Compare and contrast the processes of extracting oil and mining coal.
  • How is ethanol produced as a biofuel?
  • Nuclear energy is a viable clean energy. Discuss.
  • The environmental effects of a nuclear conflict explored.
  • What is plant biomass?
  • The challenges of converting to large-scale biomass energy.

You can't write a list environment project topics  about environmental science, without mentioning population, environmental health, and the changes we've seen over the years. A lot of environment research focuses on population and its effects. Here are some ideas:

  • Population growth and its effects on GDP.
  • Factors that control population growth and the effect of density.
  • An exploration of population momentum.
  • The importance of studying population ecology.
  • The effect of human migration on populations.
  • The effects of overpopulation.
  • The effects of global warming on the global population.
  • Is sustainable development possible in a growing population?
  • What would happen if the demand for natural resources became greater than the supply?
  • How serious is the world population explosion?

Noise and Light Pollution

Though lots of people don’t consider light and noise as pollutants, the reality is that they are. Noise levels and light levels can affect organisms. Here are some interesting topics for science projects on noise and light pollution:

  • How is local wildlife affected by airport noise?
  • What happens if orcas aren’t able to use echolocation due to freight noise?
  • Migrating birds and the confusion from bright lights.
  • The effect of bright lights in resorts and sea turtles emerging from nests.
  • How bright city lights affect nocturnal animals.
  • The disruption of nocturnal activity in frogs and toads due to artificial light glare.
  • Artificial lights and the effects on migratory birds.
  • Light pollution and the effects on plants.
  • Changes in animal behavior due to noise pollution.
  • Noise pollution and the effects on mating frogs.

Conservation Biology

With as many as 2,000 species becoming extinct each year, we’re experiencing a serious problem. Conservation biology is a huge topic of interest when you need to " write my essay " and want to succeed with this task. Here are some ideas for exploration:

  • How has human behavior ramped up endangered species extinction rates?
  • How do humans threaten endangered species?
  • What will the effects of a loss in biodiversity be for humans?
  • If honeybees become extinct, what other changes would we see?
  • Why is the decline in pollinating insects so dangerous?
  • What happens if we lose endangered species?
  • What is the Holocene extinction event?
  • The collapse of the world’s coral reef ecosystems.
  • The threat of acidification in our oceans.
  • How can environmental policy help threats to biodiversity?

It's clear to say that there is a huge variety in topics in environmental science. For anyone looking for an environmental science project topic, we hope this extensive list has helped narrow down your ideas. Whether you're looking for environmental research topics for college students or high school, there is something for everyone here.

Readers also enjoyed

100 Environment Essay Topics That Will Inspire Your Eco-Conscious Mind

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

quantitative research title about environmental science

  • Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Statistics Research Topics

500+ Statistics Research Topics

Medical Research Topic Ideas

500+ Medical Research Topic Ideas

Sociology Research Topics

1000+ Sociology Research Topics

Qualitative_Research_Topics

500+ Qualitative Research Titles and Topics

Funny Research Topics

200+ Funny Research Topics

Music Research Topics

500+ Music Research Topics

CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

Scholars' Bank

Environmental studies theses and dissertations.

  • By Issue Date

Search within this collection:

Recent Submissions

  • AN ACCUMULATION OF CATASTROPHE: A POLITICAL ECONOMY OF WILDFIRE IN THE WESTERN UNITED STATES  Dockstader, Sue ( University of Oregon , 2024-03-25 ) This dissertation is an environmental sociological study of wildland fire in what is now the western United States. It examines wildfire management from roughly the 1900s to the present time employing a Marxist historical ...
  • Managing Life's Future: Species Essentialism and Evolutionary Normativity in Conservation Policy, Practice, and Imaginaries  Maggiulli, Katrina ( University of Oregon , 2024-01-10 ) Folk essentialist and normative understandings of species are not only prevalent in popular layperson communities, but also end up undergirding United States conservation policy and practice due to the simplistic clarity ...
  • Unsettled Ecologies: Alienated Species, Indigenous Restoration, and U.S. Empire in a Time of Climate Chaos  Fink, Lisa ( University of Oregon , 2024-01-10 ) This dissertation traces environmental thinking about invasive species from Western-colonial, diasporic settlers of color, and Indigenous perspectives within U.S. settler colonialism. Considering environmental discourses ...
  • Futuremaking in a Disaster Zone: Everyday Climate Change Adaptation amongst Quechua Women in the Peruvian Cordillera Blanca  Moulton, Holly ( University of Oregon , 2024-01-10 ) Indigenous women in Peru are often labeled “triply vulnerable” to climate change due to race, gender, and economic marginalization. Despite Peru’s focus on gender, Indigeneity, and intersectionality in national adaptation ...
  • Land Acts: Land's Agency in American Literature, Law, and History from the Colonial Period to Removal  Keeler, Kyle ( University of Oregon , 2024-01-10 ) This dissertation examines land’s agency and relationships to land in the places now known as the United States as these relationships appear in literature and law from early colonization to the removal period. Land Acts ...
  • PALEOTEMPERATURE, VEGETATION CHANGE, FIRE HISTORY, AND LAKE PRODUCTIVITY FOR THE LAST 14,500 YEARS AT GOLD LAKE, PACIFIC NORTHWEST, USA  Baig, Jamila ( University of Oregon , 2024-01-09 ) The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution analysis from a 13-meter, 14,500-year sediment core from Gold Lake to ...
  • On Western Juniper Climate Relations  Reis, Schyler ( University of Oregon , 2022-10-26 ) Western juniper woodlands are highly sensitive to climate in terms of tree-ring growth, seedling establishment and range distribution. Understanding the dynamics of western juniper woodlands to changes in precipitation, ...
  • Stories We Tell, Stories We Eat: Mexican Foodways, Cultural Identity, and Ideological Struggle in Netflix’s Taco Chronicles  Sanchez, Bela ( University of Oregon , 2022-10-26 ) Food is a biological necessity imbued with numerous social, cultural, and economic implications for identity production and everyday meaning-making. Food television is a unique medium for the meanings of food and foodways ...
  • Soil Nutrient Additions Shift Orthopteran Herbivory and Invertebrate Community Composition  Altmire, Gabriella ( University of Oregon , 2022-10-26 ) Anthropogenic alterations to global pools of nitrogen and phosphorus are driving declines in plant diversity across grasslands. As such, concern over biodiversity loss has precipitated a host of studies investigating how ...
  • Multispecies Memoir: Self, Genre, and Species Justice in Contemporary Culture  Otjen, Nathaniel ( University of Oregon , 2022-10-04 ) Liberal humanism articulates an individual, rational, autonomous, universal, and singularly human subject that possesses various rights and freedoms. Although the imagined subject at the heart of liberal humanist philosophy ...
  • Understanding How Changes in Disturbance Regimes and Long-Term Climate Shape Ecosystem and Landscape Structure and Function  Wright, Jamie ( University of Oregon , 2022-10-04 ) Long-term and anthropic climatic change intersecting with disturbances alters ecosystem structure and function across spatiotemporal scales. Quantifying ecosystem responses can be convoluted, therefore utilizing multiproxy ...
  • Ikpíkyav (To Fix Again): Drawing From Karuk World Renewal To Contest Settler Discourses Of Vulnerability  Vinyeta, Kirsten ( University of Oregon , 2022-10-04 ) The Klamath River Basin of Northern California has historically been replete with fire-adapted ecosystems and Indigenous communities. For the Karuk Tribe, fire has been an indispensable tool for both spiritual practice and ...
  • Grassland Restoration in Heterogeneous, Changing, and Human Dominated Systems  Brambila, Alejandro ( University of Oregon , 2022-10-04 ) Ecological restoration is a powerful tool to promote biodiversity and ecosystem function. Understanding underlying system variability and directional change can help predict outcomes of restoration interventions. Spatial ...
  • Restoring What? And for Whom? Listening to Karuk Ecocultural Revitalization Practitioners and Uncovering Settler Logics in Ecological Restoration.  Worl, Sara ( University of Oregon , 2022-05-10 ) What does it mean to restore a landscape degraded by settler colonialism? How might a well intentionedprocess like ecological restoration end up causing harm from underlying settler colonial logics? This thesis explores ...
  • Instigating Communities of Solidarity: An Exploration of Participatory, Informal, Temporary Urbanisms  Meier, Briana ( University of Oregon , 2021-11-23 ) This dissertationexamines the potential for participatory, informal urbanisms to buildcollaborative relations across ontological, cultural, and political difference. This research contributes to thefield of urban, environmental ...
  • The Holy Oak School of Art and Ecology: A Proposal for Arts-Based Environmental Education Programming  Best, Krysta ( University of Oregon , 2021-11-23 ) The following is a proposal for arts-based environmental education programming in elementary schools, after-school programs, and day-camp programs, entitled the Holy School of Art and Ecology. Ecophenomenological, arts-based ...
  • Settler Colonial Listening and the Silence of Wilderness in the Boundary Waters Canoe Area  Hilgren, Bailey ( University of Oregon , 2021-11-23 ) The Boundary Waters Canoe Area soundscape in northern Minnesota has a long and contested history but is most often characterized today as a pristine and distinctly silent wilderness. This thesis traces the construction and ...
  • Species Dynamics and Restoration in Rare Serpentine Grasslands under Global Change  Hernandez, Eliza ( University of Oregon , 2021-11-23 ) Conserving rare serpentine grasslands is a challenge with ongoing nitrogen deposition. Nutrient-poor patches are fertilized by nitrogen-rich smog and exotic grasses can rapidly spread. Water resources are also being altered ...
  • Place-making and Place-taking: An Analysis of Green Gentrification in Atlanta Georgia  Okotie-Oyekan, Aimée ( University of Oregon , 2021-11-23 ) Despite the benefits of urban greenspace, Atlanta’s Westside Park is causing gentrification and displacement pressures in Grove Park, a low-income African-American community in northwest Atlanta, Georgia. This study used ...
  • Prairie Plant Responses to Climate Change in the Pacific Northwest  Reed, Paul ( University of Oregon , 2021-09-13 ) Understanding how plants respond to climate change is of paramount importance since their responses can affect ecosystem functions and patterns of biodiversity. At the population level, climate change may alter phenology ...

View more submissions

Search Scholars' Bank

All of scholars' bank, this collection.

  • Dockstader, Sue (2)
  • Maggiulli, Katrina (2)
  • Shtob, Daniel (2)
  • Vinyeta, Kirsten (2)
  • Altmire, Gabriella (1)
  • Au, Lokyee (1)
  • Bacon, J. (1)
  • Baig, Jamila (1)
  • Belanger, Kevin M., 1985- (1)
  • Best, Krysta (1)
  • ... View More
  • Climate change (12)
  • Environmental justice (8)
  • Conservation (3)
  • Environmental Justice (3)
  • Environmental studies (3)
  • Pacific Northwest (3)
  • Restoration (3)
  • Tourism (3)
  • Agriculture (2)

Date Issued

  • 2020 - 2024 (24)
  • 2010 - 2019 (51)
  • 2003 - 2009 (11)

Has File(s)

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors

quantitative research title about environmental science

  • How we work

quantitative research title about environmental science

55 Remarkable Environmental Topics for Research Proposal

Explore the collection of great environmental research topics from field experts.

quantitative research title about environmental science

Environmental Research Topics: Features, Importance & Great Ideas

Environmental investigations entail investigating the natural world’s structure and function, the association between humans and the environment, and how people’s values, beliefs, and attitudes affect that association. Environmental research topics thus cover a wide range of subjects, including climate change, biodiversity, pollution, renewable energy, and sustainability.

How to Choose Environmental Topics for Research

Environmental investigations is a very broad field that offers a wide range of areas to investigate. So how can you choose a good one for your paper? First, always pick an issue from the area you are interested in. What is environmental science direction you’d like to develop? Working on your paper will be easier since you’ll be motivated to explore something you care about. From there, sort through your environmental topics for research to determine the following:

  • Relevance – does the proposal theme address an environmental issue with significant societal implications, such as pollution or climate change?
  • Originality –  does the investigation subject offer a new perspective on existing knowledge?
  • Feasibility – are the environmental topics to research realistic and achievable based on the scope and your available resources?
  • Scope – how broad is the matter of investigation? It shouldn’t be too broad or too narrow; it should be the right size to provide a comprehensive investigation.

When choosing environmental science research paper topics, avoid those that are too complex or require more resources and time than you can provide. Remember also to consider data availability, literature, funding, time, and ethical issues involved.

environmental research topics

Environmental Topics for Research Paper Are Not Created Equal

Environmental science topics are created differently depending on your discipline, purpose, scope, and methodology. Thus, the approach used to formulate them differs as they will serve different purposes. For example, some are explanatory and will try to explain how something happens or works. Others will try to seek more knowledge about a subject(exploratory). Then, you might also encounter a few that compare and contrast two phenomena or situations.

When assessing investigation issues, carefully evaluate your goals and interests before committing to a specific one. Otherwise, you might get stuck. Luckily our research proposal writing services are always here to help you help to get out of even the most challenging situation!

The Most Actual Environmental Science Topics for an Excellent Proposal

Natural and human-made systems that shape our planet and affect its inhabitants are one of the most interesting areas to write a paper about. Check out these environmental topics for research paper to produce an engaging proposal.

1. Consequences of Climate Change Human Societies.

2. Challenges of Renewable Energy Technologies.

3. Recycling Initiatives and Their Implications on Reducing Pollution.

4. Challenges of Sustainable Management of Freshwater Resources.

5. The Impact of Low Air Quality on Human Health.

6. Effectiveness of Conservational Policies in Addressing Environmental Issues.

7. Impacts of Sustainable Transportation in Reducing Urban Ecological Footprint.

8. Effect of Marine Pollution on Marine Ecosystems.

9. Challenges Facing Sustainable Farming Practices.

10. Impacts of Electricity Generation on the Environment.

11. Ecological Hazards of Electronic Waste.

12. Tourism’s Negative Effect on Ecosystems.

Environmental science research topics are often flexible and can be broadened or narrowed down depending on the scope of your study.

Interesting Environmental Justice Topics

Environmental justice involves advocating for fair treatment and meaningful involvement of all people in implementing environmental laws and policies. Here’re exciting environmental justice topics for a good proposal.

1. Effect of Hazardous Waste Facilities on Minority Communities.

2. The Influence of Air Pollution Exposure on the Health of Marginalized Populations.

3. Effect of Unequal Distribution of Parks and Green Spaces in Disadvantaged Neighborhoods.

4. Relationship Between Indigenous Communities and Conservation Efforts.

5. Influence of Climate Change on Vulnerable Communities.

6. Differential Impacts of Natural Disasters on Marginalized Populations.

7. The Importance of Environmental Education in Empowering Disadvantaged Communities.

8. Barriers to Equitable Access to Healthy and Sustainable Food Options in Marginalized Communities.

9. Geographical Inequalities in Accessing Clean Water.

10. The Intersection Between Food Justice and Ecological Concerns.

11. The Link Between Exposure to Pollutants Hazards and Adverse Health Outcomes in Socially Disadvantaged Groups.

12. Barriers to Equitable Distribution of Resources and Assistance During Post-disaster Recovery in Marginalized Communities.

The above can provide great options for a research proposal about environmental problems and how they affect specific populations.

Insightful Environmental Economics Research Topics

Environmental economics research topics aim to understand the human activities impacting on the natural environment and human welfare. So if you are looking for decent quantitative research ideas , consider the following offered by our experienced investigator.

1. Effectiveness of Economic Incentives in Promoting the Adoption of Renewable Energy Sources.

2. Effect of Pollution Regulations on Automobile Manufacturing Industry Competitiveness.

3. Factors Promoting Economic Growth in Green Industries and Sustainable Sectors.

4. The Economic Influence of Urban Sprawl on Environmental Quality.

5. Economic Implications of Water Scarcity.

6. Economic Incentives for Conserving Biodiversity.

7. Economic Benefits of Investing in Renewable Energy Technologies.

8. The Economic Viability of Strategies to Reduce Plastic Pollution.

9. Effectiveness of Carbon Pricing Mechanisms in Reducing Greenhouse Gas Emissions.

10. Economic Consequences of Natural Disasters.

11. Economic Importance of Disaster Preparedness and Resilience.

12. Economic Benefits of Transitioning From a Linear to a Circular Economy Model Focused on Resource Efficiency and Waste Reduction.

13. Role of Green Finance & Sustainable Investments in Supporting Eco-Friendly Projects and Businesses.

14. Efficient Water Pricing Mechanisms to Encourage Conservation.

Captivating Environmental Biology Research Topics

Environmental biology research topics will often try to assess the interaction between living organisms and their natural or human-modified environments. Check out these interesting issues to investigate for your biology research proposal .

1. Ways in Which Climate Change Affects the Distribution and Habitat Suitability of Plants.

2. Relationship Between Biodiversity and Ecosystem Health.

3. Role of Keystone Species in Maintaining Ecosystem Processes.

4. Human Factors Contributing to the Decline of Endangered Species.

5. Ecological Effect of Invasive Species on Local Ecosystems.

6. Factors Contributing to Pollinator Decline.

7. Ecological Consequences for Plant-Pollinator Interactions and Food Security.

8. Ecological Effects of Microplastics in Freshwater and Marine Ecosystems.

9. Shifts in the Timing of Seasonal Events in Animals in Response to Climate Change.

10. Ways in Which Changes in Land Use Impact Biodiversity.

11. Ways in Which Deforestation Impacts Ecological Communities.

12. Effects of Agricultural Pollutants on Ecosystems.

13. Challenges of Ecotoxicological Risk Assessments.

14. Ways in Which Wildlife Populations Adapt to Urban Environments.

15. Effects of Conservation on Human-Wildlife Interactions.

16. The Impact of Rising Carbon Dioxide Levels on Coral Reef Ecosystems.

17. The Influence of Marine Tourism on Marine Biodiversity.

pdf icon

DOWNLOAD Here More Environmental Research Proposal Ideas!

Importance of choosing the right environmental research paper topics.

Choosing the proper investigation issue is crucial for the success and impact of your paper. Topics related to environment issues tend to be complicated and demand a thorough understanding of the natural and social dimensions of the problem. But with the right choice, the writing process is much easier and gives a better chance to produce a quality paper.

Poor environmental research paper topics will waste your time, resources and even cause frustration when investigators struggle to meet the word count. So, choose your subjects of investigation wisely or request expert help if you need extra support.

new environmental research proposal topics

While the above topics for environmental research papers might prove useful, sometimes picking a subject of investigation and working on a proposal can be daunting. But you shouldn’t worry. We have a large team of experienced writers ready to work on your paper and final paper. You only need to send your instructions, and they’ll embark on the task.

We’re here to help with your proposal. So drop us a line anytime you may need professional assistance!

quantitative research title about environmental science

Upload Files

Thank you for your request!

We will get in touch with you shortly!

Please, try one more time.

20 Environmental Science Research Paper Topics: Explore Like an Expert

tree in glass ball

Writing papers in college is a great deal different than writing one in high school. Firstly, it has to acknowledge issues that are of a significantly advanced level on more special subjects. Secondly, it has to discuss matters that haven’t been deeply-investigated yet but are better to be recognized by fellow peers like you or your groupmates. Thirdly, it has to stick to particular strict paper requirements concerning an academic style, writing tone and formatting (for example, in APA, MLA, or Harvard). When a perfect writing and formatting style and a good research topic pair up, it creates not only remarkable results for a field of study but high grades for each student who puts all possible efforts to perform this task.

And as an additional benefit, when your research topic is the best in the class, you even get the bragging rights (the biggest reward among all possible). So read this article attentively to draw inspiration from some good environmental science research paper topics you can explore on your own. Besides, you’ll know how to do research as a real expert does. Apply all the steps in writing a research paper on Environment and enjoy the final results when your instructor will say, “Oh! Your paper is a joy to read. It is music to my ears.”

Table of Contents

Choose a Research-Worthy Environmental Topic

Choosing an issue to cover in a research paper is not so easy especially for environmental science research papers. But the selection of related research paper topics can simplify the process of choosing an interesting research idea in such an important field of study as the natural environment. There are so many environmental concerns humans face today and can face in the future. The consequences can be exceedingly impressive – no clear air, soil, and water. Consequently, it results in ill health among living beings, including human beings who you belong to as well. You can start to care about it if you take a look at the list of research-worthy topics on Environment. Choose one of them for your own environmental research paper.

You’ll definitely end up astounding your audience with the help of a topic from the following list of research topics:

  • The Black Rat – A Worldwide Invasive Species
  • The Destruction of the World’s Coral Reefs
  • Examining the Scientific Consensus on Climate Change – Why the Critics Are Complaining
  • Can the Use of LED Lights Make a Difference? If Yes, Name Them
  • How to Sparingly Use Wind, Solar, and Other Alternative Energy Sources?
  • The Ozone Hole Is Finally Healing – or Is It?
  • Waste and Pesticides Are Contaminating Soil
  • How to Stop Coral Reef Destruction
  • Radon Is a Naturally Occurring Radioactive Gas That Can Cause Lung Cancer
  • Animal Grazing: Spreading Deadly Viruses and Bacteria That Gets into the Country’s Rivers, Streams and Lakes
  • What Kills Nature: Effects of Acid Rain on Fish and Wildlife
  • The Ecological Significance of Exchange Processes between Rivers and Groundwater
  • What Trump Can Do to Save the Environment
  • Preserving the Vital Biodiversity of Gabon’s Wetlands
  • Hoasjoe: The Mystery Sister of the Crystal Cave in Bermuda
  • The Sightings of the Endangered Species of the World
  • The Ecological Integrity of Groundwater and Fluvial Systems Os Often Threatened by Human Activities
  • Tracking the Recovery of a Keystone Urchin Species and Its Role in Reef Restoration
  • What Is in Our Power: The Transition to Cleaner Vehicles and Fuels
  • Everyday Harm: Why Is the Use of PET Bottles Harmful for You

To be honest, environmental science is a vast field and there are loads of eager environmentalists who will really appreciate if you take on one of these grown-up research topics. As a matter of fact, there are so many concerns about the environment that dwelling and focusing on them will give you a lot of ideas to write about. Moreover, using these topics will come in handy to catch the attention of your target audience. We all live on Earth and we have to take care of it to make our lives better. Use these suggested ideas to get inspired to craft a useful paper that will call everyone to action. Let’s find out how it is better to do it so that you can be proud of the fact, “I managed to write my research paper to influence the current environmental situation positively!”

Do In-Depth Research on an Environment Issue

Indeed, it is difficult to write a good research paper if you do not read about the chosen topic enough to have something valuable to state about it especially when it concerns environmental issues. If you want to avoid any pitfalls, you should read about your subject a lot, end of! What is more important in proper academic research is that you should read credible sources of information, at least use them as references in your work. It means that Wikipedia isn’t appropriate in the academic field. If you are used to applying the Internet to research, do it properly for your essays.

smile white

There are so many websites on the Internet where you can take numerous data and information on the environment. Aware of how to assess online sources ? Look at the picture with the questions to answer when you see an unknown source. But before you start answering them, pay attention to the URL that stands for Uniform Resource Locator as a protocol for specifying addresses on the Internet. In other words, look at the web address of the website. The domain name is exactly that can help you decide whether the information is published by a credible source. Feel free to use sites with URLs such as “.edu”, “.gov” or “.org”. The domain suffix gives you a clue about the type of organization the site is linked to – “.edu” corresponds to educational platforms on which you can access various research studies, “.gov” belongs to the government sites that give access to reports and their findings, “.org” refer to non-profit organizations that also conduct surveys and provide the research results. However, there is one more domain suffix that also can indicate a reliable source – “.com”, for example, in the name of the website Encyclopedia.com where you also can find some useful information about environmental situations.

Structure the Main Research Ideas

plywood

Follow All the Paper Requirements

After you are given a writing assignment, examine it carefully paying close attention to every single detail concerning a word/page count, structure, references, format and so on. All that plays a huge role in the final assessment of your paper. So don’t neglect it! Keep all the paper instructions in front of your eyes so that you won’t miss any point. Don’t think if you write more that is required, it will be highly assessed. It doesn’t work in this way. Your instructor expects you to express the main ideas in the limited number of words or pages. It is vital to stick to the point while speaking about research problems. Environmental issues are no exception. If you are required to use 5-7 references, do it exactly as required. Luckily, you are provided with the practical tips on how to find reliable sources of information without going to a library. Just open Google and find those necessary 5-7 references to cite in your research papers.

Edit Your Research Paper Accordingly

Managed to choose a topic for a research paper, carry out research, structure the key research ideas, follow all the instructions and think that you are free now? Stop, stop, stop! This isn’t a final of your struggle. There is one more step to take at the end of the writing process – editing. Every academic paper should go through the editing process so that it won’t have any defect in writing and formatting. Keep in mind that it is better to put the final touches on the content with the help of fresh eyes. You can have such a critical eye only after break time. Rushing into editing immediately after you finish writing is a bad idea. As a result, you won’t notice any possible typos or will make more mistakes in formatting references or in-text citations. Alternatively, you can find someone to read out your research paper, but this ‘someone’ must specialize in the subject and be keen-eyed to observe all ambiguities.

Now, you have more chances to write a perfect research paper as all the essentials are explained in the simplest terms, It is your turn to take all the practical steps to write an environmental science research paper. Get on with it!

order-paper

Too busy to write your paper by yourself?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Quantitative Research? | Definition, Uses & Methods

What Is Quantitative Research? | Definition, Uses & Methods

Published on June 12, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analyzing non-numerical data (e.g., text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, other interesting articles, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalized to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Quantitative research methods
Research method How to use Example
Control or manipulate an to measure its effect on a dependent variable. To test whether an intervention can reduce procrastination in college students, you give equal-sized groups either a procrastination intervention or a comparable task. You compare self-ratings of procrastination behaviors between the groups after the intervention.
Ask questions of a group of people in-person, over-the-phone or online. You distribute with rating scales to first-year international college students to investigate their experiences of culture shock.
(Systematic) observation Identify a behavior or occurrence of interest and monitor it in its natural setting. To study college classroom participation, you sit in on classes to observe them, counting and recording the prevalence of active and passive behaviors by students from different backgrounds.
Secondary research Collect data that has been gathered for other purposes e.g., national surveys or historical records. To assess whether attitudes towards climate change have changed since the 1980s, you collect relevant questionnaire data from widely available .

Note that quantitative research is at risk for certain research biases , including information bias , omitted variable bias , sampling bias , or selection bias . Be sure that you’re aware of potential biases as you collect and analyze your data to prevent them from impacting your work too much.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once data is collected, you may need to process it before it can be analyzed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualize your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalizations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

First, you use descriptive statistics to get a summary of the data. You find the mean (average) and the mode (most frequent rating) of procrastination of the two groups, and plot the data to see if there are any outliers.

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardize data collection and generalize findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardized data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analyzed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalized and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardized procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Quantitative Research? | Definition, Uses & Methods. Scribbr. Retrieved June 18, 2024, from https://www.scribbr.com/methodology/quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, descriptive statistics | definitions, types, examples, inferential statistics | an easy introduction & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

This page uses technologies your browser does not support.

Many of our new website's features will not function and basic layout will appear broken.

Visit browsehappy.com to learn how to upgrade your browser.

University of New Orleans Logo

  • university of new orleans
  • campus news
  • uno earth and environmental sciences professor is fishing for clues

CAMPUS NEWS: JUNE 21, 2024

Tilapia research, uno earth and environmental sciences professor is fishing for clues in port sulphur waters.

Share this article

University of New Orleans earth and environmental sciences professor Martin O’Connell has received a grant to study fish habitat in Port Sulphur for tilapia, considered an invasive fish species in the wild.

University of New Orleans earth and environmental sciences professor Martin O’Connell has received a grant to study fish habitat in Port Sulphur for tilapia, considered an invasive fish species in the wild.

University of New Orleans earth and environmental sciences professor Martin O’Connell is fishing for clues in Plaquemines Parish to determine whether tilapia—considered an invasive fish species in the wild—has survived a targeted kill conducted almost 15 years ago.

O’Connell, director of the Nekton Research Laboratory at UNO’s Pontchartrain Institute for Environmental Sciences, has received a nearly $50,000 grant from the Barataria-Terrebonne National Estuary Program for the project in Port Sulphur, Louisiana.

O’Connell’s research involves studying, managing, and conserving aquatic animals in freshwater, estuarine, and marine habitats. His lab researchers examine long-term changes in fish assemblages, responses of aquatic communities to natural and anthropogenic disturbances, and ecological needs of organisms threatened by changing global conditions. Ann Uzee-O'Connell, a researcher in the Pontchartrain Institute for Environmental Sciences, is the co-principal investigator for the grant.

“As a scientist who has studied invasive species most of my career, I am curious to see how well the eradication strategy carried out by LDWF worked,” O’Connell said. “I hope that 14 years after all this happened that we don't find any tilapia.”

Tilapia species are probably the worse group of escaped aquaculture species when it comes to causing ecological and economical damage around the world, O’Connell said. When the area ditches were surveyed for tilapia around 2010, it was estimated that they represented 85 percent of the population.

“This type of quick population growth causes local native fishes to lose both food items and habitat,” O’Connell said.

There are important freshwater species, such as largemouth bass, bluegill and estuarine species like red drum and spotted sea trout that use the areas around Port Sulphur as nursery habitats, O’Connell said.

“It’s bad enough that we are losing so much habitat in Plaquemines Parish to coastal erosion,” he said. “Having another stressor like non-native fishes just adds to the threat to both commercially and recreationally important native fishes.”

Brandt Daniels, a University of New Orleans graduate, has been recognized as a 30|Under|30 Class of 2024 awardee by the International Association of Venue Managers.

UNO Lakefront Arena Assistant General Manager Brandt Daniels Recognized by Industry Leader IAVM

College Beyond’s success coaches, who are housed on UNO’s campus, provide academic and non-academic interventions to Pell Grant recipient college students.

College Beyond and UNO Announce Extension of Strategic Partnership

University of New Orleans finance professor Tarun Mukherjee, a 43-year faculty member who established a scholarship, student-managed fund and help create a finance trading lab, died June 11, 2024.

In Memoriam: Finance Professor Tarun Mukherjee

IMAGES

  1. What is the Importance of Quantitative Research in the Environment

    quantitative research title about environmental science

  2. The Importance of Quantitative Methods in Environmental Science and

    quantitative research title about environmental science

  3. Environmental Science Text Books

    quantitative research title about environmental science

  4. (PDF) Environmental Science

    quantitative research title about environmental science

  5. General principles of quantitative research

    quantitative research title about environmental science

  6. (PDF) Quantitative Reasoning Learning Progressions for Environmental

    quantitative research title about environmental science

VIDEO

  1. Differences between Environmental Sciences and Studies

  2. SAMPLE QUANTITATIVE RESEARCH TITLES

  3. 10 BEST QUANTITATIVE RESEARCH TITLE || SAMPLE TITLES || PART 2 ||

  4. 10 BEST QUANTITATIVE RESEARCH TITLE || SAMPLE TITLES || PART 1 ||

  5. What is the importance of a research or thesis title?

  6. Environmental Science / Studies Question Papers #environmentalexam #evsdegree

COMMENTS

  1. 100+ Environmental Science Research Topics

    Topics & Ideas: Environmental Chemistry. The impact of cobalt mining on water quality and the fate of contaminants in the environment. The role of atmospheric chemistry in shaping air quality and climate change. The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture.

  2. Top 10 Environmental Science Research Topics

    Hydro power equipment can block migratory fish like salmon from being able to reproduce, causing fisheries to suffer. Even solar power can block sunlight from reaching plants. Developing a truly green future means identifying these potential threats and figuring out how to reduce or eliminate them. 4. Urban Ecology.

  3. 50 Best Environmental Science Research Topics

    2) Renewable Energy. Renewable energy is another fairly mainstream topic in which there is much to learn and research. Although scientists have identified many forms of sustainable energy, such as wind, solar, and hydroelectric power, questions remain about how to best implement these energy sources.

  4. 235 Environmental Science Research Topics & Ideas for Papers

    Provided below is a list of topics for an environmental science project that is suitable for your research paper: Air pollution effects on human health. Climate change effects on health. Water pollution and public health. Noise pollution effects on well-being. Mental health effects of environment-related toxins.

  5. Quantitative Environmental Science

    Scott L Collins, Quantitative Environmental Science, BioScience, Volume 71, Issue 12, December 2021, Page 1199, ... For example, this year, our National Science Foundation-sponsored Research Experience for Undergraduates (REU) program in dryland ecology held a 2-day Data Carpentries workshop for the REU students (and me). These very well ...

  6. Deforestation and world population sustainability: a quantitative

    Abstract. In this paper we afford a quantitative analysis of the sustainability of current world population growth in relation to the parallel deforestation process adopting a statistical point of ...

  7. 500+ Environmental Research Topics

    Environmental Research Topics are as follows: Climate change and its impacts on ecosystems and society. The effectiveness of carbon capture and storage technology. The role of biodiversity in maintaining healthy ecosystems. The impact of human activity on soil quality. The impact of plastic pollution on marine life.

  8. Quantitative approaches in climate change ecology

    Climate change ecology has emerged from this research (e.g. Hawkins et al., 2003; Litzow & Cian-nelli, 2007) and seeks to determine the extent of anthro-pogenic climate change impacts on ecosystems. Appropriate statistical analyses are critical to ensure a sound basis for inferences made in climate change ecol-ogy.

  9. Quantitative Methods in Environmental and Climate Research

    Michela Cameletti is an Associate Professor of Statistics at the Department of Management, Economics and Quantitative Methods, University of Bergamo, Italy. Her research interests include spatial and spatio-temporal models for environmental applications and computational methods for Bayesian inference.

  10. The Importance of Quantitative Methods in Environmental Science and

    Environmental science brings a transdisciplinary systems approach to analyzing sustainability concerns. As the intrinsic concept of sustainability can be interpreted according to diverse values and definitions, quantitative methods based on rigorous scientific research are crucial for establishing an evidence-based consensus on pertinent issues ...

  11. The Health Effects of Climate Change: A Survey of Recent Quantitative

    2. Quantitative Models for the Relationship Between Climate Change and Health: Methods and Examples. Quantitative models are important tools for analysing the complex relationship between climate changes and human health, since they allow researchers to link crucial climate variables (such as temperature and precipitations) at global or regional levels to the occurrence of the disease under ...

  12. Quantitative Methods for Current Environmental Issues

    It is increasingly clear that good quantitative work in the environmental sciences must be genuinely interdisciplinary. This volume, the proceedings of the first combined TIES/SPRUCE conference held at the University of Sheffield in September 2000, well demonstrates the truth of this assertion, highlighting the successful use of both statistics and mathematics in important practical problems.

  13. Quantitative study on environment and energy ...

    Quantitative study on environment and energy information for land use planning scenarios in eco-city planning stage. Author links open overlay panel In-Ae Yeo, Eunok Lee. ... Therefore, the outputs of this research are provided as E-GIS DBs for planning stages, planning scenarios, the database of urban climate and energy demand prediction, and ...

  14. Top 100 Environmental Science Project Topics

    6 Environmental Science Topics for College Students. 7 Energy Resources and Consumption. 8 Population. 9 Noise and Light Pollution. 10 Conservation Biology. 10.1 Conclusion. With the environment and global warming in its current predicament, it's no surprise that environmental science job opportunities will be on the rise in the very near ...

  15. 500+ Quantitative Research Titles and Topics

    Quantitative Research Topics. Quantitative Research Topics are as follows: The effects of social media on self-esteem among teenagers. A comparative study of academic achievement among students of single-sex and co-educational schools. The impact of gender on leadership styles in the workplace.

  16. Best 151+ Quantitative Research Topics for STEM Students

    Here are some top quantitative research topics in environmental science for students: 1. Investigating the effects of air pollution on respiratory health. 2. Analyzing the impact of deforestation on climate change. 3. Studying the biodiversity of coral reefs and their conservation. 4. Investigating the use of remote sensing in monitoring ...

  17. Environmental Studies Theses and Dissertations

    Unsettled Ecologies: Alienated Species, Indigenous Restoration, and U.S. Empire in a Time of Climate Chaos. Fink, Lisa (University of Oregon, 2024-01-10) This dissertation traces environmental thinking about invasive species from Western-colonial, diasporic settlers of color, and Indigenous perspectives within U.S. settler colonialism.

  18. PDF Quantitative Reasoning in Environmental Science: A learning progression

    environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it is the standard method for the development of learning progressions.

  19. 55 Great Environmental Research Topics for Students

    Here're exciting environmental justice topics for a good proposal. 1. Effect of Hazardous Waste Facilities on Minority Communities. 2. The Influence of Air Pollution Exposure on the Health of Marginalized Populations. 3. Effect of Unequal Distribution of Parks and Green Spaces in Disadvantaged Neighborhoods. 4.

  20. 20 Environmental Science Research Paper Topics

    Choose a Research-Worthy Environmental Topic. Choosing an issue to cover in a research paper is not so easy especially for environmental science research papers. But the selection of related research paper topics can simplify the process of choosing an interesting research idea in such an important field of study as the natural environment.

  21. Quantitative Reasoning Learning Progressions for Environmental Science

    Quantitative reasoning is a complex concept with many definitions and a diverse account in the literature. The purpose of this article is to establish a working definition of quantitative reasoning within the context of science, construct a quantitative reasoning framework, and summarize research on key components in that framework.

  22. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  23. 100+ Best Quantitative Research Topics For Students In 2023

    Quantitative research is a common approach in the natural and social sciences, like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

  24. UNO Earth and Environmental Sciences Professor Is Fishing For Clues In

    University of New Orleans earth and environmental sciences professor Martin O'Connell is fishing for clues in Plaquemines Parish to determine whether tilapia—considered an invasive fish species in the wild—has survived a targeted kill conducted almost 15 years ago. O'Connell, director of the Nekton Research Laboratory at UNO's Pontchartrain Institute for Environmental Sciences, has ...