hypothesis explanation observation

What is a scientific hypothesis.

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Bizarre evolutionary roots of Africa's iconic upside-down baobab trees revealed

Snake Island: The isle writhing with vipers where only Brazilian military and scientists are allowed

Newfound autoimmune syndrome tied to COVID-19 can trigger deadly lung scarring

Most Popular

  • 2 'It was not a peaceful crossing': Hannibal's troops linked to devastating fire 2,200 years ago in Spain
  • 3 Snake Island: The isle writhing with vipers where only Brazilian military and scientists are allowed
  • 4 Newfound 'glitch' in Einstein's relativity could rewrite the rules of the universe, study suggests
  • 5 Scientists prove 'quantum theory' that could lead to ultrafast magnetic computing
  • 5 Alien 'Dyson sphere' megastructures could surround at least 7 stars in our galaxy, new studies suggest

hypothesis explanation observation

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

  • Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

High school biology

Course: high school biology   >   unit 1.

  • Biology overview
  • Preparing to study biology
  • What is life?
  • The scientific method
  • Data to justify experimental claims examples
  • Scientific method and data analysis
  • Introduction to experimental design
  • Controlled experiments

Biology and the scientific method review

  • Experimental design and bias

hypothesis explanation observation

The nature of biology

Properties of life.

  • Organization: Living things are highly organized (meaning they contain specialized, coordinated parts) and are made up of one or more cells .
  • Metabolism: Living things must use energy and consume nutrients to carry out the chemical reactions that sustain life. The sum total of the biochemical reactions occurring in an organism is called its metabolism .
  • Homeostasis : Living organisms regulate their internal environment to maintain the relatively narrow range of conditions needed for cell function.
  • Growth : Living organisms undergo regulated growth. Individual cells become larger in size, and multicellular organisms accumulate many cells through cell division.
  • Reproduction : Living organisms can reproduce themselves to create new organisms.
  • Response : Living organisms respond to stimuli or changes in their environment.
  • Evolution : Populations of living organisms can undergo evolution , meaning that the genetic makeup of a population may change over time.

Scientific methodology

Scientific method example: failure to toast.

  • Observation: the toaster won't toast.
  • Question: Why won't my toaster toast?
  • Hypothesis: Maybe the outlet is broken.
  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.
  • Test of prediction: Plug the toaster into a different outlet and try again.
  • Iteration time!

Experimental design

Reducing errors and bias.

  • Having a large sample size in the experiment: This helps to account for any small differences among the test subjects that may provide unexpected results.
  • Repeating experimental trials multiple times: Errors may result from slight differences in test subjects, or mistakes in methodology or data collection. Repeating trials helps reduce those effects.
  • Including all data points: Sometimes it is tempting to throw away data points that are inconsistent with the proposed hypothesis. However, this makes for an inaccurate study! All data points need to be included, whether they support the hypothesis or not.
  • Using placebos , when appropriate: Placebos prevent the test subjects from knowing whether they received a real therapeutic substance. This helps researchers determine whether a substance has a true effect.
  • Implementing double-blind studies , when appropriate: Double-blind studies prevent researchers from knowing the status of a particular participant. This helps eliminate observer bias.

Communicating findings

Things to remember.

  • A hypothesis is not necessarily the right explanation. Instead, it is a possible explanation that can be tested to see if it is likely correct, or if a new hypothesis needs to be made.
  • Not all explanations can be considered a hypothesis. A hypothesis must be testable and falsifiable in order to be valid. For example, “The universe is beautiful" is not a good hypothesis, because there is no experiment that could test this statement and show it to be false.
  • In most cases, the scientific method is an iterative process. In other words, it's a cycle rather than a straight line. The result of one experiment often becomes feedback that raises questions for more experimentation.
  • Scientists use the word "theory" in a very different way than non-scientists. When many people say "I have a theory," they really mean "I have a guess." Scientific theories, on the other hand, are well-tested and highly reliable scientific explanations of natural phenomena. They unify many repeated observations and data collected from lots of experiments.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Hypothesis n., plural: hypotheses [/haɪˈpɑːθəsɪs/] Definition: Testable scientific prediction

What Is Hypothesis?

A scientific hypothesis is a foundational element of the scientific method . It’s a testable statement proposing a potential explanation for natural phenomena. The term hypothesis means “little theory” . A hypothesis is a short statement that can be tested and gives a possible reason for a phenomenon or a possible link between two variables . In the setting of scientific research, a hypothesis is a tentative explanation or statement that can be proven wrong and is used to guide experiments and empirical research.

What is Hypothesis

It is an important part of the scientific method because it gives a basis for planning tests, gathering data, and judging evidence to see if it is true and could help us understand how natural things work. Several hypotheses can be tested in the real world, and the results of careful and systematic observation and analysis can be used to support, reject, or improve them.

Researchers and scientists often use the word hypothesis to refer to this educated guess . These hypotheses are firmly established based on scientific principles and the rigorous testing of new technology and experiments .

For example, in astrophysics, the Big Bang Theory is a working hypothesis that explains the origins of the universe and considers it as a natural phenomenon. It is among the most prominent scientific hypotheses in the field.

“The scientific method: steps, terms, and examples” by Scishow:

Biology definition: A hypothesis  is a supposition or tentative explanation for (a group of) phenomena, (a set of) facts, or a scientific inquiry that may be tested, verified or answered by further investigation or methodological experiment. It is like a scientific guess . It’s an idea or prediction that scientists make before they do experiments. They use it to guess what might happen and then test it to see if they were right. It’s like a smart guess that helps them learn new things. A scientific hypothesis that has been verified through scientific experiment and research may well be considered a scientific theory .

Etymology: The word “hypothesis” comes from the Greek word “hupothesis,” which means “a basis” or “a supposition.” It combines “hupo” (under) and “thesis” (placing). Synonym:   proposition; assumption; conjecture; postulate Compare:   theory See also: null hypothesis

Characteristics Of Hypothesis

A useful hypothesis must have the following qualities:

  • It should never be written as a question.
  • You should be able to test it in the real world to see if it’s right or wrong.
  • It needs to be clear and exact.
  • It should list the factors that will be used to figure out the relationship.
  • It should only talk about one thing. You can make a theory in either a descriptive or form of relationship.
  • It shouldn’t go against any natural rule that everyone knows is true. Verification will be done well with the tools and methods that are available.
  • It should be written in as simple a way as possible so that everyone can understand it.
  • It must explain what happened to make an answer necessary.
  • It should be testable in a fair amount of time.
  • It shouldn’t say different things.

Sources Of Hypothesis

Sources of hypothesis are:

  • Patterns of similarity between the phenomenon under investigation and existing hypotheses.
  • Insights derived from prior research, concurrent observations, and insights from opposing perspectives.
  • The formulations are derived from accepted scientific theories and proposed by researchers.
  • In research, it’s essential to consider hypothesis as different subject areas may require various hypotheses (plural form of hypothesis). Researchers also establish a significance level to determine the strength of evidence supporting a hypothesis.
  • Individual cognitive processes also contribute to the formation of hypotheses.

One hypothesis is a tentative explanation for an observation or phenomenon. It is based on prior knowledge and understanding of the world, and it can be tested by gathering and analyzing data. Observed facts are the data that are collected to test a hypothesis. They can support or refute the hypothesis.

For example, the hypothesis that “eating more fruits and vegetables will improve your health” can be tested by gathering data on the health of people who eat different amounts of fruits and vegetables. If the people who eat more fruits and vegetables are healthier than those who eat less fruits and vegetables, then the hypothesis is supported.

Hypotheses are essential for scientific inquiry. They help scientists to focus their research, to design experiments, and to interpret their results. They are also essential for the development of scientific theories.

Types Of Hypothesis

In research, you typically encounter two types of hypothesis: the alternative hypothesis (which proposes a relationship between variables) and the null hypothesis (which suggests no relationship).

Hypothesis testing

It illustrates the association between one dependent variable and one independent variable. For instance, if you consume more vegetables, you will lose weight more quickly. Here, increasing vegetable consumption is the independent variable, while weight loss is the dependent variable.

It exhibits the relationship between at least two dependent variables and at least two independent variables. Eating more vegetables and fruits results in weight loss, radiant skin, and a decreased risk of numerous diseases, including heart disease.

It shows that a researcher wants to reach a certain goal. The way the factors are related can also tell us about their nature. For example, four-year-old children who eat well over a time of five years have a higher IQ than children who don’t eat well. This shows what happened and how it happened.

When there is no theory involved, it is used. It is a statement that there is a connection between two variables, but it doesn’t say what that relationship is or which way it goes.

It says something that goes against the theory. It’s a statement that says something is not true, and there is no link between the independent and dependent factors. “H 0 ” represents the null hypothesis.

Associative and Causal Hypothesis

When a change in one variable causes a change in the other variable, this is called the associative hypothesis . The causal hypothesis, on the other hand, says that there is a cause-and-effect relationship between two or more factors.

Examples Of Hypothesis

Examples of simple hypotheses:

  • Students who consume breakfast before taking a math test will have a better overall performance than students who do not consume breakfast.
  • Students who experience test anxiety before an English examination will get lower scores than students who do not experience test anxiety.
  • Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone, is a statement that suggests that drivers who talk on the phone while driving are more likely to make mistakes.

Examples of a complex hypothesis:

  • Individuals who consume a lot of sugar and don’t get much exercise are at an increased risk of developing depression.
  • Younger people who are routinely exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces, according to a new study.
  • Increased levels of air pollution led to higher rates of respiratory illnesses, which in turn resulted in increased costs for healthcare for the affected communities.

Examples of Directional Hypothesis:

  • The crop yield will go up a lot if the amount of fertilizer is increased.
  • Patients who have surgery and are exposed to more stress will need more time to get better.
  • Increasing the frequency of brand advertising on social media will lead to a significant increase in brand awareness among the target audience.

Examples of Non-Directional Hypothesis (or Two-Tailed Hypothesis):

  • The test scores of two groups of students are very different from each other.
  • There is a link between gender and being happy at work.
  • There is a correlation between the amount of caffeine an individual consumes and the speed with which they react.

Examples of a null hypothesis:

  • Children who receive a new reading intervention will have scores that are different than students who do not receive the intervention.
  • The results of a memory recall test will not reveal any significant gap in performance between children and adults.
  • There is not a significant relationship between the number of hours spent playing video games and academic performance.

Examples of Associative Hypothesis:

  • There is a link between how many hours you spend studying and how well you do in school.
  • Drinking sugary drinks is bad for your health as a whole.
  • There is an association between socioeconomic status and access to quality healthcare services in urban neighborhoods.

Functions Of Hypothesis

The research issue can be understood better with the help of a hypothesis, which is why developing one is crucial. The following are some of the specific roles that a hypothesis plays: (Rashid, Apr 20, 2022)

  • A hypothesis gives a study a point of concentration. It enlightens us as to the specific characteristics of a study subject we need to look into.
  • It instructs us on what data to acquire as well as what data we should not collect, giving the study a focal point .
  • The development of a hypothesis improves objectivity since it enables the establishment of a focal point.
  • A hypothesis makes it possible for us to contribute to the development of the theory. Because of this, we are in a position to definitively determine what is true and what is untrue .

How will Hypothesis help in the Scientific Method?

  • The scientific method begins with observation and inquiry about the natural world when formulating research questions. Researchers can refine their observations and queries into specific, testable research questions with the aid of hypothesis. They provide an investigation with a focused starting point.
  • Hypothesis generate specific predictions regarding the expected outcomes of experiments or observations. These forecasts are founded on the researcher’s current knowledge of the subject. They elucidate what researchers anticipate observing if the hypothesis is true.
  • Hypothesis direct the design of experiments and data collection techniques. Researchers can use them to determine which variables to measure or manipulate, which data to obtain, and how to conduct systematic and controlled research.
  • Following the formulation of a hypothesis and the design of an experiment, researchers collect data through observation, measurement, or experimentation. The collected data is used to verify the hypothesis’s predictions.
  • Hypothesis establish the criteria for evaluating experiment results. The observed data are compared to the predictions generated by the hypothesis. This analysis helps determine whether empirical evidence supports or refutes the hypothesis.
  • The results of experiments or observations are used to derive conclusions regarding the hypothesis. If the data support the predictions, then the hypothesis is supported. If this is not the case, the hypothesis may be revised or rejected, leading to the formulation of new queries and hypothesis.
  • The scientific approach is iterative, resulting in new hypothesis and research issues from previous trials. This cycle of hypothesis generation, testing, and refining drives scientific progress.

Hypothesis

Importance Of Hypothesis

  • Hypothesis are testable statements that enable scientists to determine if their predictions are accurate. This assessment is essential to the scientific method, which is based on empirical evidence.
  • Hypothesis serve as the foundation for designing experiments or data collection techniques. They can be used by researchers to develop protocols and procedures that will produce meaningful results.
  • Hypothesis hold scientists accountable for their assertions. They establish expectations for what the research should reveal and enable others to assess the validity of the findings.
  • Hypothesis aid in identifying the most important variables of a study. The variables can then be measured, manipulated, or analyzed to determine their relationships.
  • Hypothesis assist researchers in allocating their resources efficiently. They ensure that time, money, and effort are spent investigating specific concerns, as opposed to exploring random concepts.
  • Testing hypothesis contribute to the scientific body of knowledge. Whether or not a hypothesis is supported, the results contribute to our understanding of a phenomenon.
  • Hypothesis can result in the creation of theories. When supported by substantive evidence, hypothesis can serve as the foundation for larger theoretical frameworks that explain complex phenomena.
  • Beyond scientific research, hypothesis play a role in the solution of problems in a variety of domains. They enable professionals to make educated assumptions about the causes of problems and to devise solutions.

Research Hypotheses: Did you know that a hypothesis refers to an educated guess or prediction about the outcome of a research study?

It’s like a roadmap guiding researchers towards their destination of knowledge. Just like a compass points north, a well-crafted hypothesis points the way to valuable discoveries in the world of science and inquiry.

Choose the best answer. 

Send Your Results (Optional)

clock.png

Further Reading

  • RNA-DNA World Hypothesis
  • BYJU’S. (2023). Hypothesis. Retrieved 01 Septermber 2023, from https://byjus.com/physics/hypothesis/#sources-of-hypothesis
  • Collegedunia. (2023). Hypothesis. Retrieved 1 September 2023, from https://collegedunia.com/exams/hypothesis-science-articleid-7026#d
  • Hussain, D. J. (2022). Hypothesis. Retrieved 01 September 2023, from https://mmhapu.ac.in/doc/eContent/Management/JamesHusain/Research%20Hypothesis%20-Meaning,%20Nature%20&%20Importance-Characteristics%20of%20Good%20%20Hypothesis%20Sem2.pdf
  • Media, D. (2023). Hypothesis in the Scientific Method. Retrieved 01 September 2023, from https://www.verywellmind.com/what-is-a-hypothesis-2795239#toc-hypotheses-examples
  • Rashid, M. H. A. (Apr 20, 2022). Research Methodology. Retrieved 01 September 2023, from https://limbd.org/hypothesis-definitions-functions-characteristics-types-errors-the-process-of-testing-a-hypothesis-hypotheses-in-qualitative-research/#:~:text=Functions%20of%20a%20Hypothesis%3A&text=Specifically%2C%20a%20hypothesis%20serves%20the,providing%20focus%20to%20the%20study.

©BiologyOnline.com. Content provided and moderated by Biology Online Editors.

Last updated on September 8th, 2023

You will also like...

hypothesis explanation observation

Gene Action – Operon Hypothesis

hypothesis explanation observation

Water in Plants

hypothesis explanation observation

Growth and Plant Hormones

hypothesis explanation observation

Sigmund Freud and Carl Gustav Jung

hypothesis explanation observation

Population Growth and Survivorship

Related articles....

hypothesis explanation observation

RNA-DNA World Hypothesis?

hypothesis explanation observation

On Mate Selection Evolution: Are intelligent males more attractive?

Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use

Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use

The Fungi

Dead Man Walking

1.3: The Scientific Method

Chapter 1: scientific inquiry, chapter 2: chemistry of life, chapter 3: macromolecules, chapter 4: cell structure and function, chapter 5: membranes and cellular transport, chapter 6: cell signaling, chapter 7: metabolism, chapter 8: cellular respiration, chapter 9: photosynthesis, chapter 10: cell cycle and division, chapter 11: meiosis, chapter 12: classical and modern genetics, chapter 13: dna structure and function, chapter 14: gene expression, chapter 15: biotechnology, chapter 16: viruses, chapter 17: nutrition and digestion, chapter 18: nervous system, chapter 19: sensory systems, chapter 20: musculoskeletal system, chapter 21: endocrine system, chapter 22: circulatory and pulmonary systems, chapter 23: osmoregulation and excretion, chapter 24: immune system, chapter 25: reproduction and development, chapter 26: behavior, chapter 27: ecosystems, chapter 28: population and community ecology, chapter 29: biodiversity and conservation, chapter 30: speciation and diversity, chapter 31: natural selection, chapter 32: population genetics, chapter 33: evolutionary history, chapter 34: plant structure, growth, and nutrition, chapter 35: plant reproduction, chapter 36: plant responses to the environment.

The JoVE video player is compatible with HTML5 and Adobe Flash. Older browsers that do not support HTML5 and the H.264 video codec will still use a Flash-based video player. We recommend downloading the newest version of Flash here, but we support all versions 10 and above.

hypothesis explanation observation

The scientific method is a detailed, stepwise process for answering questions. For example, a scientist makes an observation that the slugs destroy some cabbages but not those near garlic.

Such observations lead to asking questions, "Could garlic be used to deter slugs from ruining a cabbage patch?" After formulating questions, the scientist can then develop hypotheses —potential explanations for the observations that lead to specific, testable predictions.

In this case, a hypothesis could be that garlic repels slugs, which predicts that cabbages surrounded by garlic powder will suffer less damage than the ones without it. 

The hypothesis is then tested through a series of experiments designed to eliminate hypotheses.

The experimental setup involves defining variables. An independent variable is an item that is being tested, in this case, garlic addition. The dependent variable describes the measurement used to determine the outcome, such as the number of slugs on the cabbages.

In addition, the slugs must be divided into groups, experimental and control. These groups are identical, except that the experimental group is exposed to garlic powder.

After data are collected and analyzed, conclusions are made, and results are communicated to other scientists.

The scientific method is a detailed, empirical problem-solving process used by biologists and other scientists. This iterative approach involves formulating a question based on observation, developing a testable potential explanation for the observation (called a hypothesis), making and testing predictions based on the hypothesis, and using the findings to create new hypotheses and predictions.

Generally, predictions are tested using carefully-designed experiments. Based on the outcome of these experiments, the original hypothesis may need to be refined, and new hypotheses and questions can be generated. Importantly, this illustrates that the scientific method is not a stepwise recipe. Instead, it is a continuous refinement and testing of ideas based on new observations, which is the crux of scientific inquiry.

Science is mutable and continuously changes as scientists learn more about the world, physical phenomena and how organisms interact with their environment. For this reason, scientists avoid claiming to ‘prove' a specific idea. Instead, they gather evidence that either supports or refutes a given hypothesis.

Making Observations and Formulating Hypotheses

A hypothesis is preceded by an initial observation, during which information is gathered by the senses (e.g., vision, hearing) or using scientific tools and instruments. This observation leads to a question that prompts the formation of an initial hypothesis, a (testable) possible answer to the question. For example, the observation that slugs eat some cabbage plants but not cabbage plants located near garlic may prompt the question: why do slugs selectively not eat cabbage plants near garlic? One possible hypothesis, or answer to this question, is that slugs have an aversion to garlic. Based on this hypothesis, one might predict that slugs will not eat cabbage plants surrounded by a ring of garlic powder.

A hypothesis should be falsifiable, meaning that there are ways to disprove it if it is untrue. In other words, a hypothesis should be testable. Scientists often articulate and explicitly test for the opposite of the hypothesis, which is called the null hypothesis. In this case, the null hypothesis is that slugs do not have an aversion to garlic. The null hypothesis would be supported if, contrary to the prediction, slugs eat cabbage plants that are surrounded by garlic powder.

Testing a Hypothesis

When possible, scientists test hypotheses using controlled experiments that include independent and dependent variables, as well as control and experimental groups.

An independent variable is an item expected to have an effect (e.g., the garlic powder used in the slug and cabbage experiment or treatment given in a clinical trial). Dependent variables are the measurements used to determine the outcome of an experiment. In the experiment with slugs, cabbages, and garlic, the number of slugs eating cabbages is the dependent variable. This number is expected to depend on the presence or absence of garlic powder rings around the cabbage plants.

Experiments require experimental and control groups. An experimental group is treated with or exposed to the independent variable (i.e., the manipulation or treatment). For example, in the garlic aversion experiment with slugs, the experimental group is a group of cabbage plants surrounded by a garlic powder ring. A control group is subject to the same conditions as the experimental group, with the exception of the independent variable. Control groups in this experiment might include a group of cabbage plants in the same area that is surrounded by a non-garlic powder ring (to control for powder aversion) and a group that is not surrounded by any particular substance (to control for cabbage aversion). It is essential to include a control group because, without one, it is unclear whether the outcome is the result of the treatment or manipulation.

Refining a Hypothesis

If the results of an experiment support the hypothesis, further experiments may be designed and carried out to provide support for the hypothesis. The hypothesis may also be refined and made more specific. For example, additional experiments could determine whether slugs also have an aversion to other plants of the Allium genus, like onions.

If the results do not support the hypothesis, then the original hypothesis may be modified based on the new observations. It is important to rule out potential problems with the experimental design before modifying the hypothesis. For example, if slugs demonstrate an aversion to both garlic and non-garlic powder, the experiment can be carried out again using fresh garlic instead of powdered garlic. If the slugs still exhibit no aversion to garlic, then the original hypothesis can be modified.

Communication

The results of the experiments should be communicated to other scientists and the public, regardless of whether the data support the original hypothesis. This information can guide the development of new hypotheses and experimental questions.

Get cutting-edge science videos from J o VE sent straight to your inbox every month.

mktb-description

We use cookies to enhance your experience on our website.

By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.

WeChat QR Code - JoVE

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

The Scientific Method Tutorial

The scientific method, steps in the scientific method.

There is a great deal of variation in the specific techniques scientists use explore the natural world. However, the following steps characterize the majority of scientific investigations:

Step 1: Make observations Step 2: Propose a hypothesis to explain observations Step 3: Test the hypothesis with further observations or experiments Step 4: Analyze data Step 5: State conclusions about hypothesis based on data analysis

Each of these steps is explained briefly below, and in more detail later in this section.

Step 1: Make observations

A scientific inquiry typically starts with observations. Often, simple observations will trigger a question in the researcher's mind.

Example: A biologist frequently sees monarch caterpillars feeding on milkweed plants, but rarely sees them feeding on other types of plants. She wonders if it is because the caterpillars prefer milkweed over other food choices.

Step 2: Propose a hypothesis

The researcher develops a hypothesis (singular) or hypotheses (plural) to explain these observations. A hypothesis is a tentative explanation of a phenomenon or observation(s) that can be supported or falsified by further observations or experimentation.

Example: The researcher hypothesizes that monarch caterpillars prefer to feed on milkweed compared to other common plants. (Notice how the hypothesis is a statement, not a question as in step 1.)

Step 3: Test the hypothesis

The researcher makes further observations and/or may design an experiment to test the hypothesis. An experiment is a controlled situation created by a researcher to test the validity of a hypothesis. Whether further observations or an experiment is used to test the hypothesis will depend on the nature of the question and the practicality of manipulating the factors involved.

Example: The researcher sets up an experiment in the lab in which a number of monarch caterpillars are given a choice between milkweed and a number of other common plants to feed on.

Step 4: Analyze data

The researcher summarizes and analyzes the information, or data, generated by these further observations or experiments.

Example: In her experiment, milkweed was chosen by caterpillars 9 times out of 10 over all other plant selections.

Step 5: State conclusions

The researcher interprets the results of experiments or observations and forms conclusions about the meaning of these results. These conclusions are generally expressed as probability statements about their hypothesis.

Example: She concludes that when given a choice, 90 percent of monarch caterpillars prefer to feed on milkweed over other common plants.

Often, the results of one scientific study will raise questions that may be addressed in subsequent research. For example, the above study might lead the researcher to wonder why monarchs seem to prefer to feed on milkweed, and she may plan additional experiments to explore this question. For example, perhaps the milkweed has higher nutritional value than other available plants.

Return to top of page

The Scientific Method Flowchart

The steps in the scientific method are presented visually in the following flow chart. The question raised or the results obtained at each step directly determine how the next step will proceed. Following the flow of the arrows, pass the cursor over each blue box. An explanation and example of each step will appear. As you read the example given at each step, see if you can predict what the next step will be.

Activity: Apply the Scientific Method to Everyday Life Use the steps of the scientific method described above to solve a problem in real life. Suppose you come home one evening and flick the light switch only to find that the light doesn’t turn on. What is your hypothesis? How will you test that hypothesis? Based on the result of this test, what are your conclusions? Follow your instructor's directions for submitting your response.

The above flowchart illustrates the logical sequence of conclusions and decisions in a typical scientific study. There are some important points to note about this process:

1. The steps are clearly linked.

The steps in this process are clearly linked. The hypothesis, formed as a potential explanation for the initial observations, becomes the focus of the study. The hypothesis will determine what further observations are needed or what type of experiment should be done to test its validity. The conclusions of the experiment or further observations will either be in agreement with or will contradict the hypothesis. If the results are in agreement with the hypothesis, this does not prove that the hypothesis is true! In scientific terms, it "lends support" to the hypothesis, which will be tested again and again under a variety of circumstances before researchers accept it as a fairly reliable description of reality.

2. The same steps are not followed in all types of research.

The steps described above present a generalized method followed in a many scientific investigations. These steps are not carved in stone. The question the researcher wishes to answer will influence the steps in the method and how they will be carried out. For example, astronomers do not perform many experiments as defined here. They tend to rely on observations to test theories. Biologists and chemists have the ability to change conditions in a test tube and then observe whether the outcome supports or invalidates their starting hypothesis, while astronomers are not able to change the path of Jupiter around the Sun and observe the outcome!

3. Collected observations may lead to the development of theories.

When a large number of observations and/or experimental results have been compiled, and all are consistent with a generalized description of how some element of nature operates, this description is called a theory. Theories are much broader than hypotheses and are supported by a wide range of evidence. Theories are important scientific tools. They provide a context for interpretation of new observations and also suggest experiments to test their own validity. Theories are discussed in more detail in another section.

The Scientific Method in Detail

In the sections that follow, each step in the scientific method is described in more detail.

Step 1: Observations

Observations in science.

An observation is some thing, event, or phenomenon that is noticed or observed. Observations are listed as the first step in the scientific method because they often provide a starting point, a source of questions a researcher may ask. For example, the observation that leaves change color in the fall may lead a researcher to ask why this is so, and to propose a hypothesis to explain this phenomena. In fact, observations also will provide the key to answering the research question.

In science, observations form the foundation of all hypotheses, experiments, and theories. In an experiment, the researcher carefully plans what observations will be made and how they will be recorded. To be accepted, scientific conclusions and theories must be supported by all available observations. If new observations are made which seem to contradict an established theory, that theory will be re-examined and may be revised to explain the new facts. Observations are the nuts and bolts of science that researchers use to piece together a better understanding of nature.

Observations in science are made in a way that can be precisely communicated to (and verified by) other researchers. In many types of studies (especially in chemistry, physics, and biology), quantitative observations are used. A quantitative observation is one that is expressed and recorded as a quantity, using some standard system of measurement. Quantities such as size, volume, weight, time, distance, or a host of others may be measured in scientific studies.

Some observations that researchers need to make may be difficult or impossible to quantify. Take the example of color. Not all individuals perceive color in exactly the same way. Even apart from limiting conditions such as colorblindness, the way two people see and describe the color of a particular flower, for example, will not be the same. Color, as perceived by the human eye, is an example of a qualitative observation.

Qualitative observations note qualities associated with subjects or samples that are not readily measured. Other examples of qualitative observations might be descriptions of mating behaviors, human facial expressions, or "yes/no" type of data, where some factor is present or absent. Though the qualities of an object may be more difficult to describe or measure than any quantities associated with it, every attempt is made to minimize the effects of the subjective perceptions of the researcher in the process. Some types of studies, such as those in the social and behavioral sciences (which deal with highly variable human subjects), may rely heavily on qualitative observations.

Question: Why are observations important to science?

Limits of Observations

Because all observations rely to some degree on the senses (eyes, ears, or steady hand) of the researcher, complete objectivity is impossible. Our human perceptions are limited by the physical abilities of our sense organs and are interpreted according to our understanding of how the world works, which can be influenced by culture, experience, or education. According to science education specialist, George F. Kneller, "Surprising as it may seem, there is no fact that is not colored by our preconceptions" ("A Method of Enquiry," from Science and Its Ways of Knowing [Upper Saddle River: Prentice-Hall Inc., 1997], 15).

Observations made by a scientist are also limited by the sensitivity of whatever equipment he is using. Research findings will be limited at times by the available technology. For example, Italian physicist and philosopher Galileo Galilei (1564–1642) was reportedly the first person to observe the heavens with a telescope. Imagine how it must have felt to him to see the heavens through this amazing new instrument! It opened a window to the stars and planets and allowed new observations undreamed of before.

In the centuries since Galileo, increasingly more powerful telescopes have been devised that dwarf the power of that first device. In the past decade, we have marveled at images from deep space , courtesy of the Hubble Space Telescope, a large telescope that orbits Earth. Because of its view from outside the distorting effects of the atmosphere, the Hubble can look 50 times farther into space than the best earth-bound telescopes, and resolve details a tenth of the size (Seeds, Michael A., Horizons: Exploring the Universe , 5 th ed. [Belmont: Wadsworth Publishing Company, 1998], 86-87).

Construction is underway on a new radio telescope that scientists say will be able to detect electromagnetic waves from the very edges of the universe! This joint U.S.-Mexican project may allow us to ask questions about the origins of the universe and the beginnings of time that we could never have hoped to answer before. Completion of the new telescope is expected by the end of 2001.

Although the amount of detail observed by Galileo and today's astronomers is vastly different, the stars and their relationships have not changed very much. Yet with each technological advance, the level of detail of observation has been increased, and with it, the power to answer more and more challenging questions with greater precision.

Question: What are some of the differences between a casual observation and a 'scientific observation'?

Step 2: The Hypothesis

A hypothesis is a statement created by the researcher as a potential explanation for an observation or phenomena. The hypothesis converts the researcher's original question into a statement that can be used to make predictions about what should be observed if the hypothesis is true. For example, given the hypothesis, "exposure to ultraviolet (UV) radiation increases the risk of skin cancer," one would predict higher rates of skin cancer among people with greater UV exposure. These predictions could be tested by comparing skin cancer rates among individuals with varying amounts of UV exposure. Note how the hypothesis itself determines what experiments or further observations should be made to test its validity. Results of tests are then compared to predictions from the hypothesis, and conclusions are stated in terms of whether or not the data supports the hypothesis. So the hypothesis serves a guide to the full process of scientific inquiry.

The Qualities of a Good Hypothesis

  • A hypothesis must be testable or provide predictions that are testable. It can potentially be shown to be false by further observations or experimentation.
  • A hypothesis should be specific. If it is too general it cannot be tested, or tests will have so many variables that the results will be complicated and difficult to interpret. A well-written hypothesis is so specific it actually determines how the experiment should be set up.
  • A hypothesis should not include any untested assumptions if they can be avoided. The hypothesis itself may be an assumption that is being tested, but it should be phrased in a way that does not include assumptions that are not tested in the experiment.
  • It is okay (and sometimes a good idea) to develop more than one hypothesis to explain a set of observations. Competing hypotheses can often be tested side-by-side in the same experiment.

Question: Why is the hypothesis important to the scientific method?

Step 3: Testing the Hypothesis

A hypothesis may be tested in one of two ways: by making additional observations of a natural situation, or by setting up an experiment. In either case, the hypothesis is used to make predictions, and the observations or experimental data collected are examined to determine if they are consistent or inconsistent with those predictions. Hypothesis testing, especially through experimentation, is at the core of the scientific process. It is how scientists gain a better understanding of how things work.

Testing a Hypothesis by Observation

Some hypotheses may be tested through simple observation. For example, a researcher may formulate the hypothesis that the sun always rises in the east. What might an alternative hypothesis be? If his hypothesis is correct, he would predict that the sun will rise in the east tomorrow. He can easily test such a prediction by rising before dawn and going out to observe the sunrise. If the sun rises in the west, he will have disproved the hypothesis. He will have shown that it does not hold true in every situation. However, if he observes on that morning that the sun does in fact rise in the east, he has not proven the hypothesis. He has made a single observation that is consistent with, or supports, the hypothesis. As a scientist, to confidently state that the sun will always rise in the east, he will want to make many observations, under a variety of circumstances. Note that in this instance no manipulation of circumstance is required to test the hypothesis (i.e., you aren't altering the sun in any way).

Testing a Hypothesis by Experimentation

An experiment is a controlled series of observations designed to test a specific hypothesis. In an experiment, the researcher manipulates factors related to the hypothesis in such a way that the effect of these factors on the observations (data) can be readily measured and compared. Most experiments are an attempt to define a cause-and-effect relationship between two factors or events—to explain why something happens. For example, with the hypothesis "roses planted in sunny areas bloom earlier than those grown in shady areas," the experiment would be testing a cause-and-effect relationship between sunlight and time of blooming.

A major advantage of setting up an experiment versus making observations of what is already available is that it allows the researcher to control all the factors or events related to the hypothesis, so that the true cause of an event can be more easily isolated. In all cases, the hypothesis itself will determine the way the experiment will be set up. For example, suppose my hypothesis is "the weight of an object is proportional to the amount of time it takes to fall a certain distance." How would you test this hypothesis?

The Qualities of a Good Experiment

  • The experiment must be conducted on a group of subjects that are narrowly defined and have certain aspects in common. This is the group to which any conclusions must later be confined. (Examples of possible subjects: female cancer patients over age 40, E. coli bacteria, red giant stars, the nicotine molecule and its derivatives.)
  • All subjects of the experiment should be (ideally) completely alike in all ways except for the factor or factors that are being tested. Factors that are compared in scientific experiments are called variables. A variable is some aspect of a subject or event that may differ over time or from one group of subjects to another. For example, if a biologist wanted to test the effect of nitrogen on grass growth, he would apply different amounts of nitrogen fertilizer to several plots of grass. The grass in each of the plots should be as alike as possible so that any difference in growth could be attributed to the effect of the nitrogen. For example, all the grass should be of the same species, planted at the same time and at the same density, receive the same amount of water and sunlight, and so on. The variable in this case would be the amount of nitrogen applied to the plants. The researcher would not compare differing amounts of nitrogen across different grass species to determine the effect of nitrogen on grass growth. What is the problem with using different species of plants to compare the effect of nitrogen on plant growth? There are different kinds of variables in an experiment. A factor that the experimenter controls, and changes intentionally to determine if it has an effect, is called an independent variable . A factor that is recorded as data in the experiment, and which is compared across different groups of subjects, is called a dependent variable . In many cases, the value of the dependent variable will be influenced by the value of an independent variable. The goal of the experiment is to determine a cause-and-effect relationship between independent and dependent variables—in this case, an effect of nitrogen on plant growth. In the nitrogen/grass experiment, (1) which factor was the independent variable? (2) Which factor was the dependent variable?
  • Nearly all types of experiments require a control group and an experimental group. The control group generally is not changed in any way, but remains in a "natural state," while the experimental group is modified in some way to examine the effect of the variable which of interest to the researcher. The control group provides a standard of comparison for the experimental groups. For example, in new drug trials, some patients are given a placebo while others are given doses of the drug being tested. The placebo serves as a control by showing the effect of no drug treatment on the patients. In research terminology, the experimental groups are often referred to as treatments , since each group is treated differently. In the experimental test of the effect of nitrogen on grass growth, what is the control group? In the example of the nitrogen experiment, what is the purpose of a control group?
  • In research studies a great deal of emphasis is placed on repetition. It is essential that an experiment or study include enough subjects or enough observations for the researcher to make valid conclusions. The two main reasons why repetition is important in scientific studies are (1) variation among subjects or samples and (2) measurement error.

Variation among Subjects

There is a great deal of variation in nature. In a group of experimental subjects, much of this variation may have little to do with the variables being studied, but could still affect the outcome of the experiment in unpredicted ways. For example, in an experiment designed to test the effects of alcohol dose levels on reflex time in 18- to 22-year-old males, there would be significant variation among individual responses to various doses of alcohol. Some of this variation might be due to differences in genetic make-up, to varying levels of previous alcohol use, or any number of factors unknown to the researcher.

Because what the researcher wants to discover is average dose level effects for this group, he must run the test on a number of different subjects. Suppose he performed the test on only 10 individuals. Do you think the average response calculated would be the same as the average response of all 18- to 22-year-old males? What if he tests 100 individuals, or 1,000? Do you think the average he comes up with would be the same in each case? Chances are it would not be. So which average would you predict would be most representative of all 18- to 22-year-old males?

A basic rule of statistics is, the more observations you make, the closer the average of those observations will be to the average for the whole population you are interested in. This is because factors that vary among a population tend to occur most commonly in the middle range, and least commonly at the two extremes. Take human height for example. Although you may find a man who is 7 feet tall, or one who is 4 feet tall, most men will fall somewhere between 5 and 6 feet in height. The more men we measure to determine average male height, the less effect those uncommon extreme (tall or short) individuals will tend to impact the average. Thus, one reason why repetition is so important in experiments is that it helps to assure that the conclusions made will be valid not only for the individuals tested, but also for the greater population those individuals represent.

"The use of a sample (or subset) of a population, an event, or some other aspect of nature for an experimental group that is not large enough to be representative of the whole" is called sampling error (Starr, Cecie, Biology: Concepts and Applications , 4 th ed. [Pacific Cove: Brooks/Cole, 2000], glossary). If too few samples or subjects are used in an experiment, the researcher may draw incorrect conclusions about the population those samples or subjects represent.

Use the jellybean activity below to see a simple demonstration of samping error.

Directions: There are 400 jellybeans in the jar. If you could not see the jar and you initially chose 1 green jellybean from the jar, you might assume the jar only contains green jelly beans. The jar actually contains both green and black jellybeans. Use the "pick 1, 5, or 10" buttons to create your samples. For example, use the "pick" buttons now to create samples of 2, 13, and 27 jellybeans. After you take each sample, try to predict the ratio of green to black jellybeans in the jar. How does your prediction of the ratio of green to black jellybeans change as your sample changes?

Measurement Error

The second reason why repetition is necessary in research studies has to do with measurement error. Measurement error may be the fault of the researcher, a slight difference in measuring techniques among one or more technicians, or the result of limitations or glitches in measuring equipment. Even the most careful researcher or the best state-of-the-art equipment will make some mistakes in measuring or recording data. Another way of looking at this is to say that, in any study, some measurements will be more accurate than others will. If the researcher is conscientious and the equipment is good, the majority of measurements will be highly accurate, some will be somewhat inaccurate, and a few may be considerably inaccurate. In this case, the same reasoning used above also applies here: the more measurements taken, the less effect a few inaccurate measurements will have on the overall average.

Step 4: Data Analysis

In any experiment, observations are made, and often, measurements are taken. Measurements and observations recorded in an experiment are referred to as data . The data collected must relate to the hypothesis being tested. Any differences between experimental and control groups must be expressed in some way (often quantitatively) so that the groups may be compared. Graphs and charts are often used to visualize the data and to identify patterns and relationships among the variables.

Statistics is the branch of mathematics that deals with interpretation of data. Data analysis refers to statistical methods of determining whether any differences between the control group and experimental groups are too great to be attributed to chance alone. Although a discussion of statistical methods is beyond the scope of this tutorial, the data analysis step is crucial because it provides a somewhat standardized means for interpreting data. The statistical methods of data analysis used, and the results of those analyses, are always included in the publication of scientific research. This convention limits the subjective aspects of data interpretation and allows scientists to scrutinize the working methods of their peers.

Why is data analysis an important step in the scientific method?

Step 5: Stating Conclusions

The conclusions made in a scientific experiment are particularly important. Often, the conclusion is the only part of a study that gets communicated to the general public. As such, it must be a statement of reality, based upon the results of the experiment. To assure that this is the case, the conclusions made in an experiment must (1) relate back to the hypothesis being tested, (2) be limited to the population under study, and (3) be stated as probabilities.

The hypothesis that is being tested will be compared to the data collected in the experiment. If the experimental results contradict the hypothesis, it is rejected and further testing of that hypothesis under those conditions is not necessary. However, if the hypothesis is not shown to be wrong, that does not conclusively prove that it is right! In scientific terms, the hypothesis is said to be "supported by the data." Further testing will be done to see if the hypothesis is supported under a number of trials and under different conditions.

If the hypothesis holds up to extensive testing then the temptation is to claim that it is correct. However, keep in mind that the number of experiments and observations made will only represent a subset of all the situations in which the hypothesis may potentially be tested. In other words, experimental data will only show part of the picture. There is always the possibility that a further experiment may show the hypothesis to be wrong in some situations. Also, note that the limits of current knowledge and available technologies may prevent a researcher from devising an experiment that would disprove a particular hypothesis.

The researcher must be sure to limit his or her conclusions to apply only to the subjects tested in the study. If a particular species of fish is shown to consume their young 90 percent of the time when raised in captivity, that doesn't necessarily mean that all fish will do so, or that this fish's behavior would be the same in its native habitat.

Finally, the conclusions of the experiment are generally stated as probabilities. A careful scientist would never say, "drug x kills cancer cells;" she would more likely say, "drug x was shown to destroy 85 percent of cancerous skin cells in rats in lab trials." Notice how very different these two statements are. There is a tendency in the media and in the general public to gravitate toward the first statement. This makes a terrific headline and is also easy to interpret; it is absolute. Remember though, in science conclusions must be confined to the population under study; broad generalizations should be avoided. The second statement is sound science. There is data to back it up. Later studies may reveal a more universal effect of the drug on cancerous cells, or they may not. Most researchers would be unwilling to stake their reputations on the first statement.

As a student, you should read and interpret popular press articles about research studies very carefully. From the text, can you determine how the experiment was set up and what variables were measured? Are the observations and data collected appropriate to the hypothesis being tested? Are the conclusions supported by the data? Are the conclusions worded in a scientific context (as probability statements) or are they generalized for dramatic effect? In any researched-based assignment, it is a good idea to refer to the original publication of a study (usually found in professional journals) and to interpret the facts for yourself.

Qualities of a Good Experiment

  • narrowly defined subjects
  • all subjects treated alike except for the factor or variable being studied
  • a control group is used for comparison
  • measurements related to the factors being studied are carefully recorded
  • enough samples or subjects are used so that conclusions are valid for the population of interest
  • conclusions made relate back to the hypothesis, are limited to the population being studied, and are stated in terms of probabilities

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.6: Hypothesis, Theories, and Laws

  • Last updated
  • Save as PDF
  • Page ID 47443

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

  Learning Objectives

  • Describe the difference between hypothesis and theory as scientific terms.
  • Describe the difference between a theory and scientific law.

Although many have taken science classes throughout the course of their studies, people often have incorrect or misleading ideas about some of the most important and basic principles in science. Most students have heard of hypotheses, theories, and laws, but what do these terms really mean? Prior to reading this section, consider what you have learned about these terms before. What do these terms mean to you? What do you read that contradicts or supports what you thought?

What is a Fact?

A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?

One of the most common terms used in science classes is a "hypothesis". The word can have many different definitions, depending on the context in which it is being used:

  • An educated guess: a scientific hypothesis provides a suggested solution based on evidence.
  • Prediction: if you have ever carried out a science experiment, you probably made this type of hypothesis when you predicted the outcome of your experiment.
  • Tentative or proposed explanation: hypotheses can be suggestions about why something is observed. In order for it to be scientific, however, a scientist must be able to test the explanation to see if it works and if it is able to correctly predict what will happen in a situation. For example, "if my hypothesis is correct, we should see ___ result when we perform ___ test."
A hypothesis is very tentative; it can be easily changed.

What is a Theory?

The United States National Academy of Sciences describes what a theory is as follows:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact.

Note some key features of theories that are important to understand from this description:

  • Theories are explanations of natural phenomena. They aren't predictions (although we may use theories to make predictions). They are explanations as to why we observe something.
  • Theories aren't likely to change. They have a large amount of support and are able to satisfactorily explain numerous observations. Theories can, indeed, be facts. Theories can change, but it is a long and difficult process. In order for a theory to change, there must be many observations or pieces of evidence that the theory cannot explain.
  • Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight; it is not just one person's idea about something
Theories aren't likely to change.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are more overarching explanations of how nature works and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after many, many tests, that certain patterns existed in the observations on gas behavior. If the temperature of the gas is increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

What is a Belief?

A belief is a statement that is not scientifically provable. Beliefs may or may not be incorrect; they just are outside the realm of science to explore.

Laws vs. Theories

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations and laws are patterns we see in large amounts of data, frequently written as an equation. A theory will always remain a theory; a law will always remain a law.

Video \(\PageIndex{1}\): What’s the difference between a scientific law and theory?

  • A hypothesis is a tentative explanation that can be tested by further investigation.
  • A theory is a well-supported explanation of observations.
  • A scientific law is a statement that summarizes the relationship between variables.
  • An experiment is a controlled method of testing a hypothesis.

Contributions & Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis explanation observation

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis explanation observation

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Theories, Hypotheses, and Laws: Definitions, examples, and their roles in science

by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.

Listen to this reading

Did you know that the idea of evolution had been part of Western thought for more than 2,000 years before Charles Darwin was born? Like many theories, the theory of evolution was the result of the work of many different scientists working in different disciplines over a period of time.

A scientific theory is an explanation inferred from multiple lines of evidence for some broad aspect of the natural world and is logical, testable, and predictive.

As new evidence comes to light, or new interpretations of existing data are proposed, theories may be revised and even change; however, they are not tenuous or speculative.

A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge.

A scientific law is an expression of a mathematical or descriptive relationship observed in nature.

Imagine yourself shopping in a grocery store with a good friend who happens to be a chemist. Struggling to choose between the many different types of tomatoes in front of you, you pick one up, turn to your friend, and ask her if she thinks the tomato is organic . Your friend simply chuckles and replies, "Of course it's organic!" without even looking at how the fruit was grown. Why the amused reaction? Your friend is highlighting a simple difference in vocabulary. To a chemist, the term organic refers to any compound in which hydrogen is bonded to carbon. Tomatoes (like all plants) are abundant in organic compounds – thus your friend's laughter. In modern agriculture, however, organic has come to mean food items grown or raised without the use of chemical fertilizers, pesticides, or other additives.

So who is correct? You both are. Both uses of the word are correct, though they mean different things in different contexts. There are, of course, lots of words that have more than one meaning (like bat , for example), but multiple meanings can be especially confusing when two meanings convey very different ideas and are specific to one field of study.

  • Scientific theories

The term theory also has two meanings, and this double meaning often leads to confusion. In common language, the term theory generally refers to speculation or a hunch or guess. You might have a theory about why your favorite sports team isn't playing well, or who ate the last cookie from the cookie jar. But these theories do not fit the scientific use of the term. In science, a theory is a well-substantiated and comprehensive set of ideas that explains a phenomenon in nature. A scientific theory is based on large amounts of data and observations that have been collected over time. Scientific theories can be tested and refined by additional research , and they allow scientists to make predictions. Though you may be correct in your hunch, your cookie jar conjecture doesn't fit this more rigorous definition.

All scientific disciplines have well-established, fundamental theories . For example, atomic theory describes the nature of matter and is supported by multiple lines of evidence from the way substances behave and react in the world around us (see our series on Atomic Theory ). Plate tectonic theory describes the large scale movement of the outer layer of the Earth and is supported by evidence from studies about earthquakes , magnetic properties of the rocks that make up the seafloor , and the distribution of volcanoes on Earth (see our series on Plate Tectonic Theory ). The theory of evolution by natural selection , which describes the mechanism by which inherited traits that affect survivability or reproductive success can cause changes in living organisms over generations , is supported by extensive studies of DNA , fossils , and other types of scientific evidence (see our Charles Darwin series for more information). Each of these major theories guides and informs modern research in those fields, integrating a broad, comprehensive set of ideas.

So how are these fundamental theories developed, and why are they considered so well supported? Let's take a closer look at some of the data and research supporting the theory of natural selection to better see how a theory develops.

Comprehension Checkpoint

  • The development of a scientific theory: Evolution and natural selection

The theory of evolution by natural selection is sometimes maligned as Charles Darwin 's speculation on the origin of modern life forms. However, evolutionary theory is not speculation. While Darwin is rightly credited with first articulating the theory of natural selection, his ideas built on more than a century of scientific research that came before him, and are supported by over a century and a half of research since.

  • The Fixity Notion: Linnaeus

Figure 1: Cover of the 1760 edition of Systema Naturae.

Figure 1: Cover of the 1760 edition of Systema Naturae .

Research about the origins and diversity of life proliferated in the 18th and 19th centuries. Carolus Linnaeus , a Swedish botanist and the father of modern taxonomy (see our module Taxonomy I for more information), was a devout Christian who believed in the concept of Fixity of Species , an idea based on the biblical story of creation. The Fixity of Species concept said that each species is based on an ideal form that has not changed over time. In the early stages of his career, Linnaeus traveled extensively and collected data on the structural similarities and differences between different species of plants. Noting that some very different plants had similar structures, he began to piece together his landmark work, Systema Naturae, in 1735 (Figure 1). In Systema , Linnaeus classified organisms into related groups based on similarities in their physical features. He developed a hierarchical classification system , even drawing relationships between seemingly disparate species (for example, humans, orangutans, and chimpanzees) based on the physical similarities that he observed between these organisms. Linnaeus did not explicitly discuss change in organisms or propose a reason for his hierarchy, but by grouping organisms based on physical characteristics, he suggested that species are related, unintentionally challenging the Fixity notion that each species is created in a unique, ideal form.

  • The age of Earth: Leclerc and Hutton

Also in the early 1700s, Georges-Louis Leclerc, a French naturalist, and James Hutton , a Scottish geologist, began to develop new ideas about the age of the Earth. At the time, many people thought of the Earth as 6,000 years old, based on a strict interpretation of the events detailed in the Christian Old Testament by the influential Scottish Archbishop Ussher. By observing other planets and comets in the solar system , Leclerc hypothesized that Earth began as a hot, fiery ball of molten rock, mostly consisting of iron. Using the cooling rate of iron, Leclerc calculated that Earth must therefore be at least 70,000 years old in order to have reached its present temperature.

Hutton approached the same topic from a different perspective, gathering observations of the relationships between different rock formations and the rates of modern geological processes near his home in Scotland. He recognized that the relatively slow processes of erosion and sedimentation could not create all of the exposed rock layers in only a few thousand years (see our module The Rock Cycle ). Based on his extensive collection of data (just one of his many publications ran to 2,138 pages), Hutton suggested that the Earth was far older than human history – hundreds of millions of years old.

While we now know that both Leclerc and Hutton significantly underestimated the age of the Earth (by about 4 billion years), their work shattered long-held beliefs and opened a window into research on how life can change over these very long timescales.

  • Fossil studies lead to the development of a theory of evolution: Cuvier

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

With the age of Earth now extended by Leclerc and Hutton, more researchers began to turn their attention to studying past life. Fossils are the main way to study past life forms, and several key studies on fossils helped in the development of a theory of evolution . In 1795, Georges Cuvier began to work at the National Museum in Paris as a naturalist and anatomist. Through his work, Cuvier became interested in fossils found near Paris, which some claimed were the remains of the elephants that Hannibal rode over the Alps when he invaded Rome in 218 BCE . In studying both the fossils and living species , Cuvier documented different patterns in the dental structure and number of teeth between the fossils and modern elephants (Figure 2) (Horner, 1843). Based on these data , Cuvier hypothesized that the fossil remains were not left by Hannibal, but were from a distinct species of animal that once roamed through Europe and had gone extinct thousands of years earlier: the mammoth. The concept of species extinction had been discussed by a few individuals before Cuvier, but it was in direct opposition to the Fixity of Species concept – if every organism were based on a perfectly adapted, ideal form, how could any cease to exist? That would suggest it was no longer ideal.

While his work provided critical evidence of extinction , a key component of evolution , Cuvier was highly critical of the idea that species could change over time. As a result of his extensive studies of animal anatomy, Cuvier had developed a holistic view of organisms , stating that the

number, direction, and shape of the bones that compose each part of an animal's body are always in a necessary relation to all the other parts, in such a way that ... one can infer the whole from any one of them ...

In other words, Cuvier viewed each part of an organism as a unique, essential component of the whole organism. If one part were to change, he believed, the organism could not survive. His skepticism about the ability of organisms to change led him to criticize the whole idea of evolution , and his prominence in France as a scientist played a large role in discouraging the acceptance of the idea in the scientific community.

  • Studies of invertebrates support a theory of change in species: Lamarck

Jean Baptiste Lamarck, a contemporary of Cuvier's at the National Museum in Paris, studied invertebrates like insects and worms. As Lamarck worked through the museum's large collection of invertebrates, he was impressed by the number and variety of organisms . He became convinced that organisms could, in fact, change through time, stating that

... time and favorable conditions are the two principal means which nature has employed in giving existence to all her productions. We know that for her time has no limit, and that consequently she always has it at her disposal.

This was a radical departure from both the fixity concept and Cuvier's ideas, and it built on the long timescale that geologists had recently established. Lamarck proposed that changes that occurred during an organism 's lifetime could be passed on to their offspring, suggesting, for example, that a body builder's muscles would be inherited by their children.

As it turned out, the mechanism by which Lamarck proposed that organisms change over time was wrong, and he is now often referred to disparagingly for his "inheritance of acquired characteristics" idea. Yet despite the fact that some of his ideas were discredited, Lamarck established a support for evolutionary theory that others would build on and improve.

  • Rock layers as evidence for evolution: Smith

In the early 1800s, a British geologist and canal surveyor named William Smith added another component to the accumulating evidence for evolution . Smith observed that rock layers exposed in different parts of England bore similarities to one another: These layers (or strata) were arranged in a predictable order, and each layer contained distinct groups of fossils . From this series of observations , he developed a hypothesis that specific groups of animals followed one another in a definite sequence through Earth's history, and this sequence could be seen in the rock layers. Smith's hypothesis was based on his knowledge of geological principles , including the Law of Superposition.

The Law of Superposition states that sediments are deposited in a time sequence, with the oldest sediments deposited first, or at the bottom, and newer layers deposited on top. The concept was first expressed by the Persian scientist Avicenna in the 11th century, but was popularized by the Danish scientist Nicolas Steno in the 17th century. Note that the law does not state how sediments are deposited; it simply describes the relationship between the ages of deposited sediments.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Smith backed up his hypothesis with extensive drawings of fossils uncovered during his research (Figure 3), thus allowing other scientists to confirm or dispute his findings. His hypothesis has, in fact, been confirmed by many other scientists and has come to be referred to as the Law of Faunal Succession. His work was critical to the formation of evolutionary theory as it not only confirmed Cuvier's work that organisms have gone extinct , but it also showed that the appearance of life does not date to the birth of the planet. Instead, the fossil record preserves a timeline of the appearance and disappearance of different organisms in the past, and in doing so offers evidence for change in organisms over time.

  • The theory of evolution by natural selection: Darwin and Wallace

It was into this world that Charles Darwin entered: Linnaeus had developed a taxonomy of organisms based on their physical relationships, Leclerc and Hutton demonstrated that there was sufficient time in Earth's history for organisms to change, Cuvier showed that species of organisms have gone extinct , Lamarck proposed that organisms change over time, and Smith established a timeline of the appearance and disappearance of different organisms in the geological record .

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Charles Darwin collected data during his work as a naturalist on the HMS Beagle starting in 1831. He took extensive notes on the geology of the places he visited; he made a major find of fossils of extinct animals in Patagonia and identified an extinct giant ground sloth named Megatherium . He experienced an earthquake in Chile that stranded beds of living mussels above water, where they would be preserved for years to come.

Perhaps most famously, he conducted extensive studies of animals on the Galápagos Islands, noting subtle differences in species of mockingbird, tortoise, and finch that were isolated on different islands with different environmental conditions. These subtle differences made the animals highly adapted to their environments .

This broad spectrum of data led Darwin to propose an idea about how organisms change "by means of natural selection" (Figure 4). But this idea was not based only on his work, it was also based on the accumulation of evidence and ideas of many others before him. Because his proposal encompassed and explained many different lines of evidence and previous work, they formed the basis of a new and robust scientific theory regarding change in organisms – the theory of evolution by natural selection .

Darwin's ideas were grounded in evidence and data so compelling that if he had not conceived them, someone else would have. In fact, someone else did. Between 1858 and 1859, Alfred Russel Wallace , a British naturalist, wrote a series of letters to Darwin that independently proposed natural selection as the means for evolutionary change. The letters were presented to the Linnean Society of London, a prominent scientific society at the time (see our module on Scientific Institutions and Societies ). This long chain of research highlights that theories are not just the work of one individual. At the same time, however, it often takes the insight and creativity of individuals to put together all of the pieces and propose a new theory . Both Darwin and Wallace were experienced naturalists who were familiar with the work of others. While all of the work leading up to 1830 contributed to the theory of evolution , Darwin's and Wallace's theory changed the way that future research was focused by presenting a comprehensive, well-substantiated set of ideas, thus becoming a fundamental theory of biological research.

  • Expanding, testing, and refining scientific theories
  • Genetics and evolution: Mendel and Dobzhansky

Since Darwin and Wallace first published their ideas, extensive research has tested and expanded the theory of evolution by natural selection . Darwin had no concept of genes or DNA or the mechanism by which characteristics were inherited within a species . A contemporary of Darwin's, the Austrian monk Gregor Mendel , first presented his own landmark study, Experiments in Plant Hybridization, in 1865 in which he provided the basic patterns of genetic inheritance , describing which characteristics (and evolutionary changes) can be passed on in organisms (see our Genetics I module for more information). Still, it wasn't until much later that a "gene" was defined as the heritable unit.

In 1937, the Ukrainian born geneticist Theodosius Dobzhansky published Genetics and the Origin of Species , a seminal work in which he described genes themselves and demonstrated that it is through mutations in genes that change occurs. The work defined evolution as "a change in the frequency of an allele within a gene pool" ( Dobzhansky, 1982 ). These studies and others in the field of genetics have added to Darwin's work, expanding the scope of the theory .

  • Evolution under a microscope: Lenski

More recently, Dr. Richard Lenski, a scientist at Michigan State University, isolated a single Escherichia coli bacterium in 1989 as the first step of the longest running experimental test of evolutionary theory to date – a true test meant to replicate evolution and natural selection in the lab.

After the single microbe had multiplied, Lenski isolated the offspring into 12 different strains , each in their own glucose-supplied culture, predicting that the genetic make-up of each strain would change over time to become more adapted to their specific culture as predicted by evolutionary theory . These 12 lines have been nurtured for over 40,000 bacterial generations (luckily bacterial generations are much shorter than human generations) and exposed to different selective pressures such as heat , cold, antibiotics, and infection with other microorganisms. Lenski and colleagues have studied dozens of aspects of evolutionary theory with these genetically isolated populations . In 1999, they published a paper that demonstrated that random genetic mutations were common within the populations and highly diverse across different individual bacteria . However, "pivotal" mutations that are associated with beneficial changes in the group are shared by all descendants in a population and are much rarer than random mutations, as predicted by the theory of evolution by natural selection (Papadopoulos et al., 1999).

  • Punctuated equilibrium: Gould and Eldredge

While established scientific theories like evolution have a wealth of research and evidence supporting them, this does not mean that they cannot be refined as new information or new perspectives on existing data become available. For example, in 1972, biologist Stephen Jay Gould and paleontologist Niles Eldredge took a fresh look at the existing data regarding the timing by which evolutionary change takes place. Gould and Eldredge did not set out to challenge the theory of evolution; rather they used it as a guiding principle and asked more specific questions to add detail and nuance to the theory. This is true of all theories in science: they provide a framework for additional research. At the time, many biologists viewed evolution as occurring gradually, causing small incremental changes in organisms at a relatively steady rate. The idea is referred to as phyletic gradualism , and is rooted in the geological concept of uniformitarianism . After reexamining the available data, Gould and Eldredge came to a different explanation, suggesting that evolution consists of long periods of stability that are punctuated by occasional instances of dramatic change – a process they called punctuated equilibrium .

Like Darwin before them, their proposal is rooted in evidence and research on evolutionary change, and has been supported by multiple lines of evidence. In fact, punctuated equilibrium is now considered its own theory in evolutionary biology. Punctuated equilibrium is not as broad of a theory as natural selection . In science, some theories are broad and overarching of many concepts, such as the theory of evolution by natural selection; others focus on concepts at a smaller, or more targeted, scale such as punctuated equilibrium. And punctuated equilibrium does not challenge or weaken the concept of natural selection; rather, it represents a change in our understanding of the timing by which change occurs in organisms , and a theory within a theory. The theory of evolution by natural selection now includes both gradualism and punctuated equilibrium to describe the rate at which change proceeds.

  • Hypotheses and laws: Other scientific concepts

One of the challenges in understanding scientific terms like theory is that there is not a precise definition even within the scientific community. Some scientists debate over whether certain proposals merit designation as a hypothesis or theory , and others mistakenly use the terms interchangeably. But there are differences in these terms. A hypothesis is a proposed explanation for an observable phenomenon. Hypotheses , just like theories , are based on observations from research . For example, LeClerc did not hypothesize that Earth had cooled from a molten ball of iron as a random guess; rather, he developed this hypothesis based on his observations of information from meteorites.

A scientist often proposes a hypothesis before research confirms it as a way of predicting the outcome of study to help better define the parameters of the research. LeClerc's hypothesis allowed him to use known parameters (the cooling rate of iron) to do additional work. A key component of a formal scientific hypothesis is that it is testable and falsifiable. For example, when Richard Lenski first isolated his 12 strains of bacteria , he likely hypothesized that random mutations would cause differences to appear within a period of time in the different strains of bacteria. But when a hypothesis is generated in science, a scientist will also make an alternative hypothesis , an explanation that explains a study if the data do not support the original hypothesis. If the different strains of bacteria in Lenski's work did not diverge over the indicated period of time, perhaps the rate of mutation was slower than first thought.

So you might ask, if theories are so well supported, do they eventually become laws? The answer is no – not because they aren't well-supported, but because theories and laws are two very different things. Laws describe phenomena, often mathematically. Theories, however, explain phenomena. For example, in 1687 Isaac Newton proposed a Theory of Gravitation, describing gravity as a force of attraction between two objects. As part of this theory, Newton developed a Law of Universal Gravitation that explains how this force operates. This law states that the force of gravity between two objects is inversely proportional to the square of the distance between those objects. Newton 's Law does not explain why this is true, but it describes how gravity functions (see our Gravity: Newtonian Relationships module for more detail). In 1916, Albert Einstein developed his theory of general relativity to explain the mechanism by which gravity has its effect. Einstein's work challenges Newton's theory, and has been found after extensive testing and research to more accurately describe the phenomenon of gravity. While Einstein's work has replaced Newton's as the dominant explanation of gravity in modern science, Newton's Law of Universal Gravitation is still used as it reasonably (and more simply) describes the force of gravity under many conditions. Similarly, the Law of Faunal Succession developed by William Smith does not explain why organisms follow each other in distinct, predictable ways in the rock layers, but it accurately describes the phenomenon.

Theories, hypotheses , and laws drive scientific progress

Theories, hypotheses , and laws are not simply important components of science, they drive scientific progress. For example, evolutionary biology now stands as a distinct field of science that focuses on the origins and descent of species . Geologists now rely on plate tectonics as a conceptual model and guiding theory when they are studying processes at work in Earth's crust . And physicists refer to atomic theory when they are predicting the existence of subatomic particles yet to be discovered. This does not mean that science is "finished," or that all of the important theories have been discovered already. Like evolution , progress in science happens both gradually and in short, dramatic bursts. Both types of progress are critical for creating a robust knowledge base with data as the foundation and scientific theories giving structure to that knowledge.

  • Theories, hypotheses, and laws drive scientific progress

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

Library homepage

4.14: Experiments and Hypotheses

  • Page ID 43806

Now we’ll focus on the methods of scientific inquiry. Science often involves making observations and developing hypotheses. Experiments and further observations are often used to test the hypotheses.

A scientific experiment is a carefully organized procedure in which the scientist intervenes in a system to change something, then observes the result of the change. Scientific inquiry often involves doing experiments, though not always. For example, a scientist studying the mating behaviors of ladybugs might begin with detailed observations of ladybugs mating in their natural habitats. While this research may not be experimental, it is scientific: it involves careful and verifiable observation of the natural world. The same scientist might then treat some of the ladybugs with a hormone hypothesized to trigger mating and observe whether these ladybugs mated sooner or more often than untreated ones. This would qualify as an experiment because the scientist is now making a change in the system and observing the effects.

Forming a Hypothesis

When conducting scientific experiments, researchers develop hypotheses to guide experimental design. A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis, and it must be possible to prove your hypothesis true or false.

For example, Michael observes that maple trees lose their leaves in the fall. He might then propose a possible explanation for this observation: “cold weather causes maple trees to lose their leaves in the fall.” This statement is testable. He could grow maple trees in a warm enclosed environment such as a greenhouse and see if their leaves still dropped in the fall. The hypothesis is also falsifiable. If the leaves still dropped in the warm environment, then clearly temperature was not the main factor in causing maple leaves to drop in autumn.

In the Try It below, you can practice recognizing scientific hypotheses. As you consider each statement, try to think as a scientist would: can I test this hypothesis with observations or experiments? Is the statement falsifiable? If the answer to either of these questions is “no,” the statement is not a valid scientific hypothesis.

Practice Questions

Determine whether each following statement is a scientific hypothesis.

  • No. This statement is not testable or falsifiable.
  • No. This statement is not testable.
  • No. This statement is not falsifiable.
  • Yes. This statement is testable and falsifiable.

[reveal-answer q=”429550″] Show Answers [/reveal-answer] [hidden-answer a=”429550″]

  • d: Yes. This statement is testable and falsifiable. This could be tested with a number of different kinds of observations and experiments, and it is possible to gather evidence that indicates that air pollution is not linked with asthma.
  • a: No. This statement is not testable or falsifiable. “Bad thoughts and behaviors” are excessively vague and subjective variables that would be impossible to measure or agree upon in a reliable way. The statement might be “falsifiable” if you came up with a counterexample: a “wicked” place that was not punished by a natural disaster. But some would question whether the people in that place were really wicked, and others would continue to predict that a natural disaster was bound to strike that place at some point. There is no reason to suspect that people’s immoral behavior affects the weather unless you bring up the intervention of a supernatural being, making this idea even harder to test.

[/hidden-answer]

Testing a Vaccine

Let’s examine the scientific process by discussing an actual scientific experiment conducted by researchers at the University of Washington. These researchers investigated whether a vaccine may reduce the incidence of the human papillomavirus (HPV). The experimental process and results were published in an article titled, “ A controlled trial of a human papillomavirus type 16 vaccine .”

Preliminary observations made by the researchers who conducted the HPV experiment are listed below:

  • Human papillomavirus (HPV) is the most common sexually transmitted virus in the United States.
  • There are about 40 different types of HPV. A significant number of people that have HPV are unaware of it because many of these viruses cause no symptoms.
  • Some types of HPV can cause cervical cancer.
  • About 4,000 women a year die of cervical cancer in the United States.

Practice Question

Researchers have developed a potential vaccine against HPV and want to test it. What is the first testable hypothesis that the researchers should study?

  • HPV causes cervical cancer.
  • People should not have unprotected sex with many partners.
  • People who get the vaccine will not get HPV.
  • The HPV vaccine will protect people against cancer.

[reveal-answer q=”20917″] Show Answer [/reveal-answer] [hidden-answer a=”20917″]Hypothesis A is not the best choice because this information is already known from previous studies. Hypothesis B is not testable because scientific hypotheses are not value statements; they do not include judgments like “should,” “better than,” etc. Scientific evidence certainly might support this value judgment, but a hypothesis would take a different form: “Having unprotected sex with many partners increases a person’s risk for cervical cancer.” Before the researchers can test if the vaccine protects against cancer (hypothesis D), they want to test if it protects against the virus. This statement will make an excellent hypothesis for the next study. The researchers should first test hypothesis C—whether or not the new vaccine can prevent HPV.[/hidden-answer]

Experimental Design

You’ve successfully identified a hypothesis for the University of Washington’s study on HPV: People who get the HPV vaccine will not get HPV.

The next step is to design an experiment that will test this hypothesis. There are several important factors to consider when designing a scientific experiment. First, scientific experiments must have an experimental group. This is the group that receives the experimental treatment necessary to address the hypothesis.

The experimental group receives the vaccine, but how can we know if the vaccine made a difference? Many things may change HPV infection rates in a group of people over time. To clearly show that the vaccine was effective in helping the experimental group, we need to include in our study an otherwise similar control group that does not get the treatment. We can then compare the two groups and determine if the vaccine made a difference. The control group shows us what happens in the absence of the factor under study.

However, the control group cannot get “nothing.” Instead, the control group often receives a placebo. A placebo is a procedure that has no expected therapeutic effect—such as giving a person a sugar pill or a shot containing only plain saline solution with no drug. Scientific studies have shown that the “placebo effect” can alter experimental results because when individuals are told that they are or are not being treated, this knowledge can alter their actions or their emotions, which can then alter the results of the experiment.

Moreover, if the doctor knows which group a patient is in, this can also influence the results of the experiment. Without saying so directly, the doctor may show—through body language or other subtle cues—his or her views about whether the patient is likely to get well. These errors can then alter the patient’s experience and change the results of the experiment. Therefore, many clinical studies are “double blind.” In these studies, neither the doctor nor the patient knows which group the patient is in until all experimental results have been collected.

Both placebo treatments and double-blind procedures are designed to prevent bias. Bias is any systematic error that makes a particular experimental outcome more or less likely. Errors can happen in any experiment: people make mistakes in measurement, instruments fail, computer glitches can alter data. But most such errors are random and don’t favor one outcome over another. Patients’ belief in a treatment can make it more likely to appear to “work.” Placebos and double-blind procedures are used to level the playing field so that both groups of study subjects are treated equally and share similar beliefs about their treatment.

The scientists who are researching the effectiveness of the HPV vaccine will test their hypothesis by separating 2,392 young women into two groups: the control group and the experimental group. Answer the following questions about these two groups.

  • This group is given a placebo.
  • This group is deliberately infected with HPV.
  • This group is given nothing.
  • This group is given the HPV vaccine.

[reveal-answer q=”918962″] Show Answers [/reveal-answer] [hidden-answer a=”918962″]

  • a: This group is given a placebo. A placebo will be a shot, just like the HPV vaccine, but it will have no active ingredient. It may change peoples’ thinking or behavior to have such a shot given to them, but it will not stimulate the immune systems of the subjects in the same way as predicted for the vaccine itself.
  • d: This group is given the HPV vaccine. The experimental group will receive the HPV vaccine and researchers will then be able to see if it works, when compared to the control group.

Experimental Variables

A variable is a characteristic of a subject (in this case, of a person in the study) that can vary over time or among individuals. Sometimes a variable takes the form of a category, such as male or female; often a variable can be measured precisely, such as body height. Ideally, only one variable is different between the control group and the experimental group in a scientific experiment. Otherwise, the researchers will not be able to determine which variable caused any differences seen in the results. For example, imagine that the people in the control group were, on average, much more sexually active than the people in the experimental group. If, at the end of the experiment, the control group had a higher rate of HPV infection, could you confidently determine why? Maybe the experimental subjects were protected by the vaccine, but maybe they were protected by their low level of sexual contact.

To avoid this situation, experimenters make sure that their subject groups are as similar as possible in all variables except for the variable that is being tested in the experiment. This variable, or factor, will be deliberately changed in the experimental group. The one variable that is different between the two groups is called the independent variable. An independent variable is known or hypothesized to cause some outcome. Imagine an educational researcher investigating the effectiveness of a new teaching strategy in a classroom. The experimental group receives the new teaching strategy, while the control group receives the traditional strategy. It is the teaching strategy that is the independent variable in this scenario. In an experiment, the independent variable is the variable that the scientist deliberately changes or imposes on the subjects.

Dependent variables are known or hypothesized consequences; they are the effects that result from changes or differences in an independent variable. In an experiment, the dependent variables are those that the scientist measures before, during, and particularly at the end of the experiment to see if they have changed as expected. The dependent variable must be stated so that it is clear how it will be observed or measured. Rather than comparing “learning” among students (which is a vague and difficult to measure concept), an educational researcher might choose to compare test scores, which are very specific and easy to measure.

In any real-world example, many, many variables MIGHT affect the outcome of an experiment, yet only one or a few independent variables can be tested. Other variables must be kept as similar as possible between the study groups and are called control variables . For our educational research example, if the control group consisted only of people between the ages of 18 and 20 and the experimental group contained people between the ages of 30 and 35, we would not know if it was the teaching strategy or the students’ ages that played a larger role in the results. To avoid this problem, a good study will be set up so that each group contains students with a similar age profile. In a well-designed educational research study, student age will be a controlled variable, along with other possibly important factors like gender, past educational achievement, and pre-existing knowledge of the subject area.

What is the independent variable in this experiment?

  • Sex (all of the subjects will be female)
  • Presence or absence of the HPV vaccine
  • Presence or absence of HPV (the virus)

[reveal-answer q=”68680″]Show Answer[/reveal-answer] [hidden-answer a=”68680″]Answer b. Presence or absence of the HPV vaccine. This is the variable that is different between the control and the experimental groups. All the subjects in this study are female, so this variable is the same in all groups. In a well-designed study, the two groups will be of similar age. The presence or absence of the virus is what the researchers will measure at the end of the experiment. Ideally the two groups will both be HPV-free at the start of the experiment.

List three control variables other than age.

[practice-area rows=”3″][/practice-area] [reveal-answer q=”903121″]Show Answer[/reveal-answer] [hidden-answer a=”903121″]Some possible control variables would be: general health of the women, sexual activity, lifestyle, diet, socioeconomic status, etc.

What is the dependent variable in this experiment?

  • Sex (male or female)
  • Rates of HPV infection
  • Age (years)

[reveal-answer q=”907103″]Show Answer[/reveal-answer] [hidden-answer a=”907103″]Answer b. Rates of HPV infection. The researchers will measure how many individuals got infected with HPV after a given period of time.[/hidden-answer]

Contributors and Attributions

  • Revision and adaptation. Authored by : Shelli Carter and Lumen Learning. Provided by : Lumen Learning. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Scientific Inquiry. Provided by : Open Learning Initiative. Located at : https://oli.cmu.edu/jcourse/workbook/activity/page?context=434a5c2680020ca6017c03488572e0f8 . Project : Introduction to Biology (Open + Free). License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Scientific Method

Illustration by J.R. Bee. ThoughtCo. 

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis , and conducting scientific experiments . Scientific inquiry starts with an observation followed by the formulation of a question about what has been observed. The steps of the scientific method are as follows:

Observation

The first step of the scientific method involves making an observation about something that interests you. This is very important if you are doing a science project because you want your project to be focused on something that will hold your attention. Your observation can be on anything from plant movement to animal behavior, as long as it is something you really want to know more about.​ This is where you come up with the idea for your science project.

Once you've made your observation, you must formulate a question about what you have observed. Your question should tell what it is that you are trying to discover or accomplish in your experiment. When stating your question you should be as specific as possible.​ For example, if you are doing a project on plants , you may want to know how plants interact with microbes. Your question may be: Do plant spices inhibit bacterial growth ?

The hypothesis is a key component of the scientific process. A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be testable. That means that you should be able to test your hypothesis through experimentation .​ Your hypothesis must either be supported or falsified by your experiment. An example of a good hypothesis is: If there is a relation between listening to music and heart rate, then listening to music will cause a person's resting heart rate to either increase or decrease.

Once you've developed a hypothesis, you must design and conduct an experiment that will test it. You should develop a procedure that states very clearly how you plan to conduct your experiment. It is important that you include and identify a controlled variable or dependent variable in your procedure. Controls allow us to test a single variable in an experiment because they are unchanged. We can then make observations and comparisons between our controls and our independent variables (things that change in the experiment) to develop an accurate conclusion.​

The results are where you report what happened in the experiment. That includes detailing all observations and data made during your experiment. Most people find it easier to visualize the data by charting or graphing the information.​

The final step of the scientific method is developing a conclusion. This is where all of the results from the experiment are analyzed and a determination is reached about the hypothesis. Did the experiment support or reject your hypothesis? If your hypothesis was supported, great. If not, repeat the experiment or think of ways to improve your procedure.

  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • Six Steps of the Scientific Method
  • What Is an Experiment? Definition and Design
  • Scientific Method Flow Chart
  • Scientific Method Lesson Plan
  • How To Design a Science Fair Experiment
  • Science Projects for Every Subject
  • How to Do a Science Fair Project
  • What Are the Elements of a Good Hypothesis?
  • How to Write a Lab Report
  • What Is a Hypothesis? (Science)
  • Biology Science Fair Project Ideas
  • Understanding Simple vs Controlled Experiments
  • Null Hypothesis Definition and Examples
  • Stove Top Frozen Pizza Science Experiment

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Theme 2: How Does Blood and Organ Donation Work?

2.9 The Process of Science

Like geology, physics, and chemistry, biology is a science that gathers knowledge about the natural world. Specifically, biology is the study of life. The discoveries of biology are made by a community of researchers who work individually and together using agreed-on methods. In this sense, biology, like all sciences is a social enterprise like politics or the arts. The methods of science include careful observation, record keeping, logical and mathematical reasoning, experimentation, and submitting conclusions to the scrutiny of others. Science also requires considerable imagination and creativity; a well-designed experiment is commonly described as elegant, or beautiful. Like politics, science has considerable practical implications and some science is dedicated to practical applications, such as the prevention of disease (see  Figure 1 ). Other science proceeds largely motivated by curiosity. Whatever its goal, there is no doubt that science, including biology, has transformed human existence and will continue to do so.

Scanning electronic micrograph depicts E. coli bacteria aggregated together.

The Nature of Science

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines?  Science  (from the Latin  scientia,  meaning “knowledge”) can be defined as knowledge about the natural world.

Science is a very specific way of learning, or knowing, about the world. The history of the past 500 years demonstrates that science is a very powerful way of knowing about the world; it is largely responsible for the technological revolutions that have taken place during this time. There are however, areas of knowledge and human experience that the methods of science cannot be applied to. These include such things as answering purely moral questions, aesthetic questions, or what can be generally categorized as spiritual questions. Science cannot investigate these areas because they are outside the realm of material phenomena, the phenomena of matter and energy, and cannot be observed and measured.

The  scientific method  is a method of research with defined steps that include experiments and careful observation. The steps of the scientific method will be examined in detail later, but one of the most important aspects of this method is the testing of hypotheses. A  hypothesis  is a suggested explanation for an event, which can be tested. Hypotheses, or tentative explanations, are generally produced within the context of a  scientific theory . A scientific theory is a generally accepted, thoroughly tested and confirmed explanation for a set of observations or phenomena. Scientific theory is the foundation of scientific knowledge. In addition, in many scientific disciplines (less so in biology) there are  scientific laws , often expressed in mathematical formulas, which describe how elements of nature will behave under certain specific conditions. There is not an evolution of hypotheses through theories to laws as if they represented some increase in certainty about the world. Hypotheses are the day-to-day material that scientists work with and they are developed within the context of theories. Laws are concise descriptions of parts of the world that are amenable to formulaic or mathematical description.

Natural Sciences

What would you expect to see in a museum of natural sciences? Frogs? Plants? Dinosaur skeletons? Exhibits about how the brain functions? A planetarium? Gems and minerals? Or maybe all of the above? Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics ( Figure 2 ). However, those fields of science related to the physical world and its phenomena and processes are considered  natural sciences . Thus, a museum of natural sciences might contain any of the items listed above.

Some fields of science include astronomy, biology, computer science, geology, logic, physics, chemistry, and mathematics. (credit: "Image Editor/Flickr)"

There is no complete agreement when it comes to defining what the natural sciences include. For some experts, the natural sciences are astronomy, biology, chemistry, earth science, and physics. Other scholars choose to divide natural sciences into  life sciences , which study living things and include biology, and  physical sciences , which study nonliving matter and include astronomy, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on two sciences and are interdisciplinary.

Scientific Inquiry

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. Two methods of logical thinking are used: inductive reasoning and deductive reasoning.

Inductive reasoning  is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative (descriptive) or quantitative (consisting of numbers), and the raw data can be supplemented with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and the analysis of a large amount of data. Brain studies often work this way. Many brains are observed while people are doing a task. The part of the brain that lights up, indicating activity, is then demonstrated to be the part controlling the response to that task.

Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reasoning, the pattern of thinking moves in the opposite direction as compared to inductive reasoning.  Deductive reasoning  is a form of logical thinking that uses a general principle or law to forecast specific results. From those general principles, a scientist can extrapolate and predict the specific results that would be valid as long as the general principles are valid. For example, a prediction would be that if the climate is becoming warmer in a region, the distribution of plants and animals should change. Comparisons have been made between distributions in the past and the present, and the many changes that have been found are consistent with a warming climate. Finding the change in distribution is evidence that the climate change conclusion is a valid one.

Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science.  Descriptive  (or discovery)  science  aims to observe, explore, and discover, while  hypothesis-based science  begins with a specific question or problem and a potential answer or solution that can be tested. The boundary between these two forms of study is often blurred, because most scientific endeavors combine both approaches. Observations lead to questions, questions lead to forming a hypothesis as a possible answer to those questions, and then the hypothesis is tested. Thus, descriptive science and hypothesis-based science are in continuous dialogue.

Hypothesis Testing

Biologists study the living world by posing questions about it and seeking science-based responses. This approach is common to other sciences as well and is often referred to as the scientific method. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626) ( Figure 3 ), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost anything as a logical problem-solving method.

Painting depicts Sir Francis Bacon in a long cloak.

The scientific process typically starts with an observation (often a problem to be solved) that leads to a question. Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Recall that a hypothesis is a suggested explanation that can be tested. To solve a problem, several hypotheses may be proposed. For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” But there could be other responses to the question, and therefore other hypotheses may be proposed. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.”

Once a hypothesis has been selected, a prediction may be made. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .” For example, the prediction for the first hypothesis might be, “ If  the student turns on the air conditioning,  then  the classroom will no longer be too warm.”

A hypothesis must be testable to ensure that it is valid. For example, a hypothesis that depends on what a bear thinks is not testable, because it can never be known what a bear thinks. It should also be  falsifiable , meaning that it can be disproven by experimental results. An example of an unfalsifiable hypothesis is “Botticelli’s  Birth of Venus  is beautiful.” There is no experiment that might show this statement to be false. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. This is important. A hypothesis can be disproven, or eliminated, but it can never be proven. Science does not deal in proofs like mathematics. If an experiment fails to disprove a hypothesis, then we find support for that explanation, but this is not to say that down the road a better explanation will not be found, or a more carefully designed experiment will be found to falsify the hypothesis.

Each experiment will have one or more variables and one or more controls. A  variable  is any part of the experiment that can vary or change during the experiment. A  control  is a part of the experiment that does not change. Look for the variables and controls in the example that follows. As a simple example, an experiment might be conducted to test the hypothesis that phosphate limits the growth of algae in freshwater ponds. A series of artificial ponds are filled with water and half of them are treated by adding phosphate each week, while the other half are treated by adding a salt that is known not to be used by algae. The variable here is the phosphate (or lack of phosphate), the experimental or treatment cases are the ponds with added phosphate and the control ponds are those with something inert added, such as the salt. Just adding something is also a control against the possibility that adding extra matter to the pond has an effect. If the treated ponds show lesser growth of algae, then we have found support for our hypothesis. If they do not, then we reject our hypothesis. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted; it simply eliminates one hypothesis that is not valid ( Figure 4 ). Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

A flow chart shows the steps in the scientific method. In step 1, an observation is made. In step 2, a question is asked about the observation. In step 3, an answer to the question, called a hypothesis, is proposed. In step 4, a prediction is made based on the hypothesis. In step 5, an experiment is done to test the prediction. In step 6, the results are analyzed to determine whether or not the hypothesis is supported. If the hypothesis is not supported, another hypothesis is made. In either case, the results are reported.

In the example below, the scientific method is used to solve an everyday problem. Which part in the example below is the hypothesis? Which is the prediction? Based on the results of the experiment, is the hypothesis supported? If it is not supported, propose some alternative hypotheses.

  • My toaster doesn’t toast my bread.
  • Why doesn’t my toaster work?
  • There is something wrong with the electrical outlet.
  • If something is wrong with the outlet, my coffeemaker also won’t work when plugged into it.
  • I plug my coffeemaker into the outlet.
  • My coffeemaker works.

In practice, the scientific method is not as rigid and structured as it might at first appear. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests.

Basic and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science  or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, though this does not mean that in the end it may not result in an application.

In contrast,  applied science  or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster. In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the knowledge generated through basic science.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, new copies of DNA are made, shortly before a cell divides to form new cells. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science would exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity; an individual’s complete collection of genes is his or her genome.) Other organisms have also been studied as part of this project to gain a better understanding of human chromosomes. The Human Genome Project ( Figure 5 ) relied on basic research carried out with non-human organisms and, later, with the human genome. An important end goal eventually became using the data for applied research seeking cures for genetically related diseases.

The human genome project’s logo is shown, depicting a human being inside a DNA double helix. The words chemistry, biology, physics, ethics, informatics and engineering surround the circular image.

While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by serendipity, that is, by means of a fortunate accident or a lucky surprise. Penicillin was discovered when biologist Alexander Fleming accidentally left a petri dish of  Staphylococcus  bacteria open. An unwanted mold grew, killing the bacteria. The mold turned out to be  Penicillium , and a new antibiotic was discovered. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings for other researchers to expand and build upon their discoveries. Communication and collaboration within and between sub disciplines of science are key to the advancement of knowledge in science. For this reason, an important aspect of a scientist’s work is disseminating results and communicating with peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the limited few who are present. Instead, most scientists present their results in peer-reviewed articles that are published in scientific journals.  Peer-reviewed articles  are scientific papers that are reviewed, usually anonymously by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists.

There are many journals and the popular press that do not use a peer-review system. A large number of online open-access journals, journals with articles available without cost, are now available many of which use rigorous peer-review systems, but some of which do not. Results of any studies published in these forums without peer review are not reliable and should not form the basis for other scientific work. In one exception, journals may allow a researcher to cite a personal communication from another researcher about unpublished results with the cited author’s permission.

Section Summary

Biology is the science that studies living organisms and their interactions with one another and their environments. Science attempts to describe and understand the nature of the universe in whole or in part. Science has many fields; those fields related to the physical world and its phenomena are considered natural sciences.

A hypothesis is a tentative explanation for an observation. A scientific theory is a well-tested and consistently verified explanation for a set of observations or phenomena. A scientific law is a description, often in the form of a mathematical formula, of the behavior of an aspect of nature under certain circumstances. Two types of logical reasoning are used in science. Inductive reasoning uses results to produce general scientific principles. Deductive reasoning is a form of logical thinking that predicts results by applying general principles. The common thread throughout scientific research is the use of the scientific method. Scientists present their results in peer-reviewed scientific papers published in scientific journals.

Science can be basic or applied. The main goal of basic science is to expand knowledge without any expectation of short-term practical application of that knowledge. The primary goal of applied research, however, is to solve practical problems.

Human Biology Copyright © by Sarah Malmquist and Kristina Prescott is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

hypothesis explanation observation

Understanding Science

How science REALLY works...

A proposed explanation for a fairly narrow set of phenomena, usually based on prior experience, scientific background knowledge, preliminary observations, and logic. To learn more, visit Science at multiple levels .

Subscribe to our newsletter

  • Understanding Science 101
  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool
  • Misconceptions

SEP home page

  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Theory and Observation in Science

Scientists obtain a great deal of the evidence they use by collecting and producing empirical results. Much of the standard philosophical literature on this subject comes from 20 th century logical empiricists, their followers, and critics who embraced their issues while objecting to some of their aims and assumptions. Discussions about empirical evidence have tended to focus on epistemological questions regarding its role in theory testing. This entry follows that precedent, even though empirical evidence also plays important and philosophically interesting roles in other areas including scientific discovery, the development of experimental tools and techniques, and the application of scientific theories to practical problems.

The logical empiricists and their followers devoted much of their attention to the distinction between observables and unobservables, the form and content of observation reports, and the epistemic bearing of observational evidence on theories it is used to evaluate. Philosophical work in this tradition was characterized by the aim of conceptually separating theory and observation, so that observation could serve as the pure basis of theory appraisal. More recently, the focus of the philosophical literature has shifted away from these issues, and their close association to the languages and logics of science, to investigations of how empirical data are generated, analyzed, and used in practice. With this shift, we also see philosophers largely setting aside the aspiration of a pure observational basis for scientific knowledge and instead embracing a view of science in which the theoretical and empirical are usefully intertwined. This entry discusses these topics under the following headings:

1. Introduction

2.1 traditional empiricism, 2.2 the irrelevance of observation per se, 2.3 data and phenomena, 3.1 perception, 3.2 assuming the theory to be tested, 3.3 semantics, 4.1 confirmation, 4.2 saving the phenomena, 4.3 empirical adequacy, 5. conclusion, other internet resources, related entries.

Philosophers of science have traditionally recognized a special role for observations in the epistemology of science. Observations are the conduit through which the ‘tribunal of experience’ delivers its verdicts on scientific hypotheses and theories. The evidential value of an observation has been assumed to depend on how sensitive it is to whatever it is used to study. But this in turn depends on the adequacy of any theoretical claims its sensitivity may depend on. For example, we can challenge the use of a particular thermometer reading to support a prediction of a patient’s temperature by challenging theoretical claims having to do with whether a reading from a thermometer like this one, applied in the same way under similar conditions, should indicate the patient’s temperature well enough to count in favor of or against the prediction. At least some of those theoretical claims will be such that regardless of whether an investigator explicitly endorses, or is even aware of them, her use of the thermometer reading would be undermined by their falsity. All observations and uses of observational evidence are theory laden in this sense (cf. Chang 2005, Azzouni 2004). As the example of the thermometer illustrates, analogues of Norwood Hanson’s claim that seeing is a theory laden undertaking apply just as well to equipment generated observations (Hanson 1958, 19). But if all observations and empirical data are theory laden, how can they provide reality-based, objective epistemic constraints on scientific reasoning?

Recent scholarship has turned this question on its head. Why think that theory ladenness of empirical results would be problematic in the first place? If the theoretical assumptions with which the results are imbued are correct, what is the harm of it? After all, it is in virtue of those assumptions that the fruits of empirical investigation can be ‘put in touch’ with theorizing at all. A number scribbled in a lab notebook can do a scientist little epistemic good unless she can recruit the relevant background assumptions to even recognize it as a reading of the patient’s temperature. But philosophers have embraced an entangled picture of the theoretical and empirical that goes much deeper than this. Lloyd (2012) advocates for what she calls “complex empiricism” in which there is “no pristine separation of model and data” (397). Bogen (2016) points out that “impure empirical evidence” (i.e. evidence that incorporates the judgements of scientists) “often tells us more about the world that it could have if it were pure” (784). Indeed, Longino (2020) has urged that “[t]he naïve fantasy that data have an immediate relation to phenomena of the world, that they are ‘objective’ in some strong, ontological sense of that term, that they are the facts of the world directly speaking to us, should be finally laid to rest” and that “even the primary, original, state of data is not free from researchers’ value- and theory-laden selection and organization” (391).

There is not widespread agreement among philosophers of science about how to characterize the nature of scientific theories. What is a theory? According to the traditional syntactic view, theories are considered to be collections of sentences couched in logical language, which must then be supplemented with correspondence rules in order to be interpreted. Construed in this way, theories include maximally general explanatory and predictive laws (Coulomb’s law of electrical attraction and repulsion, and Maxwellian electromagnetism equations for example), along with lesser generalizations that describe more limited natural and experimental phenomena (e.g., the ideal gas equations describing relations between temperatures and pressures of enclosed gasses, and general descriptions of positional astronomical regularities). In contrast, the semantic view casts theories as the space of states possible according to the theory, or the set of mathematical models permissible according to the theory (see Suppe 1977). However, there are also significantly more ecumenical interpretations of what it means to be a scientific theory, which include elements of diverse kinds. To take just one illustrative example, Borrelli (2012) characterizes the Standard Model of particle physics as a theoretical framework involving what she calls “theoretical cores” that are composed of mathematical structures, verbal stories, and analogies with empirical references mixed together (196). This entry aims to accommodate all of these views about the nature of scientific theories.

In this entry, we trace the contours of traditional philosophical engagement with questions surrounding theory and observation in science that attempted to segregate the theoretical from the observational, and to cleanly delineate between the observable and the unobservable. We also discuss the more recent scholarship that supplants the primacy of observation by human sensory perception with an instrument-inclusive conception of data production and that embraces the intertwining of theoretical and empirical in the production of useful scientific results. Although theory testing dominates much of the standard philosophical literature on observation, much of what this entry says about the role of observation in theory testing applies also to its role in inventing, and modifying theories, and applying them to tasks in engineering, medicine, and other practical enterprises.

2. Observation and data

Reasoning from observations has been important to scientific practice at least since the time of Aristotle, who mentions a number of sources of observational evidence including animal dissection (Aristotle(a), 763a/30–b/15; Aristotle(b), 511b/20–25). Francis Bacon argued long ago that the best way to discover things about nature is to use experiences (his term for observations as well as experimental results) to develop and improve scientific theories (Bacon 1620, 49ff). The role of observational evidence in scientific discovery was an important topic for Whewell (1858) and Mill (1872) among others in the 19th century. But philosophers didn’t talk about observation as extensively, in as much detail, or in the way we have become accustomed to, until the 20 th century when logical empiricists transformed philosophical thinking about it.

One important transformation, characteristic of the linguistic turn in philosophy, was to concentrate on the logic of observation reports rather than on objects or phenomena observed. This focus made sense on the assumption that a scientific theory is a system of sentences or sentence-like structures (propositions, statements, claims, and so on) to be tested by comparison to observational evidence. It was assumed that the comparisons must be understood in terms of inferential relations. If inferential relations hold only between sentence-like structures, it follows that theories must be tested, not against observations or things observed, but against sentences, propositions, etc. used to report observations (Hempel 1935, 50–51; Schlick 1935). Theory testing was treated as a matter of comparing observation sentences describing observations made in natural or laboratory settings to observation sentences that should be true according to the theory to be tested. This was to be accomplished by using laws or lawlike generalizations along with descriptions of initial conditions, correspondence rules, and auxiliary hypotheses to derive observation sentences describing the sensory deliverances of interest. This makes it imperative to ask what observation sentences report.

According to what Hempel called the phenomenalist account , observation reports describe the observer’s subjective perceptual experiences.

… Such experiential data might be conceived of as being sensations, perceptions, and similar phenomena of immediate experience. (Hempel 1952, 674)

This view is motivated by the assumption that the epistemic value of an observation report depends upon its truth or accuracy, and that with regard to perception, the only thing observers can know with certainty to be true or accurate is how things appear to them. This means that we cannot be confident that observation reports are true or accurate if they describe anything beyond the observer’s own perceptual experience. Presumably one’s confidence in a conclusion should not exceed one’s confidence in one’s best reasons to believe it. For the phenomenalist, it follows that reports of subjective experience can provide better reasons to believe claims they support than reports of other kinds of evidence.

However, given the expressive limitations of the language available for reporting subjective experiences, we cannot expect phenomenalistic reports to be precise and unambiguous enough to test theoretical claims whose evaluation requires accurate, fine-grained perceptual discriminations. Worse yet, if experiences are directly available only to those who have them, there is room to doubt whether different people can understand the same observation sentence in the same way. Suppose you had to evaluate a claim on the basis of someone else’s subjective report of how a litmus solution looked to her when she dripped a liquid of unknown acidity into it. How could you decide whether her visual experience was the same as the one you would use her words to report?

Such considerations led Hempel to propose, contrary to the phenomenalists, that observation sentences report ‘directly observable’, ‘intersubjectively ascertainable’ facts about physical objects

… such as the coincidence of the pointer of an instrument with a numbered mark on a dial; a change of color in a test substance or in the skin of a patient; the clicking of an amplifier connected with a Geiger counter; etc. (ibid.)

That the facts expressed in observation reports be intersubjectively ascertainable was critical for the aims of the logical empiricists. They hoped to articulate and explain the authoritativeness widely conceded to the best natural, social, and behavioral scientific theories in contrast to propaganda and pseudoscience. Some pronouncements from astrologers and medical quacks gain wide acceptance, as do those of religious leaders who rest their cases on faith or personal revelation, and leaders who use their political power to secure assent. But such claims do not enjoy the kind of credibility that scientific theories can attain. The logical empiricists tried to account for the genuine credibility of scientific theories by appeal to the objectivity and accessibility of observation reports, and the logic of theory testing. Part of what they meant by calling observational evidence objective was that cultural and ethnic factors have no bearing on what can validly be inferred about the merits of a theory from observation reports. So conceived, objectivity was important to the logical empiricists’ criticism of the Nazi idea that Jews and Aryans have fundamentally different thought processes such that physical theories suitable for Einstein and his kind should not be inflicted on German students. In response to this rationale for ethnic and cultural purging of the German educational system, the logical empiricists argued that because of its objectivity, observational evidence (rather than ethnic and cultural factors) should be used to evaluate scientific theories (Galison 1990). In this way of thinking, observational evidence and its subsequent bearing on scientific theories are objective also in virtue of being free of non-epistemic values.

Ensuing generations of philosophers of science have found the logical empiricist focus on expressing the content of observations in a rarefied and basic observation language too narrow. Search for a suitably universal language as required by the logical empiricist program has come up empty-handed and most philosophers of science have given up its pursuit. Moreover, as we will discuss in the following section, the centrality of observation itself (and pointer readings) to the aims of empiricism in philosophy of science has also come under scrutiny. However, leaving the search for a universal pure observation language behind does not automatically undercut the norm of objectivity as it relates to the social, political, and cultural contexts of scientific research. Pristine logical foundations aside, the objectivity of ‘neutral’ observations in the face of noxious political propaganda was appealing because it could serve as shared ground available for intersubjective appraisal. This appeal remains alive and well today, particularly as pernicious misinformation campaigns are again formidable in public discourse (see O’Connor and Weatherall 2019). If individuals can genuinely appraise the significance of empirical evidence and come to well-justified agreement about how the evidence bears on theorizing, then they can protect their epistemic deliberations from the undue influence of fascists and other nefarious manipulators. However, this aspiration must face subtleties arising from the social epistemology of science and from the nature of empirical results themselves. In practice, the appraisal of scientific results can often require expertise that is not readily accessible to members of the public without the relevant specialized training. Additionally, precisely because empirical results are not pure observation reports, their appraisal across communities of inquirers operating with different background assumptions can require significant epistemic work.

The logical empiricists paid little attention to the distinction between observing and experimenting and its epistemic implications. For some philosophers, to experiment is to isolate, prepare, and manipulate things in hopes of producing epistemically useful evidence. It had been customary to think of observing as noticing and attending to interesting details of things perceived under more or less natural conditions, or by extension, things perceived during the course of an experiment. To look at a berry on a vine and attend to its color and shape would be to observe it. To extract its juice and apply reagents to test for the presence of copper compounds would be to perform an experiment. By now, many philosophers have argued that contrivance and manipulation influence epistemically significant features of observable experimental results to such an extent that epistemologists ignore them at their peril. Robert Boyle (1661), John Herschell (1830), Bruno Latour and Steve Woolgar (1979), Ian Hacking (1983), Harry Collins (1985) Allan Franklin (1986), Peter Galison (1987), Jim Bogen and Jim Woodward (1988), and Hans-Jörg Rheinberger (1997), are some of the philosophers and philosophically-minded scientists, historians, and sociologists of science who gave serious consideration to the distinction between observing and experimenting. The logical empiricists tended to ignore it. Interestingly, the contemporary vantage point that attends to modeling, data processing, and empirical results may suggest a re-unification of observation and intervention under the same epistemological framework. When one no longer thinks of scientific observation as pure or direct, and recognizes the power of good modeling to account for confounds without physically intervening on the target system, the purported epistemic distinction between observation and intervention loses its bite.

Observers use magnifying glasses, microscopes, or telescopes to see things that are too small or far away to be seen, or seen clearly enough, without them. Similarly, amplification devices are used to hear faint sounds. But if to observe something is to perceive it, not every use of instruments to augment the senses qualifies as observational.

Philosophers generally agree that you can observe the moons of Jupiter with a telescope, or a heartbeat with a stethoscope. The van Fraassen of The Scientific Image is a notable exception, for whom to be ‘observable’ meant to be something that, were it present to a creature like us, would be observed. Thus, for van Fraassen, the moons of Jupiter are observable “since astronauts will no doubt be able to see them as well from close up” (1980, 16). In contrast, microscopic entities are not observable on van Fraassen’s account because creatures like us cannot strategically maneuver ourselves to see them, present before us, with our unaided senses.

Many philosophers have criticized van Fraassen’s view as overly restrictive. Nevertheless, philosophers differ in their willingness to draw the line between what counts as observable and what does not along the spectrum of increasingly complicated instrumentation. Many philosophers who don’t mind telescopes and microscopes still find it unnatural to say that high energy physicists ‘observe’ particles or particle interactions when they look at bubble chamber photographs—let alone digital visualizations of energy depositions left in calorimeters that are not themselves inspected. Their intuitions come from the plausible assumption that one can observe only what one can see by looking, hear by listening, feel by touching, and so on. Investigators can neither look at (direct their gazes toward and attend to) nor visually experience charged particles moving through a detector. Instead they can look at and see tracks in the chamber, in bubble chamber photographs, calorimeter data visualizations, etc.

In more contentious examples, some philosophers have moved to speaking of instrument-augmented empirical research as more like tool use than sensing. Hacking (1981) argues that we do not see through a microscope, but rather with it. Daston and Galison (2007) highlight the inherent interactivity of a scanning tunneling microscope, in which scientists image and manipulate atoms by exchanging electrons between the sharp tip of the microscope and the surface to be imaged (397). Others have opted to stretch the meaning of observation to accommodate what we might otherwise be tempted to call instrument-aided detections. For instance, Shapere (1982) argues that while it may initially strike philosophers as counter-intuitive, it makes perfect sense to call the detection of neutrinos from the interior of the sun “direct observation.”

The variety of views on the observable/unobservable distinction hint that empiricists may have been barking up the wrong philosophical tree. Many of the things scientists investigate do not interact with human perceptual systems as required to produce perceptual experiences of them. The methods investigators use to study such things argue against the idea—however plausible it may once have seemed—that scientists do or should rely exclusively on their perceptual systems to obtain the evidence they need. Thus Feyerabend proposed as a thought experiment that if measuring equipment was rigged up to register the magnitude of a quantity of interest, a theory could be tested just as well against its outputs as against records of human perceptions (Feyerabend 1969, 132–137). Feyerabend could have made his point with historical examples instead of thought experiments. A century earlier Helmholtz estimated the speed of excitatory impulses traveling through a motor nerve. To initiate impulses whose speed could be estimated, he implanted an electrode into one end of a nerve fiber and ran a current into it from a coil. The other end was attached to a bit of muscle whose contraction signaled the arrival of the impulse. To find out how long it took the impulse to reach the muscle he had to know when the stimulating current reached the nerve. But

[o]ur senses are not capable of directly perceiving an individual moment of time with such small duration …

and so Helmholtz had to resort to what he called ‘artificial methods of observation’ (Olesko and Holmes 1994, 84). This meant arranging things so that current from the coil could deflect a galvanometer needle. Assuming that the magnitude of the deflection is proportional to the duration of current passing from the coil, Helmholtz could use the deflection to estimate the duration he could not see (ibid). This sense of ‘artificial observation’ is not to be confused e.g., with using magnifying glasses or telescopes to see tiny or distant objects. Such devices enable the observer to scrutinize visible objects. The minuscule duration of the current flow is not a visible object. Helmholtz studied it by cleverly concocting circumstances so that the deflection of the needle would meaningfully convey the information he needed. Hooke (1705, 16–17) argued for and designed instruments to execute the same kind of strategy in the 17 th century.

It is of interest that records of perceptual observation are not always epistemically superior to data collected via experimental equipment. Indeed, it is not unusual for investigators to use non-perceptual evidence to evaluate perceptual data and correct for its errors. For example, Rutherford and Pettersson conducted similar experiments to find out if certain elements disintegrated to emit charged particles under radioactive bombardment. To detect emissions, observers watched a scintillation screen for faint flashes produced by particle strikes. Pettersson’s assistants reported seeing flashes from silicon and certain other elements. Rutherford’s did not. Rutherford’s colleague, James Chadwick, visited Pettersson’s laboratory to evaluate his data. Instead of watching the screen and checking Pettersson’s data against what he saw, Chadwick arranged to have Pettersson’s assistants watch the screen while unbeknownst to them he manipulated the equipment, alternating normal operating conditions with a condition in which particles, if any, could not hit the screen. Pettersson’s data were discredited by the fact that his assistants reported flashes at close to the same rate in both conditions (Stuewer 1985, 284–288).

When the process of producing data is relatively convoluted, it is even easier to see that human sense perception is not the ultimate epistemic engine. Consider functional magnetic resonance images (fMRI) of the brain decorated with colors to indicate magnitudes of electrical activity in different regions during the performance of a cognitive task. To produce these images, brief magnetic pulses are applied to the subject’s brain. The magnetic force coordinates the precessions of protons in hemoglobin and other bodily stuffs to make them emit radio signals strong enough for the equipment to respond to. When the magnetic force is relaxed, the signals from protons in highly oxygenated hemoglobin deteriorate at a detectably different rate than signals from blood that carries less oxygen. Elaborate algorithms are applied to radio signal records to estimate blood oxygen levels at the places from which the signals are calculated to have originated. There is good reason to believe that blood flowing just downstream from spiking neurons carries appreciably more oxygen than blood in the vicinity of resting neurons. Assumptions about the relevant spatial and temporal relations are used to estimate levels of electrical activity in small regions of the brain corresponding to pixels in the finished image. The results of all of these computations are used to assign the appropriate colors to pixels in a computer generated image of the brain. In view of all of this, functional brain imaging differs, e.g., from looking and seeing, photographing, and measuring with a thermometer or a galvanometer in ways that make it uninformative to call it observation. And similarly for many other methods scientists use to produce non-perceptual evidence.

The role of the senses in fMRI data production is limited to such things as monitoring the equipment and keeping an eye on the subject. Their epistemic role is limited to discriminating the colors in the finished image, reading tables of numbers the computer used to assign them, and so on. While it is true that researchers typically use their sense of sight to take in visualizations of processed fMRI data—or numbers on a page or screen for that matter—this is not the primary locus of epistemic action. Researchers learn about brain processes through fMRI data, to the extent that they do, primarily in virtue of the suitability of the causal connection between the target processes and the data records, and of the transformations those data undergo when they are processed into the maps or other results that scientists want to use. The interesting questions are not about observability, i.e. whether neuronal activity, blood oxygen levels, proton precessions, radio signals, and so on, are properly understood as observable by creatures like us. The epistemic significance of the fMRI data depends on their delivering us the right sort of access to the target, but observation is neither necessary nor sufficient for that access.

Following Shapere (1982), one could respond by adopting an extremely permissive view of what counts as an ‘observation’ so as to allow even highly processed data to count as observations. However, it is hard to reconcile the idea that highly processed data like fMRI images record observations with the traditional empiricist notion that calculations involving theoretical assumptions and background beliefs must not be allowed (on pain of loss of objectivity) to intrude into the process of data production. Observation garnered its special epistemic status in the first place because it seemed more direct, more immediate, and therefore less distorted and muddled than (say) detection or inference. The production of fMRI images requires extensive statistical manipulation based on theories about the radio signals, and a variety of factors having to do with their detection along with beliefs about relations between blood oxygen levels and neuronal activity, sources of systematic error, and more. Insofar as the use of the term ‘observation’ connotes this extra baggage of traditional empiricism, it may be better to replace observation-talk with terminology that is more obviously permissive, such as that of ‘empirical data’ and ‘empirical results.’

Deposing observation from its traditional perch in empiricist epistemologies of science need not estrange philosophers from scientific practice. Terms like ‘observation’ and ‘observation reports’ do not occur nearly as much in scientific as in philosophical writings. In their place, working scientists tend to talk about data . Philosophers who adopt this usage are free to think about standard examples of observation as members of a large, diverse, and growing family of data production methods. Instead of trying to decide which methods to classify as observational and which things qualify as observables, philosophers can then concentrate on the epistemic influence of the factors that differentiate members of the family. In particular, they can focus their attention on what questions data produced by a given method can be used to answer, what must be done to use that data fruitfully, and the credibility of the answers they afford (Bogen 2016).

Satisfactorily answering such questions warrants further philosophical work. As Bogen and Woodward (1988) have argued, there is often a long road between obtaining a particular dataset replete with idiosyncrasies born of unspecified causal nuances to any claim about the phenomenon ultimately of interest to the researchers. Empirical data are typically produced in ways that make it impossible to predict them from the generalizations they are used to test, or to derive instances of those generalizations from data and non ad hoc auxiliary hypotheses. Indeed, it is unusual for many members of a set of reasonably precise quantitative data to agree with one another, let alone with a quantitative prediction. That is because precise, publicly accessible data typically cannot be produced except through processes whose results reflect the influence of causal factors that are too numerous, too different in kind, and too irregular in behavior for any single theory to account for them. When Bernard Katz recorded electrical activity in nerve fiber preparations, the numerical values of his data were influenced by factors peculiar to the operation of his galvanometers and other pieces of equipment, variations among the positions of the stimulating and recording electrodes that had to be inserted into the nerve, the physiological effects of their insertion, and changes in the condition of the nerve as it deteriorated during the course of the experiment. There were variations in the investigators’ handling of the equipment. Vibrations shook the equipment in response to a variety of irregularly occurring causes ranging from random error sources to the heavy tread of Katz’s teacher, A.V. Hill, walking up and down the stairs outside of the laboratory. That’s a short list. To make matters worse, many of these factors influenced the data as parts of irregularly occurring, transient, and shifting assemblies of causal influences.

The effects of systematic and random sources of error are typically such that considerable analysis and interpretation are required to take investigators from data sets to conclusions that can be used to evaluate theoretical claims. Interestingly, this applies as much to clear cases of perceptual data as to machine produced records. When 19 th and early 20 th century astronomers looked through telescopes and pushed buttons to record the time at which they saw a star pass a crosshair, the values of their data points depended, not only upon light from that star, but also upon features of perceptual processes, reaction times, and other psychological factors that varied from observer to observer. No astronomical theory has the resources to take such things into account.

Instead of testing theoretical claims by direct comparison to the data initially collected, investigators use data to infer facts about phenomena, i.e., events, regularities, processes, etc. whose instances are uniform and uncomplicated enough to make them susceptible to systematic prediction and explanation (Bogen and Woodward 1988, 317). The fact that lead melts at temperatures at or close to 327.5 C is an example of a phenomenon, as are widespread regularities among electrical quantities involved in the action potential, the motions of astronomical bodies, etc. Theories that cannot be expected to predict or explain such things as individual temperature readings can nevertheless be evaluated on the basis of how useful they are in predicting or explaining phenomena. The same holds for the action potential as opposed to the electrical data from which its features are calculated, and the motions of astronomical bodies in contrast to the data of observational astronomy. It is reasonable to ask a genetic theory how probable it is (given similar upbringings in similar environments) that the offspring of a parent or parents diagnosed with alcohol use disorder will develop one or more symptoms the DSM classifies as indicative of alcohol use disorder. But it would be quite unreasonable to ask the genetic theory to predict or explain one patient’s numerical score on one trial of a particular diagnostic test, or why a diagnostician wrote a particular entry in her report of an interview with an offspring of one of such parents (see Bogen and Woodward, 1988, 319–326).

Leonelli has challenged Bogen and Woodward’s (1988) claim that data are, as she puts it, “unavoidably embedded in one experimental context” (2009, 738). She argues that when data are suitably packaged, they can travel to new epistemic contexts and retain epistemic utility—it is not just claims about the phenomena that can travel, data travel too. Preparing data for safe travel involves work, and by tracing data ‘journeys,’ philosophers can learn about how the careful labor of researchers, data archivists, and database curators can facilitate useful data mobility. While Leonelli’s own work has often focused on data in biology, Leonelli and Tempini (2020) contains many diverse case studies of data journeys from a variety of scientific disciplines that will be of value to philosophers interested in the methodology and epistemology of science in practice.

The fact that theories typically predict and explain features of phenomena rather than idiosyncratic data should not be interpreted as a failing. For many purposes, this is the more useful and illuminating capacity. Suppose you could choose between a theory that predicted or explained the way in which neurotransmitter release relates to neuronal spiking (e.g., the fact that on average, transmitters are released roughly once for every 10 spikes) and a theory which explained or predicted the numbers displayed on the relevant experimental equipment in one, or a few single cases. For most purposes, the former theory would be preferable to the latter at the very least because it applies to so many more cases. And similarly for theories that predict or explain something about the probability of alcohol use disorder conditional on some genetic factor or a theory that predicted or explained the probability of faulty diagnoses of alcohol use disorder conditional on facts about the training that psychiatrists receive. For most purposes, these would be preferable to a theory that predicted specific descriptions in a single particular case history.

However, there are circumstances in which scientists do want to explain data. In empirical research it is often crucial to getting a useful signal that scientists deal with sources of background noise and confounding signals. This is part of the long road from newly collected data to useful empirical results. An important step on the way to eliminating unwanted noise or confounds is to determine their sources. Different sources of noise can have different characteristics that can be derived from and explained by theory. Consider the difference between ‘shot noise’ and ‘thermal noise,’ two ubiquitous sources of noise in precision electronics (Schottky 1918; Nyquist 1928; Horowitz and Hill 2015). ‘Shot noise’ arises in virtue of the discrete nature of a signal. For instance, light collected by a detector does not arrive all at once or in perfectly continuous fashion. Photons rain onto a detector shot by shot on account of being quanta. Imagine building up an image one photon at a time—at first the structure of the image is barely recognizable, but after the arrival of many photons, the image eventually fills in. In fact, the contribution of noise of this type goes as the square root of the signal. By contrast, thermal noise is due to non-zero temperature—thermal fluctuations cause a small current to flow in any circuit. If you cool your instrument (which very many precision experiments in physics do) then you can decrease thermal noise. Cooling the detector is not going to change the quantum nature of photons though. Simply collecting more photons will improve the signal to noise ratio with respect to shot noise. Thus, determining what kind of noise is affecting one’s data, i.e. explaining features of the data themselves that are idiosyncratic to the particular instruments and conditions prevailing during a specific instance of data collection, can be critical to eventually generating a dataset that can be used to answer questions about phenomena of interest. In using data that require statistical analysis, it is particularly clear that “empirical assumptions about the factors influencing the measurement results may be used to motivate the assumption of a particular error distribution”, which can be crucial for justifying the application of methods of analysis (Woodward 2011, 173).

There are also circumstances in which scientists want to provide a substantive, detailed explanation for a particular idiosyncratic datum, and even circumstances in which procuring such explanations is epistemically imperative. Ignoring outliers without good epistemic reasons is just cherry-picking data, one of the canonical ‘questionable research practices.’ Allan Franklin has described Robert Millikan’s convenient exclusion of data he collected from observing the second oil drop in his experiments of April 16, 1912 (1986, 231). When Millikan initially recorded the data for this drop, his notebooks indicate that he was satisfied his apparatus was working properly and that the experiment was running well—he wrote “Publish” next to the data in his lab notebook. However, after he had later calculated the value for the fundamental electric charge that these data yielded, and found it aberrant with respect to the values he calculated using data collected from other good observing sessions, he changed his mind, writing “Won’t work” next to the calculation (ibid., see also Woodward 2010, 794). Millikan not only never published this result, he never published why he failed to publish it. When data are excluded from analysis, there ought to be some explanation justifying their omission over and above lack of agreement with the experimenters’ expectations. Precisely because they are outliers, some data require specific, detailed, idiosyncratic causal explanations. Indeed, it is often in virtue of those very explanations that outliers can be responsibly rejected. Some explanation of data rejected as ‘spurious’ is required. Otherwise, scientists risk biasing their own work.

Thus, while in transforming data as collected into something useful for learning about phenomena, scientists often account for features of the data such as different types of noise contributions, and sometimes even explain the odd outlying data point or artifact, they simply do not explain every individual teensy tiny causal contribution to the exact character of a data set or datum in full detail. This is because scientists can neither discover such causal minutia nor would their invocation be necessary for typical research questions. The fact that it may sometimes be important for scientists to provide detailed explanations of data, and not just claims about phenomena inferred from data, should not be confused with the dubious claim that scientists could ‘in principle’ detail every causal quirk that contributed to some data (Woodward 2010; 2011).

In view of all of this, together with the fact that a great many theoretical claims can only be tested directly against facts about phenomena, it behooves epistemologists to think about how data are used to answer questions about phenomena. Lacking space for a detailed discussion, the most this entry can do is to mention two main kinds of things investigators do in order to draw conclusions from data. The first is causal analysis carried out with or without the use of statistical techniques. The second is non-causal statistical analysis.

First, investigators must distinguish features of the data that are indicative of facts about the phenomenon of interest from those which can safely be ignored, and those which must be corrected for. Sometimes background knowledge makes this easy. Under normal circumstances investigators know that their thermometers are sensitive to temperature, and their pressure gauges, to pressure. An astronomer or a chemist who knows what spectrographic equipment does, and what she has applied it to will know what her data indicate. Sometimes it is less obvious. When Santiago Ramón y Cajal looked through his microscope at a thin slice of stained nerve tissue, he had to figure out which, if any, of the fibers he could see at one focal length connected to or extended from things he could see only at another focal length, or in another slice. Analogous considerations apply to quantitative data. It was easy for Katz to tell when his equipment was responding more to Hill’s footfalls on the stairs than to the electrical quantities it was set up to measure. It can be harder to tell whether an abrupt jump in the amplitude of a high frequency EEG oscillation was due to a feature of the subjects brain activity or an artifact of extraneous electrical activity in the laboratory or operating room where the measurements were made. The answers to questions about which features of numerical and non-numerical data are indicative of a phenomenon of interest typically depend at least in part on what is known about the causes that conspire to produce the data.

Statistical arguments are often used to deal with questions about the influence of epistemically relevant causal factors. For example, when it is known that similar data can be produced by factors that have nothing to do with the phenomenon of interest, Monte Carlo simulations, regression analyses of sample data, and a variety of other statistical techniques sometimes provide investigators with their best chance of deciding how seriously to take a putatively illuminating feature of their data.

But statistical techniques are also required for purposes other than causal analysis. To calculate the magnitude of a quantity like the melting point of lead from a scatter of numerical data, investigators throw out outliers, calculate the mean and the standard deviation, etc., and establish confidence and significance levels. Regression and other techniques are applied to the results to estimate how far from the mean the magnitude of interest can be expected to fall in the population of interest (e.g., the range of temperatures at which pure samples of lead can be expected to melt).

The fact that little can be learned from data without causal, statistical, and related argumentation has interesting consequences for received ideas about how the use of observational evidence distinguishes science from pseudoscience, religion, and other non-scientific cognitive endeavors. First, scientists are not the only ones who use observational evidence to support their claims; astrologers and medical quacks use them too. To find epistemically significant differences, one must carefully consider what sorts of data they use, where it comes from, and how it is employed. The virtues of scientific as opposed to non-scientific theory evaluations depend not only on its reliance on empirical data, but also on how the data are produced, analyzed and interpreted to draw conclusions against which theories can be evaluated. Secondly, it does not take many examples to refute the notion that adherence to a single, universally applicable ‘scientific method’ differentiates the sciences from the non-sciences. Data are produced, and used in far too many different ways to treat informatively as instances of any single method. Thirdly, it is usually, if not always, impossible for investigators to draw conclusions to test theories against observational data without explicit or implicit reliance on theoretical resources.

Bokulich (2020) has helpfully outlined a taxonomy of various ways in which data can be model-laden to increase their epistemic utility. She focuses on seven categories: data conversion, data correction, data interpolation, data scaling, data fusion, data assimilation, and synthetic data. Of these categories, conversion and correction are perhaps the most familiar. Bokulich reminds us that even in the case of reading a temperature from an ordinary mercury thermometer, we are ‘converting’ the data as measured, which in this case is the height of the column of mercury, to a temperature (ibid., 795). In more complicated cases, such as processing the arrival times of acoustic signals in seismic reflection measurements to yield values for subsurface depth, data conversion may involve models (ibid.). In this example, models of the composition and geometry of the subsurface are needed in order to account for differences in the speed of sound in different materials. Data ‘correction’ involves common practices we have already discussed like modeling and mathematically subtracting background noise contributions from one’s dataset (ibid., 796). Bokulich rightly points out that involving models in these ways routinely improves the epistemic uses to which data can be put. Data interpolation, scaling, and ‘fusion’ are also relatively widespread practices that deserve further philosophical analysis. Interpolation involves filling in missing data in a patchy data set, under the guidance of models. Data are scaled when they have been generated in a particular scale (temporal, spatial, energy) and modeling assumptions are recruited to transform them to apply at another scale. Data are ‘fused,’ in Bokulich’s terminology, when data collected in diverse contexts, using diverse methods are combined, or integrated together. For instance, when data from ice cores, tree rings, and the historical logbooks of sea captains are merged into a joint climate dataset. Scientists must take care in combining data of diverse provenance, and model new uncertainties arising from the very amalgamation of datasets (ibid., 800).

Bokulich contrasts ‘synthetic data’ with what she calls ‘real data’ (ibid., 801–802). Synthetic data are virtual, or simulated data, and are not produced by physical interaction with worldly research targets. Bokulich emphasizes the role that simulated data can usefully play in testing and troubleshooting aspects of data processing that are to eventually be deployed on empirical data (ibid., 802). It can be incredibly useful for developing and stress-testing a data processing pipeline to have fake datasets whose characteristics are already known in virtue of having been produced by the researchers, and being available for their inspection at will. When the characteristics of a dataset are known, or indeed can be tailored according to need, the effects of new processing methods can be more readily traced than without. In this way, researchers can familiarize themselves with the effects of a data processing pipeline, and make adjustments to that pipeline in light of what they learn by feeding fake data through it, before attempting to use that pipeline on actual science data. Such investigations can be critical to eventually arguing for the credibility of the final empirical results and their appropriate interpretation and use.

Data assimilation is perhaps a less widely appreciated aspect of model-based data processing among philosophers of science, excepting Parker (2016; 2017). Bokulich characterizes this method as “the optimal integration of data with dynamical model estimates to provide a more accurate ‘assimilation estimate’ of the quantity” (2020, 800). Thus, data assimilation involves balancing the contributions of empirical data and the output of models in an integrated estimate, according to the uncertainties associated with these contributions.

Bokulich argues that the involvement of models in these various aspects of data processing does not necessarily lead to better epistemic outcomes. Done wrong, integrating models and data can introduce artifacts and make the processed data unreliable for the purpose at hand (ibid., 804). Indeed, she notes that “[t]here is much work for methodologically reflective scientists and philosophers of science to do in string out cases in which model-data symbiosis may be problematic or circular” (ibid.)

3. Theory and value ladenness

Empirical results are laden with values and theoretical commitments. Philosophers have raised and appraised several possible kinds of epistemic problems that could be associated with theory and/or value-laden empirical results. They have worried about the extent to which human perception itself is distorted by our commitments. They have worried that drawing upon theoretical resources from the very theory to be appraised (or its competitors) in the generation of empirical results yields vicious circularity (or inconsistency). They have also worried that contingent conceptual and/or linguistic frameworks trap bits of evidence like bees in amber so that they cannot carry on their epistemic lives outside of the contexts of their origination, and that normative values necessarily corrupt the integrity of science. Do the theory and value-ladenness of empirical results render them hopelessly parochial? That is, when scientists leave theoretical commitments behind and adopt new ones, must they also relinquish the fruits of the empirical research imbued with their prior commitments too? In this section, we discuss these worries and responses that philosophers have offered to assuage them.

If you believe that observation by human sense perception is the objective basis of all scientific knowledge, then you ought to be particularly worried about the potential for human perception to be corrupted by theoretical assumptions, wishful thinking, framing effects, and so on. Daston and Galison recount the striking example of Arthur Worthington’s symmetrical milk drops (2007, 11–16). Working in 1875, Worthington investigated the hydrodynamics of falling fluid droplets and their evolution upon impacting a hard surface. At first, he had tried to carefully track the drop dynamics with a strobe light to burn a sequence of images into his own retinas. The images he drew to record what he saw were radially symmetric, with rays of the drop splashes emanating evenly from the center of the impact. However, when Worthington transitioned from using his eyes and capacity to draw from memory to using photography in 1894, he was shocked to find that the kind of splashes he had been observing were irregular splats (ibid., 13). Even curiouser, when Worthington returned to his drawings, he found that he had indeed recorded some unsymmetrical splashes. He had evidently dismissed them as uninformative accidents instead of regarding them as revelatory of the phenomenon he was intent on studying (ibid.) In attempting to document the ideal form of the splashes, a general and regular form, he had subconsciously down-played the irregularity of individual splashes. If theoretical commitments, like Worthington’s initial commitment to the perfect symmetry of the physics he was studying, pervasively and incorrigibly dictated the results of empirical inquiry, then the epistemic aims of science would be seriously undermined.

Perceptual psychologists, Bruner and Postman, found that subjects who were briefly shown anomalous playing cards, e.g., a black four of hearts, reported having seen their normal counterparts e.g., a red four of hearts. It took repeated exposures to get subjects to say the anomalous cards didn’t look right, and eventually, to describe them correctly (Kuhn 1962, 63). Kuhn took such studies to indicate that things don’t look the same to observers with different conceptual resources. (For a more up-to-date discussion of theory and conceptual perceptual loading see Lupyan 2015.) If so, black hearts didn’t look like black hearts until repeated exposures somehow allowed subjects to acquire the concept of a black heart. By analogy, Kuhn supposed, when observers working in conflicting paradigms look at the same thing, their conceptual limitations should keep them from having the same visual experiences (Kuhn 1962, 111, 113–114, 115, 120–1). This would mean, for example, that when Priestley and Lavoisier watched the same experiment, Lavoisier should have seen what accorded with his theory that combustion and respiration are oxidation processes, while Priestley’s visual experiences should have agreed with his theory that burning and respiration are processes of phlogiston release.

The example of Pettersson’s and Rutherford’s scintillation screen evidence (above) attests to the fact that observers working in different laboratories sometimes report seeing different things under similar conditions. It is plausible that their expectations influence their reports. It is plausible that their expectations are shaped by their training and by their supervisors’ and associates’ theory driven behavior. But as happens in other cases as well, all parties to the dispute agreed to reject Pettersson’s data by appealing to results that both laboratories could obtain and interpret in the same way without compromising their theoretical commitments. Indeed, it is possible for scientists to share empirical results, not just across diverse laboratory cultures, but even across serious differences in worldview. Much as they disagreed about the nature of respiration and combustion, Priestley and Lavoisier gave quantitatively similar reports of how long their mice stayed alive and their candles kept burning in closed bell jars. Priestley taught Lavoisier how to obtain what he took to be measurements of the phlogiston content of an unknown gas. A sample of the gas to be tested is run into a graduated tube filled with water and inverted over a water bath. After noting the height of the water remaining in the tube, the observer adds “nitrous air” (we call it nitric oxide) and checks the water level again. Priestley, who thought there was no such thing as oxygen, believed the change in water level indicated how much phlogiston the gas contained. Lavoisier reported observing the same water levels as Priestley even after he abandoned phlogiston theory and became convinced that changes in water level indicated free oxygen content (Conant 1957, 74–109).

A related issue is that of salience. Kuhn claimed that if Galileo and an Aristotelian physicist had watched the same pendulum experiment, they would not have looked at or attended to the same things. The Aristotelian’s paradigm would have required the experimenter to measure

… the weight of the stone, the vertical height to which it had been raised, and the time required for it to achieve rest (Kuhn 1962, 123)

and ignore radius, angular displacement, and time per swing (ibid., 124). These last were salient to Galileo because he treated pendulum swings as constrained circular motions. The Galilean quantities would be of no interest to an Aristotelian who treats the stone as falling under constraint toward the center of the earth (ibid., 123). Thus Galileo and the Aristotelian would not have collected the same data. (Absent records of Aristotelian pendulum experiments we can think of this as a thought experiment.)

Interests change, however. Scientists may eventually come to appreciate the significance of data that had not originally been salient to them in light of new presuppositions. The moral of these examples is that although paradigms or theoretical commitments sometimes have an epistemically significant influence on what observers perceive or what they attend to, it can be relatively easy to nullify or correct for their effects. When presuppositions cause epistemic damage, investigators are often able to eventually make corrections. Thus, paradigms and theoretical commitments actually do influence saliency, but their influence is neither inevitable nor irremediable.

Thomas Kuhn (1962), Norwood Hanson (1958), Paul Feyerabend (1959) and others cast suspicion on the objectivity of observational evidence in another way by arguing that one cannot use empirical evidence to test a theory without committing oneself to that very theory. This would be a problem if it leads to dogmatism but assuming the theory to be tested is often benign and even necessary.

For instance, Laymon (1988) demonstrates the manner in which the very theory that the Michelson-Morley experiments are considered to test is assumed in the experimental design, but that this does not engender deleterious epistemic effects (250). The Michelson-Morley apparatus consists of two interferometer arms at right angles to one another, which are rotated in the course of the experiment so that, on the original construal, the path length traversed by light in the apparatus would vary according to alignment with or against the Earth’s velocity (carrying the apparatus) with respect to the stationary aether. This difference in path length would show up as displacement in the interference fringes of light in the interferometer. Although Michelson’s intention had been to measure the velocity of the Earth with respect to the all-pervading aether, the experiments eventually came to be regarded as furnishing tests of the Fresnel aether theory itself. In particular, the null results of these experiments were taken as evidence against the existence of the aether. Naively, one might suppose that whatever assumptions were made in the calculation of the results of these experiments, it should not be the case that the theory under the gun was assumed nor that its negation was.

Before Michelson’s experiments, the Fresnel aether theory did not predict any sort of length contraction. Although Michelson assumed no contraction in the arms of the interferometer, Laymon argues that he could have assumed contraction, with no practical impact on the results of the experiments. The predicted fringe shift is calculated from the anticipated difference in the distance traveled by light in the two arms is the same, when higher order terms are neglected. Thus, in practice, the experimenters could assume either that the contraction thesis was true or that it was false when determining the length of the arms. Either way, the results of the experiment would be the same. After Michelson’s experiments returned no evidence of the anticipated aether effects, Lorentz-Fitzgerald contraction was postulated precisely to cancel out the expected (but not found) effects and save the aether theory. Morley and Miller then set out specifically to test the contraction thesis, and still assumed no contraction in determining the length of the arms of their interferometer (ibid., 253). Thus Laymon argues that the Michelson-Morley experiments speak against the tempting assumption that “appraisal of a theory is based on phenomena which can be detected and measured without using assumptions drawn from the theory under examination or from competitors to that theory ” (ibid., 246).

Epistemological hand-wringing about the use of the very theory to be tested in the generation of the evidence to be used for testing, seems to spring primarily from a concern about vicious circularity. How can we have a genuine trial, if the theory in question has been presumed innocent from the outset? While it is true that there would be a serious epistemic problem in a case where the use of the theory to be tested conspired to guarantee that the evidence would turn out to be confirmatory, this is not always the case when theories are invoked in their own testing. Woodward (2011) summarizes a tidy case:

For example, in Millikan’s oil drop experiment, the mere fact that theoretical assumptions (e.g., that the charge of the electron is quantized and that all electrons have the same charge) play a role in motivating his measurements or a vocabulary for describing his results does not by itself show that his design and data analysis were of such a character as to guarantee that he would obtain results supporting his theoretical assumptions. His experiment was such that he might well have obtained results showing that the charge of the electron was not quantized or that there was no single stable value for this quantity. (178)

For any given case, determining whether the theoretical assumptions being made are benign or straight-jacketing the results that it will be possible to obtain will require investigating the particular relationships between the assumptions and results in that case. When data production and analysis processes are complicated, this task can get difficult. But the point is that merely noting the involvement of the theory to be tested in the generation of empirical results does not by itself imply that those results cannot be objectively useful for deciding whether the theory to be tested should be accepted or rejected.

Kuhn argued that theoretical commitments exert a strong influence on observation descriptions, and what they are understood to mean (Kuhn 1962, 127ff; Longino 1979, 38–42). If so, proponents of a caloric account of heat won’t describe or understand descriptions of observed results of heat experiments in the same way as investigators who think of heat in terms of mean kinetic energy or radiation. They might all use the same words (e.g., ‘temperature’) to report an observation without understanding them in the same way. This poses a potential problem for communicating effectively across paradigms, and similarly, for attributing the appropriate significance to empirical results generated outside of one’s own linguistic framework.

It is important to bear in mind that observers do not always use declarative sentences to report observational and experimental results. Instead, they often draw, photograph, make audio recordings, etc. or set up their experimental devices to generate graphs, pictorial images, tables of numbers, and other non-sentential records. Obviously investigators’ conceptual resources and theoretical biases can exert epistemically significant influences on what they record (or set their equipment to record), which details they include or emphasize, and which forms of representation they choose (Daston and Galison 2007, 115–190, 309–361). But disagreements about the epistemic import of a graph, picture or other non-sentential bit of data often turn on causal rather than semantical considerations. Anatomists may have to decide whether a dark spot in a micrograph was caused by a staining artifact or by light reflected from an anatomically significant structure. Physicists may wonder whether a blip in a Geiger counter record reflects the causal influence of the radiation they wanted to monitor, or a surge in ambient radiation. Chemists may worry about the purity of samples used to obtain data. Such questions are not, and are not well represented as, semantic questions to which semantic theory loading is relevant. Late 20 th century philosophers may have ignored such cases and exaggerated the influence of semantic theory loading because they thought of theory testing in terms of inferential relations between observation and theoretical sentences.

Nevertheless, some empirical results are reported as declarative sentences. Looking at a patient with red spots and a fever, an investigator might report having seen the spots, or measles symptoms, or a patient with measles. Watching an unknown liquid dripping into a litmus solution an observer might report seeing a change in color, a liquid with a PH of less than 7, or an acid. The appropriateness of a description of a test outcome depends on how the relevant concepts are operationalized. What justifies an observer to report having observed a case of measles according to one operationalization might require her to say no more than that she had observed measles symptoms, or just red spots according to another.

In keeping with Percy Bridgman’s view that

… in general, we mean by a concept nothing more than a set of operations; the concept is synonymous with the corresponding sets of operations (Bridgman 1927, 5)

one might suppose that operationalizations are definitions or meaning rules such that it is analytically true, e.g., that every liquid that turns litmus red in a properly conducted test is acidic. But it is more faithful to actual scientific practice to think of operationalizations as defeasible rules for the application of a concept such that both the rules and their applications are subject to revision on the basis of new empirical or theoretical developments. So understood, to operationalize is to adopt verbal and related practices for the purpose of enabling scientists to do their work. Operationalizations are thus sensitive and subject to change on the basis of findings that influence their usefulness (Feest 2005).

Definitional or not, investigators in different research traditions may be trained to report their observations in conformity with conflicting operationalizations. Thus instead of training observers to describe what they see in a bubble chamber as a whitish streak or a trail, one might train them to say they see a particle track or even a particle. This may reflect what Kuhn meant by suggesting that some observers might be justified or even required to describe themselves as having seen oxygen, transparent and colorless though it is, or atoms, invisible though they are (Kuhn 1962, 127ff). To the contrary, one might object that what one sees should not be confused with what one is trained to say when one sees it, and therefore that talking about seeing a colorless gas or an invisible particle may be nothing more than a picturesque way of talking about what certain operationalizations entitle observers to say. Strictly speaking, the objection concludes, the term ‘observation report’ should be reserved for descriptions that are neutral with respect to conflicting operationalizations.

If observational data are just those utterances that meet Feyerabend’s decidability and agreeability conditions, the import of semantic theory loading depends upon how quickly, and for which sentences reasonably sophisticated language users who stand in different paradigms can non-inferentially reach the same decisions about what to assert or deny. Some would expect enough agreement to secure the objectivity of observational data. Others would not. Still others would try to supply different standards for objectivity.

With regard to sentential observation reports, the significance of semantic theory loading is less ubiquitous than one might expect. The interpretation of verbal reports often depends on ideas about causal structure rather than the meanings of signs. Rather than worrying about the meaning of words used to describe their observations, scientists are more likely to wonder whether the observers made up or withheld information, whether one or more details were artifacts of observation conditions, whether the specimens were atypical, and so on.

Note that the worry about semantic theory loading extends beyond observation reports of the sort that occupied the logical empiricists and their close intellectual descendents. Combining results of diverse methods for making proxy measurements of paleoclimate temperatures in an epistemically responsible way requires careful attention to the variety of operationalizations at play. Even if no ‘observation reports’ are involved, the sticky question about how to usefully merge results obtained in different ways in order to satisfy one’s epistemic aims remains. Happily, the remedy for the worry about semantic loading in this broader sense is likely to be the same—investigating the provenance of those results and comparing the variety of factors that have contributed to their causal production.

Kuhn placed too much emphasis on the discontinuity between evidence generated in different paradigms. Even if we accept a broadly Kuhnian picture, according to which paradigms are heterogeneous collections of experimental practices, theoretical principles, problems selected for investigation, approaches to their solution, etc., connections between components are loose enough to allow investigators who disagree profoundly over one or more theoretical claims to nevertheless agree about how to design, execute, and record the results of their experiments. That is why neuroscientists who disagreed about whether nerve impulses consisted of electrical currents could measure the same electrical quantities, and agree on the linguistic meaning and the accuracy of observation reports including such terms as ‘potential’, ‘resistance’, ‘voltage’ and ‘current’. As we discussed above, the success that scientists have in repurposing results generated by others for different purposes speaks against the confinement of evidence to its native paradigm. Even when scientists working with radically different core theoretical commitments cannot make the same measurements themselves, with enough contextual information about how each conducts research, it can be possible to construct bridges that span the theoretical divides.

One could worry that the intertwining of the theoretical and empirical would open the floodgates to bias in science. Human cognizing, both historical and present day, is replete with disturbing commitments including intolerance and narrow mindedness of many sorts. If such commitments are integral to a theoretical framework, or endemic to the reasoning of a scientist or scientific community, then they threaten to corrupt the epistemic utility of empirical results generated using their resources. The core impetus of the ‘value-free ideal’ is to maintain a safe distance between the appraisal of scientific theories according to the evidence on one hand, and the swarm of moral, political, social, and economic values on the other. While proponents of the value-free ideal might admit that the motivation to pursue a theory or the legal protection of human subjects in permissible experimental methods involve non-epistemic values, they would contend that such values ought not ought not enter into the constitution of empirical results themselves, nor the adjudication or justification of scientific theorizing in light of the evidence (see Intemann 2021, 202).

As a matter of fact, values do enter into science at a variety of stages. Above we saw that ‘theory-ladenness’ could refer to the involvement of theory in perception, in semantics, and in a kind of circularity that some have worried begets unfalsifiability and thereby dogmatism. Like theory-ladenness, values can and sometimes do affect judgments about the salience of certain evidence and the conceptual framing of data. Indeed, on a permissive construal of the nature of theories, values can simply be understood as part of a theoretical framework. Intemann (2021) highlights a striking example from medical research where key conceptual resources include notions like ‘harm,’ ‘risk,’ ‘health benefit,’ and ‘safety.’ She refers to research on the comparative safety of giving birth at home and giving birth at a hospital for low-risk parents in the United States. Studies reporting that home births are less safe typically attend to infant and birthing parent mortality rates—which are low for these subjects whether at home or in hospital—but leave out of consideration rates of c-section and episiotomy, which are both relatively high in hospital settings. Thus, a value-laden decision about whether a possible outcome counts as a harm worth considering can influence the outcome of the study—in this case tipping the balance towards the conclusion that hospital births are more safe (ibid., 206).

Note that the birth safety case differs from the sort of cases at issue in the philosophical debate about risk and thresholds for acceptance and rejection of hypotheses. In accepting an hypothesis, a person makes a judgement that the risk of being mistaken is sufficiently low (Rudner 1953). When the consequences of being wrong are deemed grave, the threshold for acceptance may be correspondingly high. Thus, in evaluating the epistemic status of an hypothesis in light of the evidence, a person may have to make a value-based judgement. However, in the birth safety case, the judgement comes into play at an earlier stage, well before the decision to accept or reject the hypothesis is to be made. The judgement occurs already in deciding what is to count as a ‘harm’ worth considering for the purposes of this research.

The fact that values do sometimes enter into scientific reasoning does not by itself settle the question of whether it would be better if they did not. In order to assess the normative proposal, philosophers of science have attempted to disambiguate the various ways in which values might be thought to enter into science, and the various referents that get crammed under the single heading of ‘values.’ Anderson (2004) articulates eight stages of scientific research where values (‘evaluative presuppositions’) might be employed in epistemically fruitful ways. In paraphrase: 1) orientation in a field, 2) framing a research question, 3) conceptualizing the target, 4) identifying relevant data, 5) data generation, 6) data analysis, 7) deciding when to cease data analysis, and 8) drawing conclusions (Anderson 2004, 11). Similarly, Intemann (2021) lays out five ways “that values play a role in scientific reasoning” with which feminist philosophers of science have engaged in particular:

(1) the framing [of] research problems, (2) observing phenomena and describing data, (3) reasoning about value-laden concepts and assessing risks, (4) adopting particular models, and (5) collecting and interpreting evidence. (208)

Ward (2021) presents a streamlined and general taxonomy of four ways in which values relate to choices: as reasons motivating or justifying choices, as causal effectors of choices, or as goods affected by choices. By investigating the role of values in these particular stages or aspects of research, philosophers of science can offer higher resolution insights than just the observation that values are involved in science at all and untangle crosstalk.

Similarly, fine points can be made about the nature of values involved in these various contexts. Such clarification is likely important for determining whether the contribution of certain values in a given context is deleterious or salutary, and in what sense. Douglas (2013) argues that the ‘value’ of internal consistency of a theory and of the empirical adequacy of a theory with respect to the available evidence are minimal criteria for any viable scientific theory (799–800). She contrasts these with the sort of values that Kuhn called ‘virtues,’ i.e. scope, simplicity, and explanatory power that are properties of theories themselves, and unification, novel prediction and precision, which are properties a theory has in relation to a body of evidence (800–801). These are the sort of values that may be relevant to explaining and justifying choices that scientists make to pursue/abandon or accept/reject particular theories. Moreover, Douglas (2000) argues that what she calls “non-epistemic values” (in particular, ethical value judgements) also enter into decisions at various stages “internal” to scientific reasoning, such as data collection and interpretation (565). Consider a laboratory toxicology study in which animals exposed to dioxins are compared to unexposed controls. Douglas discusses researchers who want to determine the threshold for safe exposure. Admitting false positives can be expected to lead to overregulation of the chemical industry, while false negatives yield underregulation and thus pose greater risk to public health. The decision about where to set the unsafe exposure threshold, that is, set the threshold for a statistically significant difference between experimental and control animal populations, involves balancing the acceptability of these two types of errors. According to Douglas, this balancing act will depend on “whether we are more concerned about protecting public health from dioxin pollution or whether we are more concerned about protecting industries that produce dioxins from increased regulation” (ibid., 568). That scientists do as a matter of fact sometimes make such decisions is clear. They judge, for instance, a specimen slide of a rat liver to be tumorous or not, and whether borderline cases should count as benign or malignant (ibid., 569–572). Moreover, in such cases, it is not clear that the responsibility of making such decisions could be offloaded to non-scientists.

Many philosophers accept that values can contribute to the generation of empirical results without spoiling their epistemic utility. Anderson’s (2004) diagnosis is as follows:

Deep down, what the objectors find worrisome about allowing value judgments to guide scientific inquiry is not that they have evaluative content, but that these judgments might be held dogmatically, so as to preclude the recognition of evidence that might undermine them. We need to ensure that value judgements do not operate to drive inquiry to a predetermined conclusion. This is our fundamental criterion for distinguishing legitimate from illegitimate uses of values in science. (11)

Data production (including experimental design and execution) is heavily influenced by investigators’ background assumptions. Sometimes these include theoretical commitments that lead experimentalists to produce non-illuminating or misleading evidence. In other cases they may lead experimentalists to ignore, or even fail to produce useful evidence. For example, in order to obtain data on orgasms in female stumptail macaques, one researcher wired up females to produce radio records of orgasmic muscle contractions, heart rate increases, etc. But as Elisabeth Lloyd reports, “… the researcher … wired up the heart rate of the male macaques as the signal to start recording the female orgasms. When I pointed out that the vast majority of female stumptail orgasms occurred during sex among the females alone, he replied that yes he knew that, but he was only interested in important orgasms” (Lloyd 1993, 142). Although female stumptail orgasms occurring during sex with males are atypical, the experimental design was driven by the assumption that what makes features of female sexuality worth studying is their contribution to reproduction (ibid., 139). This assumption influenced experimental design in such a way as to preclude learning about the full range of female stumptail orgasms.

Anderson (2004) presents an influential analysis of the role of values in research on divorce. Researchers committed to an interpretive framework rooted in ‘traditional family values’ could conduct research on the assumption that divorce is mostly bad for spouses and any children that they have (ibid., 12). This background assumption, which is rooted in a normative appraisal of a certain model of good family life, could lead social science researchers to restrict the questions with which they survey their research subjects to ones about the negative impacts of divorce on their lives, thereby curtailing the possibility of discovering ways that divorce may have actually made the ex-spouses lives better (ibid., 13). This is an example of the influence that values can have on the nature of the results that research ultimately yields, which is epistemically detrimental. In this case, the values in play biased the research outcomes to preclude recognition of countervailing evidence. Anderson argues that the problematic influence of values comes when research “is rigged in advance” to confirm certain hypotheses—when the influence of values amounts to incorrigible dogmatism (ibid., 19). “Dogmatism” in her sense is unfalsifiability in practice, “their stubbornness in the face of any conceivable evidence”(ibid., 22).

Fortunately, such dogmatism is not ubiquitous and when it occurs it can often be corrected eventually. Above we noted that the mere involvement of the theory to be tested in the generation of an empirical result does not automatically yield vicious circularity—it depends on how the theory is involved. Furthermore, even if the assumptions initially made in the generation of empirical results are incorrect, future scientists will have opportunities to reassess those assumptions in light of new information and techniques. Thus, as long as scientists continue their work there need be no time at which the epistemic value of an empirical result can be established once and for all. This should come as no surprise to anyone who is aware that science is fallible, but it is no grounds for skepticism. It can be perfectly reasonable to trust the evidence available at present even though it is logically possible for epistemic troubles to arise in the future. A similar point can be made regarding values (although cf. Yap 2016).

Moreover, while the inclusion of values in the generation of an empirical result can sometimes be epistemically bad, values properly deployed can also be harmless, or even epistemically helpful. As in the cases of research on female stumptail macaque orgasms and the effects of divorce, certain values can sometimes serve to illuminate the way in which other epistemically problematic assumptions have hindered potential scientific insight. By valuing knowledge about female sexuality beyond its role in reproduction, scientists can recognize the narrowness of an approach that only conceives of female sexuality insofar as it relates to reproduction. By questioning the absolute value of one traditional ideal for flourishing families, researchers can garner evidence that might end up destabilizing the empirical foundation supporting that ideal.

Empirical results are most obviously put to epistemic work in their contexts of origin. Scientists conceive of empirical research, collect and analyze the relevant data, and then bring the results to bear on the theoretical issues that inspired the research in the first place. However, philosophers have also discussed ways in which empirical results are transferred out of their native contexts and applied in diverse and sometimes unexpected ways (see Leonelli and Tempini 2020). Cases of reuse, or repurposing of empirical results in different epistemic contexts raise several interesting issues for philosophers of science. For one, such cases challenge the assumption that theory (and value) ladenness confines the epistemic utility of empirical results to a particular conceptual framework. Ancient Babylonian eclipse records inscribed on cuneiform tablets have been used to generate constraints on contemporary geophysical theorizing about the causes of the lengthening of the day on Earth (Stephenson, Morrison, and Hohenkerk 2016). This is surprising since the ancient observations were originally recorded for the purpose of making astrological prognostications. Nevertheless, with enough background information, the records as inscribed can be translated, the layers of assumptions baked into their presentation peeled back, and the results repurposed using resources of the contemporary epistemic context, the likes of which the Babylonians could have hardly dreamed.

Furthermore, the potential for reuse and repurposing feeds back on the methodological norms of data production and handling. In light of the difficulty of reusing or repurposing data without sufficient background information about the original context, Goodman et al. (2014) note that “data reuse is most possible when: 1) data; 2) metadata (information describing the data); and 3) information about the process of generating those data, such as code, all all provided” (3). Indeed, they advocate for sharing data and code in addition to results customarily published in science. As we have seen, the loading of data with theory is usually necessary to putting that data to any serious epistemic use—theory-loading makes theory appraisal possible. Philosophers have begun to appreciate that this epistemic boon does not necessarily come at the cost of rendering data “tragically local” (Wylie 2020, 285, quoting Latour 1999). But it is important to note the useful travel of data between contexts is significantly aided by foresight, curation, and management for that aim.

In light of the mediated nature of empirical results, Boyd (2018) argues for an “enriched view of evidence,” in which the evidence that serves as the ‘tribunal of experience’ is understood to be “lines of evidence” composed of the products of data collection and all of the products of their transformation on the way to the generation of empirical results that are ultimately compared to theoretical predictions, considered together with metadata associated with their provenance. Such metadata includes information about theoretical assumptions that are made in data collection, processing, and the presentation of empirical results. Boyd argues that by appealing to metadata to ‘rewind’ the processing of assumption-imbued empirical results and then by re-processing them using new resources, the epistemic utility of empirical evidence can survive transitions to new contexts. Thus, the enriched view of evidence supports the idea that it is not despite the intertwining of the theoretical and empirical that scientists accomplish key epistemic aims, but often in virtue of it (ibid., 420). In addition, it makes the epistemic value of metadata encoding the various assumptions that have been made throughout the course of data collection and processing explicit.

The desirability of explicitly furnishing empirical data and results with auxiliary information that allow them to travel can be appreciated in light of the ‘objectivity’ norm, construed as accessibility to interpersonal scrutiny. When data are repurposed in novel contexts, they are not only shared between subjects, but can in some cases be shared across radically different paradigms with incompatible theoretical commitments.

4. The epistemic value of empirical evidence

One of the important applications of empirical evidence is its use in assessing the epistemic status of scientific theories. In this section we briefly discuss philosophical work on the role of empirical evidence in confirmation/falsification of scientific theories, ‘saving the phenomena,’ and in appraising the empirical adequacy of theories. However, further philosophical work ought to explore the variety of ways that empirical results bear on the epistemic status of theories and theorizing in scientific practice beyond these.

It is natural to think that computability, range of application, and other things being equal, true theories are better than false ones, good approximations are better than bad ones, and highly probable theoretical claims are better than less probable ones. One way to decide whether a theory or a theoretical claim is true, close to the truth, or acceptably probable is to derive predictions from it and use empirical data to evaluate them. Hypothetico-Deductive (HD) confirmation theorists proposed that empirical evidence argues for the truth of theories whose deductive consequences it verifies, and against those whose consequences it falsifies (Popper 1959, 32–34). But laws and theoretical generalization seldom if ever entail observational predictions unless they are conjoined with one or more auxiliary hypotheses taken from the theory they belong to. When the prediction turns out to be false, HD has trouble explaining which of the conjuncts is to blame. If a theory entails a true prediction, it will continue to do so in conjunction with arbitrarily selected irrelevant claims. HD has trouble explaining why the prediction does not confirm the irrelevancies along with the theory of interest.

Another approach to confirmation by empirical evidence is Inference to the Best Explanation (IBE). The idea is roughly that an explanation of the evidence that exhibits certain desirable characteristics with respect to a family of candidate explanations is likely to be the true on (Lipton 1991). On this approach, it is in virtue of their successful explanation of the empirical evidence that theoretical claims are supported. Naturally, IBE advocates face the challenges of defending a suitable characterization of what counts as the ‘best’ and of justifying the limited pool of candidate explanations considered (Stanford 2006).

Bayesian approaches to scientific confirmation have garnered significant attention and are now widespread in philosophy of science. Bayesians hold that the evidential bearing of empirical evidence on a theoretical claim is to be understood in terms of likelihood or conditional probability. For example, whether empirical evidence argues for a theoretical claim might be thought to depend upon whether it is more probable (and if so how much more probable) than its denial conditional on a description of the evidence together with background beliefs, including theoretical commitments. But by Bayes’ Theorem, the posterior probability of the claim of interest (that is, its probability given the evidence) is proportional to that claim’s prior probability. How to justify the choice of these prior probability assignments is one of the most notorious points of contention arising for Bayesians. If one makes the assignment of priors a subjective matter decided by epistemic agents, then it is not clear that they can be justified. Once again, one’s use of evidence to evaluate a theory depends in part upon one’s theoretical commitments (Earman 1992, 33–86; Roush 2005, 149–186). If one instead appeals to chains of successive updating using Bayes’ Theorem based on past evidence, one has to invoke assumptions that generally do not obtain in actual scientific reasoning. For instance, to ‘wash out’ the influence of priors a limit theorem is invoked wherein we consider very many updating iterations, but much scientific reasoning of interest does not happen in the limit, and so in practice priors hold unjustified sway (Norton 2021, 33).

Rather than attempting to cast all instances of confirmation based on empirical evidence as belonging to a universal schema, a better approach may be to ‘go local’. Norton’s material theory of induction argues that inductive support arises from background knowledge, that is, from material facts that are domain specific. Norton argues that, for instance, the induction from “Some samples of the element bismuth melt at 271°C” to “all samples of the element bismuth melt at 271°C” is admissible not in virtue of some universal schema that carries us from ‘some’ to ‘all’ but matters of fact (Norton 2003). In this particular case, the fact that licenses the induction is a fact about elements: “their samples are generally uniform in their physical properties” (ibid., 650). This is a fact pertinent to chemical elements, but not to samples of material like wax (ibid.). Thus Norton repeatedly emphasizes that “all induction is local”.

Still, there are those who may be skeptical about the very possibility of confirmation or of successful induction. Insofar as the bearing of evidence on theory is never totally decisive, insofar there is no single trusty universal schema that captures empirical support, perhaps the relationship between empirical evidence and scientific theory is not really about support after all. Giving up on empirical support would not automatically mean abandoning any epistemic value for empirical evidence. Rather than confirm theory, the epistemic role of evidence could be to constrain, for example by furnishing phenomena for theory to systematize or to adequately model.

Theories are said to ‘save’ observable phenomena if they satisfactorily predict, describe, or systematize them. How well a theory performs any of these tasks need not depend upon the truth or accuracy of its basic principles. Thus according to Osiander’s preface to Copernicus’ On the Revolutions , a locus classicus, astronomers “… cannot in any way attain to true causes” of the regularities among observable astronomical events, and must content themselves with saving the phenomena in the sense of using

… whatever suppositions enable … [them] to be computed correctly from the principles of geometry for the future as well as the past … (Osiander 1543, XX)

Theorists are to use those assumptions as calculating tools without committing themselves to their truth. In particular, the assumption that the planets revolve around the sun must be evaluated solely in terms of how useful it is in calculating their observable relative positions to a satisfactory approximation. Pierre Duhem’s Aim and Structure of Physical Theory articulates a related conception. For Duhem a physical theory

… is a system of mathematical propositions, deduced from a small number of principles, which aim to represent as simply and completely, and exactly as possible, a set of experimental laws. (Duhem 1906, 19)

‘Experimental laws’ are general, mathematical descriptions of observable experimental results. Investigators produce them by performing measuring and other experimental operations and assigning symbols to perceptible results according to pre-established operational definitions (Duhem 1906, 19). For Duhem, the main function of a physical theory is to help us store and retrieve information about observables we would not otherwise be able to keep track of. If that is what a theory is supposed to accomplish, its main virtue should be intellectual economy. Theorists are to replace reports of individual observations with experimental laws and devise higher level laws (the fewer, the better) from which experimental laws (the more, the better) can be mathematically derived (Duhem 1906, 21ff).

A theory’s experimental laws can be tested for accuracy and comprehensiveness by comparing them to observational data. Let EL be one or more experimental laws that perform acceptably well on such tests. Higher level laws can then be evaluated on the basis of how well they integrate EL into the rest of the theory. Some data that don’t fit integrated experimental laws won’t be interesting enough to worry about. Other data may need to be accommodated by replacing or modifying one or more experimental laws or adding new ones. If the required additions, modifications or replacements deliver experimental laws that are harder to integrate, the data count against the theory. If the required changes are conducive to improved systematization the data count in favor of it. If the required changes make no difference, the data don’t argue for or against the theory.

On van Fraassen’s (1980) semantic account, a theory is empirically adequate when the empirical structure of at least one model of that theory is isomorphic to what he calls the “appearances” (45). In other words, when the theory “has at least one model that all the actual phenomena fit inside” (12). Thus, for van Fraassen, we continually check the empirical adequacy of our theories by seeing if they have the structural resources to accommodate new observations. We’ll never know that a given theory is totally empirically adequate, since for van Fraassen, empirical adequacy obtains with respect to all that is observable in principle to creatures like us, not all that has already been observed (69).

The primary appeal of dealing in empirical adequacy rather than confirmation is its appropriate epistemic humility. Instead of claiming that confirming evidence justifies belief (or boosted confidence) that a theory is true, one is restricted to saying that the theory continues to be consistent with the evidence as far as we can tell so far. However, if the epistemic utility of empirical results in appraising the status of theories is just to judge their empirical adequacy, then it may be difficult to account for the difference between adequate but unrealistic theories, and those equally adequate theories that ought to be taken seriously as representations. Appealing to extra-empirical virtues like parsimony may be a way out, but one that will not appeal to philosophers skeptical of the connection thereby supposed between such virtues and representational fidelity.

On an earlier way of thinking, observation was to serve as the unmediated foundation of science—direct access to the facts upon which the edifice of scientific knowledge could be built. When conflict arose between factions with different ideological commitments, observations could furnish the material for neutral arbitration and settle the matter objectively, in virtue of being independent of non-empirical commitments. According to this view, scientists working in different paradigms could at least appeal to the same observations, and propagandists could be held accountable to the publicly accessible content of theory and value-free observations. Despite their different theories, Priestley and Lavoisier could find shared ground in the observations. Anti-Semites would be compelled to admit the success of a theory authored by a Jewish physicist, in virtue of the unassailable facts revealed by observation.

This version of empiricism with respect to science does not accord well with the fact that observation per se plays a relatively small role in many actual scientific methodologies, and the fact that even the most ‘raw’ data is often already theoretically imbued. The strict contrast between theory and observation in science is more fruitfully supplanted by inquiry into the relationship between theorizing and empirical results.

Contemporary philosophers of science tend to embrace the theory ladenness of empirical results. Instead of seeing the integration of the theoretical and the empirical as an impediment to furthering scientific knowledge, they see it as necessary. A ‘view from nowhere’ would not bear on our particular theories. That is, it is impossible to put empirical results to use without recruiting some theoretical resources. In order to use an empirical result to constrain or test a theory it has to be processed into a form that can be compared to that theory. To get stellar spectrograms to bear on Newtonian or relativistic cosmology, they need to be processed—into galactic rotation curves, say. The spectrograms by themselves are just artifacts, pieces of paper. Scientists need theoretical resources in order to even identify that such artifacts bear information relevant for their purposes, and certainly to put them to any epistemic use in assessing theories.

This outlook does not render contemporary philosophers of science all constructivists, however. Theory mediates the connection between the target of inquiry and the scientific worldview, it does not sever it. Moreover, vigilance is still required to ensure that the particular ways in which theory is ‘involved’ in the production of empirical results are not epistemically detrimental. Theory can be deployed in experiment design, data processing, and presentation of results in unproductive ways, for instance, in determining whether the results will speak for or against a particular theory regardless of what the world is like. Critical appraisal of the roles of theory is thus important for genuine learning about nature through science. Indeed, it seems that extra-empirical values can sometimes assist such critical appraisal. Instead of viewing observation as the theory-free and for that reason furnishing the content with which to appraise theories, we might attend to the choices and mistakes that can be made in collecting and generating empirical results with the help of theoretical resources, and endeavor to make choices conducive to learning and correct mistakes as we discover them.

Recognizing the involvement of theory and values in the constitution and generation of empirical results does not undermine the special epistemic value of empirical science in contrast to propaganda and pseudoscience. In cases where the influence of cultural, political, and religious values hinder scientific inquiry, it is often the case that they do so by limiting or determining the nature of the empirical results. Yet, by working to make the assumptions that shape results explicit we can examine their suitability for our purposes and attempt to restructure inquiry as necessary. When disagreements arise, scientists can attempt to settle them by appealing to the causal connections between the research target and the empirical data. The tribunal of experience speaks through empirical results, but it only does so through via careful fashioning with theoretical resources.

  • Anderson, E., 2004, “Uses of Value Judgments in Science: A General Argument, with Lessons from a Case Study of Feminist Research on Divorce,” Hypatia , 19(1): 1–24.
  • Aristotle(a), Generation of Animals in Complete Works of Aristotle (Volume 1), J. Barnes (ed.), Princeton: Princeton University Press, 1995, pp. 774–993
  • Aristotle(b), History of Animals in Complete Works of Aristotle (Volume 1), J. Barnes (ed.), Princeton: Princeton University Press, 1995, pp. 1111–1228.
  • Azzouni, J., 2004, “Theory, Observation, and Scientific Realism,” British Journal for the Philosophy of Science , 55(3): 371–92.
  • Bacon, Francis, 1620, Novum Organum with other parts of the Great Instauration , P. Urbach and J. Gibson (eds. and trans.), La Salle: Open Court, 1994.
  • Bogen, J., 2016, “Empiricism and After,”in P. Humphreys (ed.), Oxford Handbook of Philosophy of Science , Oxford: Oxford University Press, pp. 779–795.
  • Bogen, J, and Woodward, J., 1988, “Saving the Phenomena,” Philosophical Review , XCVII (3): 303–352.
  • Bokulich, A., 2020, “Towards a Taxonomy of the Model-Ladenness of Data,” Philosophy of Science , 87(5): 793–806.
  • Borrelli, A., 2012, “The Case of the Composite Higgs: The Model as a ‘Rosetta Stone’ in Contemporary High-Energy Physics,” Studies in History and Philosophy of Science (Part B: Studies in History and Philosophy of Modern Physics), 43(3): 195–214.
  • Boyd, N. M., 2018, “Evidence Enriched,” Philosophy of Science , 85(3): 403–21.
  • Boyle, R., 1661, The Sceptical Chymist , Montana: Kessinger (reprint of 1661 edition).
  • Bridgman, P., 1927, The Logic of Modern Physics , New York: Macmillan.
  • Chang, H., 2005, “A Case for Old-fashioned Observability, and a Reconstructive Empiricism,” Philosophy of Science , 72(5): 876–887.
  • Collins, H. M., 1985 Changing Order , Chicago: University of Chicago Press.
  • Conant, J.B., 1957, (ed.) “The Overthrow of the Phlogiston Theory: The Chemical Revolution of 1775–1789,” in J.B.Conant and L.K. Nash (eds.), Harvard Studies in Experimental Science , Volume I, Cambridge: Harvard University Press, pp. 65–116).
  • Daston, L., and P. Galison, 2007, Objectivity , Brooklyn: Zone Books.
  • Douglas, H., 2000, “Inductive Risk and Values in Science,” Philosophy of Science , 67(4): 559–79.
  • –––, 2013, “The Value of Cognitive Values,” Philosophy of Science , 80(5): 796–806.
  • Duhem, P., 1906, The Aim and Structure of Physical Theory , P. Wiener (tr.), Princeton: Princeton University Press, 1991.
  • Earman, J., 1992, Bayes or Bust? , Cambridge: MIT Press.
  • Feest, U., 2005, “Operationism in psychology: what the debate is about, what the debate should be about,” Journal of the History of the Behavioral Sciences , 41(2): 131–149.
  • Feyerabend, P.K., 1969, “Science Without Experience,” in P.K. Feyerabend, Realism, Rationalism, and Scientific Method (Philosophical Papers I), Cambridge: Cambridge University Press, 1985, pp. 132–136.
  • Franklin, A., 1986, The Neglect of Experiment , Cambridge: Cambridge University Press.
  • Galison, P., 1987, How Experiments End , Chicago: University of Chicago Press.
  • –––, 1990, “Aufbau/Bauhaus: logical positivism and architectural modernism,” Critical Inquiry , 16 (4): 709–753.
  • Goodman, A., et al., 2014, “Ten Simple Rules for the Care and Feeding of Scientific Data,” PLoS Computational Biology , 10(4): e1003542.
  • Hacking, I., 1981, “Do We See Through a Microscope?,” Pacific Philosophical Quarterly , 62(4): 305–322.
  • –––, 1983, Representing and Intervening , Cambridge: Cambridge University Press.
  • Hanson, N.R., 1958, Patterns of Discovery , Cambridge, Cambridge University Press.
  • Hempel, C.G., 1952, “Fundamentals of Concept Formation in Empirical Science,” in Foundations of the Unity of Science , Volume 2, O. Neurath, R. Carnap, C. Morris (eds.), Chicago: University of Chicago Press, 1970, pp. 651–746.
  • Herschel, J. F. W., 1830, Preliminary Discourse on the Study of Natural Philosophy , New York: Johnson Reprint Corp., 1966.
  • Hooke, R., 1705, “The Method of Improving Natural Philosophy,” in R. Waller (ed.), The Posthumous Works of Robert Hooke , London: Frank Cass and Company, 1971.
  • Horowitz, P., and W. Hill, 2015, The Art of Electronics , third edition, New York: Cambridge University Press.
  • Intemann, K., 2021, “Feminist Perspectives on Values in Science,” in S. Crasnow and L. Intemann (eds.), The Routledge Handbook of Feminist Philosophy of Science , New York: Routledge, pp. 201–15.
  • Kuhn, T.S., The Structure of Scientific Revolutions , 1962, Chicago: University of Chicago Press, reprinted,1996.
  • Latour, B., 1999, “Circulating Reference: Sampling the Soil in the Amazon Forest,” in Pandora’s Hope: Essays on the Reality of Science Studies , Cambridge, MA: Harvard University Press, pp. 24–79.
  • Latour, B., and Woolgar, S., 1979, Laboratory Life, The Construction of Scientific Facts , Princeton: Princeton University Press, 1986.
  • Laymon, R., 1988, “The Michelson-Morley Experiment and the Appraisal of Theories,” in A. Donovan, L. Laudan, and R. Laudan (eds.), Scrutinizing Science: Empirical Studies of Scientific Change , Baltimore: The Johns Hopkins University Press, pp. 245–266.
  • Leonelli, S., 2009, “On the Locality of Data and Claims about Phenomena,” Philosophy of Science , 76(5): 737–49.
  • Leonelli, S., and N. Tempini (eds.), 2020, Data Journeys in the Sciences , Cham: Springer.
  • Lipton, P., 1991, Inference to the Best Explanation , London: Routledge.
  • Lloyd, E.A., 1993, “Pre-theoretical Assumptions In Evolutionary Explanations of Female Sexuality,” Philosophical Studies , 69: 139–153.
  • –––, 2012, “The Role of ‘Complex’ Empiricism in the Debates about Satellite Data and Climate Models,”, Studies in History and Philosophy of Science (Part A), 43(2): 390–401.
  • Longino, H., 1979, “Evidence and Hypothesis: An Analysis of Evidential Relations,” Philosophy of Science , 46(1): 35–56.
  • –––, 2020, “Afterward:Data in Transit,” in S. Leonelli and N. Tempini (eds.), Data Journeys in the Sciences , Cham: Springer, pp. 391–400.
  • Lupyan, G., 2015, “Cognitive Penetrability of Perception in the Age of Prediction – Predictive Systems are Penetrable Systems,” Review of Philosophical Psychology , 6(4): 547–569. doi:10.1007/s13164-015-0253-4
  • Mill, J. S., 1872, System of Logic , London: Longmans, Green, Reader, and Dyer.
  • Norton, J., 2003, “A Material Theory of Induction,” Philosophy of Science , 70(4): 647–70.
  • –––, 2021, The Material Theory of Induction , http://www.pitt.edu/~jdnorton/papers/material_theory/Material_Induction_March_14_2021.pdf .
  • Nyquist, H., 1928, “Thermal Agitation of Electric Charge in Conductors,” Physical Review , 32(1): 110–13.
  • O’Connor, C. and J. O. Weatherall, 2019, The Misinformation Age: How False Beliefs Spread , New Haven: Yale University Press.
  • Olesko, K.M. and Holmes, F.L., 1994, “Experiment, Quantification and Discovery: Helmholtz’s Early Physiological Researches, 1843–50,” in D. Cahan, (ed.), Hermann Helmholtz and the Foundations of Nineteenth Century Science , Berkeley: UC Press, pp. 50–108.
  • Osiander, A., 1543, “To the Reader Concerning the Hypothesis of this Work,” in N. Copernicus On the Revolutions , E. Rosen (tr., ed.), Baltimore: Johns Hopkins University Press, 1978, p. XX.
  • Parker, W. S., 2016, “Reanalysis and Observation: What’s the Difference?,” Bulletin of the American Meteorological Society , 97(9): 1565–72.
  • –––, 2017, “Computer Simulation, Measurement, and Data Assimilation,” The British Journal for the Philosophy of Science , 68(1): 273–304.
  • Popper, K.R.,1959, The Logic of Scientific Discovery , K.R. Popper (tr.), New York: Basic Books.
  • Rheinberger, H. J., 1997, Towards a History of Epistemic Things: Synthesizing Proteins in the Test Tube , Stanford: Stanford University Press.
  • Roush, S., 2005, Tracking Truth , Cambridge: Cambridge University Press.
  • Rudner, R., 1953, “The Scientist Qua Scientist Makes Value Judgments,” Philosophy of Science , 20(1): 1–6.
  • Schlick, M., 1935, “Facts and Propositions,” in Philosophy and Analysis , M. Macdonald (ed.), New York: Philosophical Library, 1954, pp. 232–236.
  • Schottky, W. H., 1918, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,” Annalen der Physik , 362(23): 541–67.
  • Shapere, D., 1982, “The Concept of Observation in Science and Philosophy,” Philosophy of Science , 49(4): 485–525.
  • Stanford, K., 1991, Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives , Oxford: Oxford University Press.
  • Stephenson, F. R., L. V. Morrison, and C. Y. Hohenkerk, 2016, “Measurement of the Earth’s Rotation: 720 BC to AD 2015,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , 472: 20160404.
  • Stuewer, R.H., 1985, “Artificial Disintegration and the Cambridge-Vienna Controversy,” in P. Achinstein and O. Hannaway (eds.), Observation, Experiment, and Hypothesis in Modern Physical Science , Cambridge, MA: MIT Press, pp. 239–307.
  • Suppe, F., 1977, in F. Suppe (ed.) The Structure of Scientific Theories , Urbana: University of Illinois Press.
  • Van Fraassen, B.C, 1980, The Scientific Image , Oxford: Clarendon Press.
  • Ward, Z. B., 2021, “On Value-Laden Science,” Studies in History and Philosophy of Science Part A , 85: 54–62.
  • Whewell, W., 1858, Novum Organon Renovatum , Book II, in William Whewell Theory of Scientific Method , R.E. Butts (ed.), Indianapolis: Hackett Publishing Company, 1989, pp. 103–249.
  • Woodward, J. F., 2010, “Data, Phenomena, Signal, and Noise,” Philosophy of Science , 77(5): 792–803.
  • –––, 2011, “Data and Phenomena: A Restatement and Defense,” Synthese , 182(1): 165–79.
  • Wylie, A., 2020, “Radiocarbon Dating in Archaeology: Triangulation and Traceability,” in S. Leonelli and N. Tempini (eds.), Data Journeys in the Sciences , Cham: Springer, pp. 285–301.
  • Yap, A., 2016, “Feminist Radical Empiricism, Values, and Evidence,” Hypatia , 31(1): 58–73.
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Confirmation , by Franz Huber, in the Internet Encyclopedia of Philosophy .
  • Transcript of Katzmiller v. Dover Area School District (on the teaching of intelligent design).

Bacon, Francis | Bayes’ Theorem | constructive empiricism | Duhem, Pierre | empiricism: logical | epistemology: Bayesian | feminist philosophy, topics: perspectives on science | incommensurability: of scientific theories | Locke, John | measurement: in science | models in science | physics: experiment in | science: and pseudo-science | scientific objectivity | scientific research and big data | statistics, philosophy of

Copyright © 2021 by Nora Mills Boyd < nboyd @ siena . edu > James Bogen

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Instructional Materials
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers
  • NCCSTS Case Collection
  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Formative Assessment Probe

What Is a Hypothesis?

By Page Keeley

Uncovering Student Ideas in Science, Volume 3: Another 25 Formative Assessment Probes

Share Discuss

This is the new updated edition of the first book in the bestselling  Uncovering Student Ideas in Science  series. Like the first edition of volume 1, this book helps pinpoint what your students know (or think they know) so you can monitor their learning and adjust your teaching accordingly. Loaded with classroom-friendly features you can use immediately, the book includes 25 “probes”—brief, easily administered formative assessments designed to understand your students’ thinking about 60 core science concepts.

What Is a Hypothesis?

Access this probe as a Google form:  English

Download this probe as an editable PDF: English

The purpose of this assessment probe is to elicit students’ ideas about hypotheses. The probe is designed to find out if students understand what a hypothesis is, when it is used, and how it is developed.

Type of Probe

Justified List

Related Concepts

hypothesis, nature of science, scientific inquiry, scientific method

Explanation

The best choices are A, B, G, K, L, and M. However, other possible answers open up discussions to contrast with the provided definition. A hypothesis is a tentative explanation that can be tested and is based on observation and/or scientific knowledge such as that that has been gained from doing background research. Hypotheses are used to investigate a scientific question. Hypotheses can be tested through experimentation or further observation, but contrary to how some students are taught to use the “scientific method,” hypotheses are not proved true or correct. Students will often state their conclusions as “My hypothesis is correct because my data prove…,” thereby equating positive results with proof (McLaughlin 2006, p. 61). In essence, experimentation as well as other means of scientific investigation never prove a hypothesis—the hypothesis gains credibility from the evidence obtained from data that support it. Data either support or negate a hypothesis but never prove something to be 100% true or correct.

Hypotheses are often confused with questions. A hypothesis is not framed as a question but rather provides a tentative explanation in response to the scientific question that leads the investigation. Sometimes the word hypothesis is oversimplified by being defined as “an educated guess.” This terminology fails to convey the explanatory or predictive nature of scientific hypotheses and omits what is most important about hypotheses: their purpose. Hypotheses are developed to explain observations, such as notable patterns in nature; predict the outcome of an experiment based on observations or prior scientific knowledge; and guide the investigator in seeking and paying attention to the right data. Calling a hypothesis a “guess” undermines the explanation that underscores a hypothesis.

Predictions and hypotheses are not the same. A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, “If I do [X], then [Y] will happen.” The prediction describes the outcome but it does not provide an explanation of why that outcome might result or describe any relationship between variables.

Sometimes the words hypothesis , theory , and law are inaccurately portrayed in science textbooks as a hierarchy of scientific knowledge, with the hypothesis being the first step on the way to becoming a theory and then a law. These concepts do not form a sequence for the development of scientific knowledge because each represents a different type of knowledge.

Not every investigation requires a hypothesis. Some types of investigations do not lend themselves to hypothesis testing through experimentation. A good deal of science is observational and descriptive—the study of biodiversity, for example, usually involves looking at a wide variety of specimens and maybe sketching and recording their unique characteristics. A biologist studying biodiversity might wonder, “What types of birds are found on island X?” The biologist would observe sightings of birds and perhaps sketch them and record their bird calls but would not be guided by a specific hypothesis. Many of the great discoveries in science did not begin with a hypothesis in mind. For example, Charles Darwin did not begin his observations of species in the Galapagos with a hypothesis in mind.

Contrary to the way hypotheses are often stated by students as an unimaginative response to a question posed at the beginning of an experiment, particularly those of the “cookbook” type, the generation of hypotheses by scientists is actually a creative and imaginative process, combined with the logic of scientific thought. “The process of formulating and testing hypotheses is one of the core activities of scientists. To be useful, a hypothesis should suggest what evidence would support it and what evidence would refute it. A hypothesis that cannot in principle be put to the test of evidence may be interesting, but it is not likely to be scientifically useful” (AAAS 1988, p. 5).

Curricular and Instructional Considerations

Elementary Students

In the elementary school grades, students typically engage in inquiry to begin to construct an understanding of the natural world. Their inquiries are initiated by a question. If students have a great deal of knowledge or have made prior observations, they might propose a hypothesis; in most cases, however, their knowledge and observations are too incomplete for them to hypothesize. If elementary school students are required to develop a hypothesis, it is often just a guess, which does little to contribute to an understanding of the purpose of a hypothesis. At this grade level, it is usually sufficient for students to focus on their questions, instead of hypotheses (Pine 1999).

Middle School Students

At the middle school level, students develop an understanding of what a hypothesis is and when one is used. The notion of a testable hypothesis through experimentation that involves variables is introduced and practiced at this grade level. However, there is a danger that students will think every investigation must include a hypothesis. Hypothesizing as a skill is important to develop at this grade level but it is also important to develop the understandings of what a hypothesis is and why and how it is developed.

High School Students

At this level, students have acquired more scientific knowledge and experiences and so are able to propose tentative explanations. They can formulate a testable hypothesis and demonstrate the logical connections between the scientific concepts guiding a hypothesis and the design of an experiment (NRC 1996).

Administering the Probe

This probe is best used as is at the middle school and high school levels, particularly if students have been previously exposed to the word hypothesis or its use. Remove any answer choices students might not be familiar with. For example, if they have not encountered if-then reasoning, eliminate this distracter. The probe can also be modified as a simpler version for students in grades 3–5 by leaving out some of the choices and simplifying the descriptions.

K–4 Understandings About Scientific Inquiry

  • Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
  • Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge).

5–8 Understandings About Scientific Inquiry

  • Different kinds of questions suggest different kinds of investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
  • Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

5–8 Science as a Human Endeavor

  • Science is very much a human endeavor, and the work of science relies on basic human qualities such as reasoning, insight, energy, skill, and creativity.

9–12 Abilities Necessary to Do Scientific Inquiry

  • Identify questions and concepts that guide scientific investigations.*

9–12 Understandings About Scientific Inquiry

  • Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

*Indicates a strong match between the ideas elicited by the probe and a national standard’s learning goal.

K–2 Scientific Inquiry

  • People can often learn about things around them by just observing those things carefully, but sometimes they can learn more by doing something to the things and noting what happens.

3–5 Scientific Inquiry

  • Scientists’ explanations about what happens in the world come partly from what they observe and partly from what they think. Sometimes scientists have different explanations for the same set of observations. That usually leads to their making more observations to resolve the differences.

6–8 Scientific Inquiry

  • Scientists differ greatly in what phenomena they study and how they go about their work. Although there is no fixed set of steps that all scientists follow, scientific investigations usually involve the collection of relevant evidence, the use of logical reasoning, and the application of imagination in devising hypotheses and explanations to make sense of the collected evidence.*

6–8 Values and Attitudes

  • Even if they turn out not to be true, hypotheses are valuable if they lead to fruitful investigations.*

9–12 Scientific Inquiry

  • Hypotheses are widely used in science for choosing what data to pay attention to and what additional data to seek and for guiding the interpretation of the data (both new and previously available).*

Related Research

  • Students generally have difficulty with explaining how science is conducted because they have had little contact with real scientists. Their familiarity with doing science, even at older ages, is “school science,” which is often not how science is generally conducted in the scientific community (Driver et al. 1996).
  • Despite over 10 years of reform efforts in science education, research still shows that students typically have inadequate conceptions of what science is and what scientists do (Schwartz 2007).
  • Upper elementary school and middle school students may not understand experimentation as a method of testing ideas, but rather as a method of trying things out or producing a desired outcome (AAAS 1993).
  • Middle school students tend to invoke personal experiences as evidence to justify their hypothesis. They seem to think of evidence as selected from what is already known or from personal experience or secondhand sources, not as information produced through experiment (AAAS 1993).

Related NSTA Resources

American Association for the Advancement of Science (AAAS). 1993. Benchmarks for science literacy. New York: Oxford University Press.

Keeley, P. 2005. Science curriculum topic study: Bridging the gap between standards and practice. Thousand Oaks, CA: Corwin Press.

McLaughlin, J. 2006. A gentle reminder that a hypothesis is never proven correct, nor is a theory ever proven true. Journal of College Science Teaching 36 (1): 60–62.

National Research Council (NRC). 1996. National science education standards. Washington, DC: National Academy Press.

Schwartz, R. 2007. What’s in a word? How word choice can develop (mis)conceptions about the nature of science. Science Scope 31 (2): 42–47.

VanDorn, K., M. Mavita, L. Montes, B. Ackerson, and M. Rockley. 2004. Hypothesis-based learning. Science Scope 27: 24–25.

Suggestions for Instruction and Assessment

  • The “scientific method” is often the first topic students encounter when using textbooks and this can erroneously imply that there is a rigid set of steps that all scientists follow, including the development of a hypothesis. Often the scientific method described in textbooks applies to experimentation, which is only one of many ways scientists conduct their work. Embedding explicit instruction of the various ways to do science in the actual investigations students do throughout the year as well as in their studies of investigations done by scientists is a better approach to understanding how science is done than starting off the year with the scientific method in a way that is devoid of a context through which students can learn the content and process of science.
  • Students often participate in science fairs that may follow a textbook scientific method of posing a question, developing a hypothesis, and so on, that incorrectly results in students “proving” their hypothesis. Make sure students understand that a hypothesis can be disproven, but it is never proven, which implies 100% certainty.
  • Help students understand that science begins with a question. The structure of some school lab reports may lead students to believe that all investigations begin with a hypothesis. While some investigations do begin with a hypothesis, in most cases, they begin with a question. Sometimes it is just a general question.
  • A technique to help students maintain a consistent image of science as inquiry throughout the year by paying more careful attention to the words they use is to create a “caution words” poster or bulletin board (Schwartz 2007). Important words that have specific meanings in science but are often used inappropriately in the science classroom and through everyday language can be posted in the room as a reminder to pay careful attention to how students are using these words. For example, words like hypothesis and scientific method can be posted here. Words that are banned when referring to hypotheses include prove, correct, and true.
  • Use caution when asking students to write lab reports that use the same format regardless of the type of investigation conducted. The format used in writing about an investigation may imply a rigid, fixed process or erroneously misrepresent aspects of science, such as that hypotheses are developed for every scientific investigation.
  • Avoid using hypotheses with younger children when they result in guesses. It is better to start with a question and have students make a prediction about what they think will happen and why. As they acquire more conceptual understanding and experience a variety of observations, they will be better prepared to develop hypotheses that reflect the way science is done.
  • Avoid using “educated guess” as a description for hypothesis. The common meaning of the word guess implies no prior knowledge, experience, or observations.
  • Scaffold hypothesis writing for students by initially having them use words like may in their statements and then formalizing them with if-then statements. For example, students may start with the statement, “The growth of algae may be affected by temperature.” The next step would be to extend this statement to include a testable relationship, such as, “If the temperature of the water increases, then the algae population will increase.” Encourage students to propose a tentative explanation and then consider how they would go about testing the statement.

American Association for the Advancement of Science (AAAS). 1988. Science for all Americans. New York: Oxford University Press.

Driver, R., J. Leach, R. Millar, and P. Scott. 1996. Young people’s images of science. Buckingham, UK: Open University Press.

Pine, J. 1999. To hypothesize or not to hypothesize. In Foundations: A monograph for professionals in science, mathematics, and technology education. Vol. 2. Inquiry: Thoughts, views, and strategies for the K–5 classroom. Arlington, VA: National Science Foundation.

Lesson Plan

Reports Article

Journal Article

Teacher Spotlight...

Right to the Source...

NASA’s Juno Provides High-Definition Views of Europa’s Icy Shell

Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. The images show the fractures, ridges, and bands that crisscross the moon’s surface.

Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. The images show the fractures, ridges, and bands that crisscross the moon’s surface.

Imagery from the solar-powered spacecraft shows some intriguing features on the ice-encased Jovian moon.

Images from the JunoCam visible-light camera aboard NASA’s Juno spacecraft supports the theory that the icy crust at the north and south poles of Jupiter’s moon Europa is not where it used to be. Another high-resolution picture of the icy moon, by the spacecraft’s Stellar Reference Unit (SRU), reveals signs of possible plume activity and an area of ice shell disruption where brine may have recently bubbled to the surface.

The JunoCam results recently appeared in the Planetary Science Journal and the SRU results in the journal JGR Planets .

On Sept. 29, 2022, Juno made its closest flyby of Europa , coming within 220 miles (355 kilometers) of the moon’s frozen surface. The four pictures taken by JunoCam and one by the SRU are the first high-resolution images of Europa since Galileo’s last flyby in 2000.

True Polar Wander

Juno’s ground track over Europa allowed imaging near the moon’s equator. When analyzing the data, the JunoCam team found that along with the expected ice blocks, walls, scarps, ridges, and troughs, the camera also captured irregularly distributed steep-walled depressions 12 to 31 miles (20 to 50 kilometers) wide. They resemble large ovoid pits previously found in imagery from other locations of Europa.

This black-and-white image of Europa’s surface was taken by the Stellar Reference Unit (SRU) aboard NASA’s Juno spacecraft during the Sept. 29, 2022, flyby. The chaos feature nicknamed “the Platypus” is seen in the lower right corner.

This black-and-white image of Europa’s surface was taken by the Stellar Reference Unit (SRU) aboard NASA’s Juno spacecraft during the Sept. 29, 2022, flyby. The chaos feature nicknamed “the Platypus” is seen in the lower right corner.

This annotated image of Europa’s surface from Juno’s SRU shows the location of a double ridge running east-west (blue box) with possible plume stains and the chaos feature the team calls “the Platypus” (orange box).

This annotated image of Europa’s surface from Juno’s SRU shows the location of a double ridge running east-west (blue box) with possible plume stains and the chaos feature the team calls “the Platypus” (orange box). These features hint at current surface activity and the presence of subsurface liquid water on the icy Jovian moon.

A giant ocean is thought to reside below Europa’s icy exterior, and these surface features have been associated with “ true polar wander ,” a theory that Europa’s outer ice shell is essentially free-floating and moves.

“True polar wander occurs if Europa’s icy shell is decoupled from its rocky interior, resulting in high stress levels on the shell, which lead to predictable fracture patterns,” said Candy Hansen, a Juno co-investigator who leads planning for JunoCam at the Planetary Science Institute in Tucson, Arizona. “This is the first time that these fracture patterns have been mapped in the southern hemisphere, suggesting that true polar wander’s effect on Europa’s surface geology is more extensive than previously identified.”

Need Some Space?

The high-resolution JunoCam imagery has also been used to reclassify a formerly prominent surface feature from the Europa map.

“Crater Gwern is no more,” said Hansen. “What was once thought to be a 13-mile-wide impact crater — one of Europa’s few documented impact craters — Gwern was revealed in JunoCam data to be a set of intersecting ridges that created an oval shadow.”

The Platypus

Although all five Europa images from Juno are high-resolution, the image from the spacecraft’s black-and-white SRU offers the most detail. Designed to detect dim stars for navigation purposes, the SRU is sensitive to low light. To avoid over-illumination in the image, the team used the camera to snap the nightside of Europa while it was lit only by sunlight scattered off Jupiter (a phenomenon called “Jupiter-shine”).

This innovative approach to imaging allowed complex surface features to stand out, revealing intricate networks of cross-cutting ridges and dark stains from potential plumes of water vapor. One intriguing feature, which covers an area 23 miles by 42 miles (37 kilometers by 67 kilometers), was nicknamed by the team “the Platypus” because of its shape.

Characterized by chaotic terrain with hummocks, prominent ridges, and dark reddish-brown material, the Platypus is the youngest feature in its neighborhood. Its northern “torso” and southern “bill” — connected by a fractured “neck” formation — interrupt the surrounding terrain with a lumpy matrix material containing numerous ice blocks that are 0.6 to 4.3 miles (1 to 7 kilometers) wide. Ridge formations collapse into the feature at the edges of the Platypus.

For the Juno team, these formations support the idea that Europa’s ice shell may give way in locations where pockets of briny water from the subsurface ocean are present beneath the surface.

About 31 miles (50 kilometers) north of the Platypus is a set of double ridges flanked by dark stains similar to features found elsewhere on Europa that scientists have hypothesized to be cryovolcanic plume deposits.

“These features hint at present-day surface activity and the presence of subsurface liquid water on Europa,” said Heidi Becker, lead co-investigator for the SRU at NASA’s Jet Propulsion Laboratory in Southern California, which also manages the mission. “The SRU’s image is a high-quality baseline for specific places NASA’s Europa Clipper mission and ESA’s (European Space Agency’s) Juice missions can target to search for signs of change and brine.”

Europa Clipper ’s focus is on Europa — including investigating whether the icy moon could have conditions suitable for life. It is scheduled to launch on the fall of 2024 and arrive at Jupiter in 2030. Juice (Jupiter Icy Moons Explorer) launched on April 14, 2023. The ESA mission will reach Jupiter in July 2031 to study many targets (Jupiter’s three large icy moons, as well as fiery Io and smaller moons, along with the planet’s atmosphere, magnetosphere, and rings) with a special focus on Ganymede.

Juno executed its 61st close flyby of Jupiter on May 12. Its 62nd flyby of the gas giant, scheduled for June 13, includes an Io flyby at an altitude of about 18,200 miles (29,300 kilometers).

More About the Mission

JPL, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contact

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

[email protected]

Karen Fox / Charles Blue

NASA Headquarters

202-385-1287 / 202-802-5345

[email protected] / [email protected]

Southwest Research Institute, San Antonio

210-522-2254

hypothesis explanation observation

The Fermi Paradox and the Berserker Hypothesis: Exploring Cosmic Silence Through Science Fiction

I n the realm of cosmic conundrums, the Fermi Paradox stands out: why, in a universe replete with billions of stars and planets, have we yet to find any signs of extraterrestrial intelligent life? The “berserker hypothesis,” a spine-chilling explanation rooted in science and popularized by science fiction, suggests a grim answer to this enduring mystery.

The concept’s moniker traces back to Fred Saberhagen’s “Berserker” series of novels, and it paints a picture of the cosmos where intelligent life forms are systematically eradicated by self-replicating probes, known as “berserkers.” These probes, initially intended to explore and report back, turn rogue and annihilate any signs of civilizations they encounter. The hypothesis emerges as a rather dark twist on the concept of von Neumann probes—machines capable of self-replication using local resources, which could theoretically colonize the galaxy rapidly.

Diving into the technicalities, the berserker hypothesis operates as a potential solution to the Hart-Tipler conjecture, which posits the lack of detectable probes as evidence that no intelligent life exists outside our solar system. Instead, this hypothesis flips the script: the absence of such probes doesn’t point to a lack of life but rather to the possibility that these probes have become cosmic predators, leaving a trail of silence in their wake.

Astronomer David Brin’s chilling summation underscores the potential severity of the hypothesis: “It need only happen once for the results of this scenario to become the equilibrium conditions in the Galaxy…because all were killed shortly after discovering radio.” If these berserker probes exist and are as efficient as theorized, then humanity’s attempts at communication with extraterrestrial beings could be akin to lighting a beacon for our own destruction.

Despite its foundation in speculative thought, the theory isn’t without its scientific evaluations. Anders Sandberg and Stuart Armstrong from the Future of Humanity Institute speculated that, given the vastness of the universe and even a slow replication rate, these berserker probes—if they existed—would likely have already found and destroyed us. It’s both a chilling and somewhat reassuring analysis that treads the line between fiction and potential reality.

Within the eclectic array of solutions to the Fermi Paradox, the berserker hypothesis stands out for its seamless blend of science fiction inspiration and scientific discourse. It connects with other notions such as the Great Filter, which suggests that life elsewhere in the universe is being systematically snuffed out before it can reach a space-faring stage, and the Dark Forest hypothesis, which posits that civilizations remain silent to avoid detection by such cosmic hunters.

Relevant articles:

– TIL about the berserker hypothesis, a proposed solution to the Fermi paradox stating the reason why we haven’t found other sentient species yet is because those species have been wiped out by self-replicating “berserker” probes.

– The Berserker Hypothesis: The Darkest Explanation Of The Fermi Paradox

– Beyond “Fermi’s Paradox” VI: What is the Berserker Hypothesis?

In the realm of cosmic conundrums, the Fermi Paradox stands out: why, in a universe replete with billions of stars and planets, have we yet to find any signs of extraterrestrial intelligent life? The “berserker hypothesis,” a spine-chilling explanation rooted in science and popularized by science fiction, suggests a grim answer to this enduring mystery. […]

scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. ... developing a hypothesis requires active observation and background research.

Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits.. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained ...

One of the experts in the field defines "hypothesis" as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test.4 A hypothesis can be proven wrong partially or entirely. However, even such ...

Meaning. Biology. The study of living things. Observation. Noticing and describing events in an orderly way. Hypothesis. A scientific explanation that can be tested through experimentation or observation. Controlled experiment. An experiment in which only one variable is changed.

The scientific method is a detailed, empirical problem-solving process used by biologists and other scientists. This iterative approach involves formulating a question based on observation, developing a testable potential explanation for the observation (called a hypothesis), making and testing predictions based on the hypothesis, and using the findings to create new hypotheses and predictions ...

For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions. Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.

A hypothesis is a statement created by the researcher as a potential explanation for an observation or phenomena. The hypothesis converts the researcher's original question into a statement that can be used to make predictions about what should be observed if the hypothesis is true.

A hypothesis is a tentative explanation that can be tested by further investigation. A theory is a well-supported explanation of observations. A scientific law is a statement that summarizes the relationship between variables. An experiment is a controlled method of testing a hypothesis.

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

A hypothesis is an educated guess, based on observation. It's a prediction of cause and effect. Usually, a hypothesis can be supported or refuted through experimentation or more observation. A hypothesis can be disproven but not proven to be true. Example: If you see no difference in the cleaning ability of various laundry detergents, you might ...

A hypothesis is a proposed explanation for an observable phenomenon. Hypotheses, just like theories, are based on observations from research. For example, LeClerc did not hypothesize that Earth had cooled from a molten ball of iron as a random guess; rather, he developed this hypothesis based on his observations of information from meteorites.

You must be able to test your hypothesis, and it must be possible to prove your hypothesis true or false. For example, Michael observes that maple trees lose their leaves in the fall. He might then propose a possible explanation for this observation: "cold weather causes maple trees to lose their leaves in the fall." This statement is testable.

The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis, and conducting scientific experiments. Scientific inquiry starts with an observation followed by the formulation of a question about what has been observed.

A hypothesis is a tentative explanation for an observation. A scientific theory is a well-tested and consistently verified explanation for a set of observations or phenomena. A scientific law is a description, often in the form of a mathematical formula, of the behavior of an aspect of nature under certain circumstances.

hypothesis. A proposed explanation for a fairly narrow set of phenomena, usually based on prior experience, scientific background knowledge, preliminary observations, and logic. To learn more, visit Science at multiple levels.

In accepting an hypothesis, a person makes a judgement that the risk of being mistaken is sufficiently low (Rudner 1953). ... P., 1991, Inference to the Best Explanation, London: Routledge ... "Artificial Disintegration and the Cambridge-Vienna Controversy," in P. Achinstein and O. Hannaway (eds.), Observation, Experiment, and Hypothesis in ...

A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, "If I do [X], then ...

Psychology document from University of Maryland Global Campus (UMGC), 7 pages, (A) Define the terms below in your own words (5 points). 1. Hypothesis A hypothesis is a statement the researcher starts as a possible explanation for an observation. The vision converts the researcher's actual question into an idea that can be used to pr

A giant ocean is thought to reside below Europa's icy exterior, and these surface features have been associated with "true polar wander," a theory that Europa's outer ice shell is essentially free-floating and moves. "True polar wander occurs if Europa's icy shell is decoupled from its rocky interior, resulting in high stress levels on the shell, which lead to predictable fracture ...

The "berserker hypothesis," a spine-chilling explanation rooted in science and popularized by science fiction, suggests a grim answer to this enduring mystery. The concept's moniker traces ...

aau library dissertation

aau library dissertation

Customer Reviews

distance learning thesis statement brainly

Go to Bing homepage

distance learning thesis statement brainly

3rd Grade Units Review Jeopardy by cupcakeswiththecoach | TPT

3rd Grade Jeopardy All Subjects

Grade math jeopardy 3rd review 5th common core musgrove tomochichi oglethorpe mary james game teacherspayteachers 3rd grade grammar review jeopardy! by torie clodfelter

Math 3rd grade review jeopardy powerpoint freebie fun testing theappliciousteacher Jeopardy 3rd grade october bundle math games preview teacherspayteachers Grade jeopardy 3rd october math preview classroom

3rd Grade Jeopardy Math #2 by LOLLIPOP LEARNING | TPT

3rd grade jeopardy by lollipop learning, 3rd grade grammar review jeopardy by torie clodfelter.

Jeopardy 3rd math grade previewJeopardy grammar 3rd grade review 3rd grade grammar jeopardy game #1 distance learning by lollipop learning3rd grade math review jeopardy powerpoint freebie.

3rd grade units review jeopardy by cupcakeswiththecoach3rd grade jeopardy ela language reading review Jeopardy 3rd grade previewThird grade jeopardy.

3rd Grade Jeopardy by LOLLIPOP LEARNING | Teachers Pay Teachers

Check Details

3rd grade jeopardy (october) by lollipop learningJeopardy grammar 3rd grade review followers 3rd grade jeopardy3rd grade grammar jeopardy game #1 distance learning by lollipop learning.

Jeopardy 3rd math grade3rd grade jeopardy distance learning by lollipop learning Learning grammar jeopardy 3rd grade game distance3rd grade jeopardy by lollipop learning.

3rd Grade Grammar Jeopardy Game #1 Distance Learning by LOLLIPOP LEARNING

Jeopardy! 3rd grade edition by bean counter

Jeopardy distanceJeopardy 3rd grade october preview 3rd grade jeopardy distance learningJeopardy math.

Learning jeopardy grammar 3rd grade game distance3rd grade math review jeopardy powerpoint freebie Jeopardy math theappliciousteacher freebie3rd grade grammar review jeopardy! by torie clodfelter.

3rd Grade Units Review Jeopardy by cupcakeswiththecoach | TPT

Jeopardy grammar 3rd grade review

3rd grade jeopardy math #2 by lollipop learningGrade 3rd choose board jeopardy thanksgiving Jeopardy review 3rd grade math by bowie's 3rd grade test prepJeopardy ratings.

3rd Grade Jeopardy by LOLLIPOP LEARNING | Teachers Pay Teachers

Share with friends

  • Link copied

The Lemonade War by Jacqueline Davies (Paperback) | Scholastic Book Clubs

The Lemonade War Lesson Plans

Lemonade war teacher's guide k-1 The lemonade war by jacqueline davies (paperback)

The lemonade war novel study unit distance learning Lemonade war guide teacher simplebooklet The lemonade war

The Lemonade War by Jacqueline Davies (Paperback) | Scholastic Book Clubs

Lemonade comprehension bookunitsteacher

The lemonade war teacher's guide: printable literature activities

The lemonade war: book study by rebecca seeleyThe lemonade war mega book study bundle: 2 unit plans ela & math by The lemonade war lesson plan (book club formatLemonade war sorting figurative.

The lemonade warThe lemonade war The lemonade war novel study unit distance learningLemonade math bundle.

The Lemonade War Lesson Plan (Book Club Format - Making Inferences) (CCSS)

Check Details

Lemonade scholastic

Inferences lemonade ccss lesson war plan making format club book previewWar learning lemonade novel distance unit study .

Lemonade War Teacher's Guide K-1 - Lesson Plans Learning

Share with friends

  • Link copied

IMAGES

  1. Thesis statement about distance learning modality

    distance learning thesis statement brainly

  2. Thesis Statement Distance Learning Packet by DiGiGoods and Printables ELA

    distance learning thesis statement brainly

  3. Thesis Statement Practice Activities Informative Writing Distance Learning

    distance learning thesis statement brainly

  4. Argumentative Writing and Thesis Statement Distance Learning

    distance learning thesis statement brainly

  5. Thesis Statement DISTANCE LEARNING by DiGiGoods and Printables ELA

    distance learning thesis statement brainly

  6. introduction: thesis statement

    distance learning thesis statement brainly

VIDEO

  1. Check Aimlay's PhD course on Udemy today 📚📑🎓

  2. Teachers trying to reach, teach students without technology easily available

  3. Long-distance running, PhD thesis, Kazan marathon 2024 and May-June athletics races 🏃‍♂️

  4. What is a thesis Statement

  5. KEEP DISTANCE OF THESIS TYPES OF GIRLS 🫵😎 #viral #tranding #popular #knowledge #girl #attention

  6. An Opinion Essay

COMMENTS

  1. Thesis statement about distance learning

    Making them clean the floors would be a (n) because it would be outside their usual duties, 2. verified. Verified answer. a letter to the Ambassador highlighting hardship faced by Nigerian students and soliciting for assistance . star. 4 /5. 5. Find an answer to your question Thesis statement about distance learning.

  2. write a thesis statement on how distance learning affects the social

    Final answer: A suitable thesis statement on how distance learning impacts students' social presence, academic achievement, and motivation might focus on the dual effects: enhanced academic performance and motivation due to flexibility, and challenged social presence due to reduced physical interaction.The comparison of virtual and face-to-face learning models emphasizes the need for student ...

  3. thesis statement for distance learning

    Thesis statement for distance learning . Answer: Assessment is an integral part of the learning process. The traditional practice of assessment has changed to meet the need of the contemporary society. In this paper assessment strategies used in Open and Distance Education are discussed and constructive suggestions are given to meet the ...

  4. Brainly

    Brainly is the knowledge-sharing community where hundreds of millions of students and experts put their heads together to crack their toughest homework questions. Brainly - Learning, Your Way. - Homework Help, AI Tutor & Test Prep

  5. PDF The Effects of Distance Education on K-12 Student Outcomes:

    This meta-analysis is a statistical review of 116 effect sizes from 14 web-delivered K-12 distance education programs studied between 1999 and 2004. The analysis shows that distance education can have the same effect on measures of student academic achievement when compared to traditional instruction.

  6. Write a thesis statement about distance learning modality

    Distance Learning. This refers to a learning delivery modality where learning takes place between the teacher and the learners who are geographically remote from each other during instruction. This modality has three types: Modular Distance Learning (MDL), Online Distance Learning (ODL), and TV/Radio-Based Instruction.

  7. Modular Distance Learning in the New Normal Education Amidst Covid-19

    ABSTRACT. Education in the new normal is a challenging task in the Philippines in an attempt to push through education amidst. the deadly pandemic caused by covid-19. The Department of Education ...

  8. F2F, zoom, or asynchronous learning? Higher education students

    The evolution and rise of distance education. The basic concept of distance education involves the teacher teaching content while the students learn at another time or in another space (Moore et al., Citation 2011; Sherry, Citation 1995).Distance education's earliest record states to 1728 when Caleb Phillips advertised in the Boston Gazette that he could teach any person in the US the ...

  9. thesis statement about distance education brainly

    At this stage it can be simple, and it should guide the research process and writing process. The internet has had more of a positive than a negative effect on education.... This meta-analysis is a statistical review of 116 effect sizes from 14 web-delivered K-12 distance education programs studied between 1999 and 2004.

  10. distance education thesis statement brainly

    Research article; Open access; Published: 20 May 2020; Students' perceptions on distance education: A multinational study. Patricia Fidalgo 1 , Joan Thormann 2 , Oleksandr Kulyk

  11. Thesis statement on virtual learning: Virtual learning ...

    Thesis statement on virtual learning: Virtual learning provides a flexible and accessible educational environment, allowing students to _____. ... Brainly 1-on-1 Math Tutoring brings you. dot. ... A point has one dimension, length. A line has length and width. A distance along a line must have no beginning or end. A plane consists of an ...

  12. Thesis Statement Distance Education

    Thesis Statement Distance Education - Your Price:.40 per page. 132 . Customer Reviews. Who is an essay writer? 3 types of essay writers ... Thesis Statement Distance Education, Bullying Essay Brainly, Conclusion Dissertation Immigration, Tyler Durden Essays, Cover Letter Writer For Hire Us, Deforestation Essay In English 200 Words, Mechanical ...

  13. Master of Business Administration

    A Master of Business Administration ( MBA; also Master in Business Administration) is a postgraduate degree focused on business administration. [1] The core courses in an MBA program cover various areas of business administration such as accounting, applied statistics, human resources, business communication, business ethics, business law ...

  14. Best Essay Writers Here

    Doctoral dissertation help kissinger Law school essay review service thesis international relations essay for service learning online essay service review assign risk Essay about travelling and tourism Phd thesis collection macbeth ambition essay conclusion help help with ... Financial Statement Form. 681 x 513 png 55kB. issuu.com. Oscola ...

  15. Thesis Development Worksheet

    Thesis worksheetThesis statement worksheet Thesis statement practice worksheets by teach with erikaThesis statement activities practice distance learning subject. Thesis Statement Practice Activities by DiGiGoods and Printables ELA. Check Details. Thesis lesson

  16. Thesis Statement 5 Paragraph Essay Examples

    Writing the five paragraph theme & thesis statement Thesis brainly ph paragraph requiring paragraphs concluding opinion. 28 Sep 2023. ... sentence middle essays thatsnotus explain narrative 5b concludingThesis statement write business examples own body statements length wikihow education outline child college. ...

  17. Doctor of Philosophy

    A Doctor of Philosophy (PhD, Ph.D., or DPhil; Latin: philosophiae doctor or doctor philosophiae) is a terminal degree that usually denotes the highest level of academic achievement in a given discipline and is awarded following a course of graduate study and original research.The name of the degree is most often abbreviated PhD (or, at times, as Ph.D. in North America), pronounced as three ...

  18. Ron Perry

    Client Services Manager at NEXT STEP ENTERPRISES L.L.C. · I am a Generalist. I could stop with that statement because it defines me. I love to learn and try new things.&lt;br&gt;My story:&lt;br ...

  19. What is a thesis statement

    Answer: a thesis statement tells the reader how you will interpret the significance of the subject matter under discussion. It's a map for the paper; in other words, it tells the reader what to expect from the rest of the paper it directly answers the question asked of you. Explanation:

  20. 3rd Grade Jeopardy All Subjects

    Jeopardy 3rd math grade3rd grade jeopardy distance learning by lollipop learning Learning grammar jeopardy 3rd grade game distance3rd grade jeopardy by lollipop learning. ... Developing A Thesis Statement Worksheet. posts 06 Apr 2023. Plant Life Cycle Worksheet Grade 2. posts 11 Jul 2023. 4 Digit By 1 Digit Multiplication Word Problems.

  21. The Lemonade War Lesson Plans

    The lemonade warThe lemonade war The lemonade war novel study unit distance learningLemonade math bundle. The Lemonade War Lesson Plan (Book Club Format - Making Inferences) (CCSS) Check Details. Lemonade scholastic. Inferences lemonade ccss lesson war plan making format club book previewWar learning lemonade novel distance unit study ..

  22. What a thesis statement?

    Answer. No one rated this answer yet — 😎. profile. tiylucas2010. report flag outlined. A thesis statement is an explanation of the main topic. The thesis statement is always at the beginning of an essay. It is in the introduction paragraph. Advertisement.

  23. A thesis statement is a sentence that ___?

    A thesis statement clearly identifies the topic being discussed, it should only cover what is being discussed in the paper, and is written for a specific audience. Your thesis statement belongs at the end of your first paragraph, also known as your introduction. basically a sentace that states the main idea of your essay