Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

what is methodology in a lab report

Try for free

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved June 9, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Home

  • Peterborough

an student standing in front of a blackboard full of physics and Math formulas.

Writing Lab Reports: Methods

Keys to the methods section.

Purpose : How did you conduct this study? Relative size : 10-15% of total Scope : Narrow: the middle of the hourglass Verb Tense : Always use the past tense when summarizing the methods of the experiment.

The methods section sets out important details.

The purpose of this section is to provide sufficient detail of your methodology so that a reader could repeat your study and reproduce your results. Though the methods section is the most straightforward part of the lab report, you may find it difficult to balance enough information with too much extraneous detail. To test yourself, ask, “Would someone need to know this detail to reproduce this study?”

Avoid writing your methods as a step-by-step procedure; rather, present a concise summary of what you did. Consider the following examples:

Example 1: “First, each group chose a turtle. A member of each group then measured the carapace length, while another recorded the measurement in the lab book. A different group member then recorded the turtle’s weight.”

Example 2: “Students determined carapace length (cm) and weight (g) for all individuals.”

The first example provides unnecessary information (the reader need not know that each turtle was measured by a different group, nor which group member took the measurements) and is tedious to read. The second is clear and concise, and it also provides the units of measurements. Note that it is not necessary to mention that data were recorded – we assume that if you took the trouble to take a measurement, you also wrote it down.

The methods section should contain information specific to your study only. This means that you generally should not refer to other research and, therefore, should not include citations. Exceptions arise when using another author’s method, such as when following the procedure from your lab manual, or when using maps or diagrams from other sources.

Methods Section Details

Study area : Describe your study area. Geographic location, size, boundaries, topography, and habitat type (forest or meadow composition, type of water bodies, for example) may be relevant.

Organism : If studying a particular organism, provide details of gender, age, and other relevant information to your study.

Materials : Within the prose of your procedure text, integrate materials that you used. Include model numbers of specialized lab equipment, concentrations of chemical solutions, and other such details.

Procedure : What you did – write in paragraph format (no point form or numbered steps). Include an explanation of your experimental design, sample size, replicates, measurement techniques, etc.

Data Analysis : What statistical tests you used (including tests of normality), significance level set (α=?), and any data manipulation required. Include specific calculations, if appropriate.

Figures : Include diagrams of study area, equipment, or procedures, where appropriate. Number and title appropriately and refer to the figure within the text.

A good methods section should...

  • Provide enough detail to allow an accurate reproduction of the study
  • Be written in a logically flowing paragraph format
  • Provide details on the study site, organism, materials, procedure, and statistical analysis
  • Should reference the lab manual, if appropriate

A good methods section should NOT...

  • Be a recipe-book-style instruction guide
  • Provide a list of materials
  • Use bullet points
  • Cite other studies for comparison

Back to Writing Lab Reports

Next to Writing Results  

FTLOScience

Complete Guide to Writing a Lab Report (With Example)

Students tend to approach writing lab reports with confusion and dread. Whether in high school science classes or undergraduate laboratories, experiments are always fun and games until the times comes to submit a lab report. What if we didn’t need to spend hours agonizing over this piece of scientific writing? Our lives would be so much easier if we were told what information to include, what to do with all their data and how to use references. Well, here’s a guide to all the core components in a well-written lab report, complete with an example.

Things to Include in a Laboratory Report

The laboratory report is simply a way to show that you understand the link between theory and practice while communicating through clear and concise writing. As with all forms of writing, it’s not the report’s length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar analysis with Benedict’s reagent.

The report’s title should be short but descriptive, indicating the qualitative or quantitative nature of the practical along with the primary goal or area of focus.

Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice .

Introduction

The introduction provides context to the experiment in a couple of paragraphs and relevant diagrams. While a short preamble outlining the history of the techniques or materials used in the practical is appropriate, the bulk of the introduction should outline the experiment’s goals, creating a logical flow to the next section.

Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

Step-by-step methods are usually provided in high school and undergraduate laboratory practicals, so it’s just a matter of paraphrasing them. This is usually the section that teachers and demonstrators care the least about. Any unexpected changes to the experimental setup or techniques can also be documented here.

The results section should include the raw data that has been collected in the experiment as well as calculations that are performed. It is usually appropriate to include diagrams; depending on the experiment, these can range from scatter plots to chromatograms.

The discussion is the most critical part of the lab report as it is a chance for you to show that you have a deep understanding of the practical and the theory behind it. Teachers and lecturers tend to give this section the most weightage when marking the report. It would help if you used the discussion section to address several points:

  • Explain the results gathered. Is there a particular trend? Do the results support the theory behind the experiment?
  • Highlight any unexpected results or outlying data points. What are possible sources of error?
  • Address the weaknesses of the experiment. Refer to the materials and methods used to identify improvements that would yield better results (more accurate equipment, better experimental technique, etc.)  

Finally, a short paragraph to conclude the laboratory report. It should summarize the findings and provide an objective review of the experiment.

If any external sources were used in writing the lab report, they should go here. Referencing is critical in scientific writing; it’s like giving a shout out (known as a citation) to the original provider of the information. It is good practice to have at least one source referenced, either from researching the context behind the experiment, best practices for the method used or similar industry standards.

Google Scholar is a good resource for quickly gathering references of a specific style . Searching for the article in the search bar and clicking on the ‘cite’ button opens a pop-up that allows you to copy and paste from several common referencing styles.

referencing styles from google scholar

Example: Writing a Lab Report

Title : Semi-Quantitative Analysis of Food Products using Benedict’s Reagent

Abstract : Food products (milk, chicken, bread, orange juice) were solubilized and tested for reducing sugars using Benedict’s reagent. Milk contained the highest level of reducing sugars at ~2%, while chicken contained almost no reducing sugars.

Introduction : Sugar detection has been of interest for over 100 years, with the first test for glucose using copper sulfate developed by German chemist Karl Trommer in 1841. It was used to test the urine of diabetics, where sugar was present in high amounts. However, it wasn’t until 1907 when the method was perfected by Stanley Benedict, using sodium citrate and sodium carbonate to stabilize the copper sulfate in solution. Benedict’s reagent is a bright blue because of the copper sulfate, turning green and then red as the concentration of reducing sugars increases.

Benedict’s reagent was used in this experiment to compare the amount of reducing sugars between four food items: milk, chicken solution, bread and orange juice. Following this, standardized glucose solutions (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) were tested with Benedict’s reagent to determine the color produced at those sugar levels, allowing us to perform a semi-quantitative analysis of the food items.

Method : Benedict’s reagent was prepared by mixing 1.73 g of copper (II) sulfate pentahydrate, 17.30 g of sodium citrate pentahydrate and 10.00 g of sodium carbonate anhydrous. The mixture was dissolved with stirring and made up to 100 ml using distilled water before filtration using filter paper and a funnel to remove any impurities.

4 ml of milk, chicken solution and orange juice (commercially available) were measured in test tubes, along with 4 ml of bread solution. The bread solution was prepared using 4 g of dried bread ground with mortar and pestle before diluting with distilled water up to 4 ml. Then, 4 ml of Benedict’s reagent was added to each test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Next, glucose solutions were prepared by dissolving 0.5 g, 1.0 g, 1.5 g and 2.0 g of glucose in 100 ml of distilled water to produce 0.5%, 1.0%, 1.5% and 2.0% solutions, respectively. 4 ml of each solution was added to 4 ml of Benedict’s reagent in a test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Results : Food Solutions (4 ml) with Benedict’s Reagent (4 ml)

Food SolutionsColor Observed
MilkRed
Chicken SolutionBlue
BreadGreen
Orange JuiceOrange

Glucose Solutions (4 ml) with Benedict’s Reagent (4 ml)

Glucose SolutionsColor Observed
0.0% (Control)Blue
0.5%Green
1.0%Dark Green
1.5%Orange
2.0%Red

Semi-Quantitative Analysis from Data

Food SolutionsSugar Levels
Milk2.0%
Chicken Solution0.0%
Bread0.5%
Orange Juice1.5%

Discussion : From the analysis of food solutions along with the glucose solutions of known concentrations, the semi-quantitative analysis of sugar levels in different food products was performed. Milk had the highest sugar content of 2%, with orange juice at 1.5%, bread at 0.5% and chicken with 0% sugar. These values were approximated; the standard solutions were not the exact color of the food solutions, but the closest color match was chosen.

One point of contention was using the orange juice solution, which conferred color to the starting solution, rendering it green before the reaction started. This could have led to the final color (and hence, sugar quantity) being inaccurate. Also, since comparing colors using eyesight alone is inaccurate, the experiment could be improved with a colorimeter that can accurately determine the exact wavelength of light absorbed by the solution.

Another downside of Benedict’s reagent is its inability to react with non-reducing sugars. Reducing sugars encompass all sugar types that can be oxidized from aldehydes or ketones into carboxylic acids. This means that all monosaccharides (glucose, fructose, etc.) are reducing sugars, while only select polysaccharides are. Disaccharides like sucrose and trehalose cannot be oxidized, hence are non-reducing and will not react with Benedict’s reagent. Furthermore, Benedict’s reagent cannot distinguish between different types of reducing sugars.

Conclusion : Using Benedict’s reagent, different food products were analyzed semi-quantitatively for their levels of reducing sugars. Milk contained around 2% sugar, while the chicken solution had no sugar. Overall, the experiment was a success, although the accuracy of the results could have been improved with the use of quantitative equipment and methods.

Reference :

  • Raza, S. I., Raza, S. A., Kazmi, M., Khan, S., & Hussain, I. (2021). 100 Years of Glucose Monitoring in Diabetes Management.  Journal of Diabetes Mellitus ,  11 (5), 221-233.
  • Benedict, Stanley R (1909). A Reagent for the Detection of Reducing Sugars.  Journal of Biological Chemistry ,  5 , 485-487.

Using this guide and example, writing a lab report should be a hassle-free, perhaps even enjoyable process!

About the Author

sean author

Sean is a consultant for clients in the pharmaceutical industry and is an associate lecturer at La Trobe University, where unfortunate undergrads are subject to his ramblings on chemistry and pharmacology.

You Might Also Like…

The stress response: friend or foe, climate change: one planet, one chance.

patreon ftloscience

If our content has been helpful to you, please consider supporting our independent science publishing efforts: for just $1 a month.

© 2023 FTLOScience • All Rights Reserved

Lab Report Format: Step-by-Step Guide & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In psychology, a lab report outlines a study’s objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion.

The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

The report should have a thread of arguments linking the prediction in the introduction to the content of the discussion.

This must indicate what the study is about. It must include the variables under investigation. It should not be written as a question.

Title pages should be formatted in APA style .

The abstract provides a concise and comprehensive summary of a research report. Your style should be brief but not use note form. Look at examples in journal articles . It should aim to explain very briefly (about 150 words) the following:

  • Start with a one/two sentence summary, providing the aim and rationale for the study.
  • Describe participants and setting: who, when, where, how many, and what groups?
  • Describe the method: what design, what experimental treatment, what questionnaires, surveys, or tests were used.
  • Describe the major findings, including a mention of the statistics used and the significance levels, or simply one sentence summing up the outcome.
  • The final sentence(s) outline the study’s “contribution to knowledge” within the literature. What does it all mean? Mention the implications of your findings if appropriate.

The abstract comes at the beginning of your report but is written at the end (as it summarises information from all the other sections of the report).

Introduction

The purpose of the introduction is to explain where your hypothesis comes from (i.e., it should provide a rationale for your research study).

Ideally, the introduction should have a funnel structure: Start broad and then become more specific. The aims should not appear out of thin air; the preceding review of psychological literature should lead logically into the aims and hypotheses.

The funnel structure of the introducion to a lab report

  • Start with general theory, briefly introducing the topic. Define the important key terms.
  • Explain the theoretical framework.
  • Summarise and synthesize previous studies – What was the purpose? Who were the participants? What did they do? What did they find? What do these results mean? How do the results relate to the theoretical framework?
  • Rationale: How does the current study address a gap in the literature? Perhaps it overcomes a limitation of previous research.
  • Aims and hypothesis. Write a paragraph explaining what you plan to investigate and make a clear and concise prediction regarding the results you expect to find.

There should be a logical progression of ideas that aids the flow of the report. This means the studies outlined should lead logically to your aims and hypotheses.

Do be concise and selective, and avoid the temptation to include anything in case it is relevant (i.e., don’t write a shopping list of studies).

USE THE FOLLOWING SUBHEADINGS:

Participants

  • How many participants were recruited?
  • Say how you obtained your sample (e.g., opportunity sample).
  • Give relevant demographic details (e.g., gender, ethnicity, age range, mean age, and standard deviation).
  • State the experimental design .
  • What were the independent and dependent variables ? Make sure the independent variable is labeled and name the different conditions/levels.
  • For example, if gender is the independent variable label, then male and female are the levels/conditions/groups.
  • How were the IV and DV operationalized?
  • Identify any controls used, e.g., counterbalancing and control of extraneous variables.
  • List all the materials and measures (e.g., what was the title of the questionnaire? Was it adapted from a study?).
  • You do not need to include wholesale replication of materials – instead, include a ‘sensible’ (illustrate) level of detail. For example, give examples of questionnaire items.
  • Include the reliability (e.g., alpha values) for the measure(s).
  • Describe the precise procedure you followed when conducting your research, i.e., exactly what you did.
  • Describe in sufficient detail to allow for replication of findings.
  • Be concise in your description and omit extraneous/trivial details, e.g., you don’t need to include details regarding instructions, debrief, record sheets, etc.
  • Assume the reader has no knowledge of what you did and ensure that he/she can replicate (i.e., copy) your study exactly by what you write in this section.
  • Write in the past tense.
  • Don’t justify or explain in the Method (e.g., why you chose a particular sampling method); just report what you did.
  • Only give enough detail for someone to replicate the experiment – be concise in your writing.
  • The results section of a paper usually presents descriptive statistics followed by inferential statistics.
  • Report the means, standard deviations, and 95% confidence intervals (CIs) for each IV level. If you have four to 20 numbers to present, a well-presented table is best, APA style.
  • Name the statistical test being used.
  • Report appropriate statistics (e.g., t-scores, p values ).
  • Report the magnitude (e.g., are the results significant or not?) as well as the direction of the results (e.g., which group performed better?).
  • It is optional to report the effect size (this does not appear on the SPSS output).
  • Avoid interpreting the results (save this for the discussion).
  • Make sure the results are presented clearly and concisely. A table can be used to display descriptive statistics if this makes the data easier to understand.
  • DO NOT include any raw data.
  • Follow APA style.

Use APA Style

  • Numbers reported to 2 d.p. (incl. 0 before the decimal if 1.00, e.g., “0.51”). The exceptions to this rule: Numbers which can never exceed 1.0 (e.g., p -values, r-values): report to 3 d.p. and do not include 0 before the decimal place, e.g., “.001”.
  • Percentages and degrees of freedom: report as whole numbers.
  • Statistical symbols that are not Greek letters should be italicized (e.g., M , SD , t , X 2 , F , p , d ).
  • Include spaces on either side of the equals sign.
  • When reporting 95%, CIs (confidence intervals), upper and lower limits are given inside square brackets, e.g., “95% CI [73.37, 102.23]”
  • Outline your findings in plain English (avoid statistical jargon) and relate your results to your hypothesis, e.g., is it supported or rejected?
  • Compare your results to background materials from the introduction section. Are your results similar or different? Discuss why/why not.
  • How confident can we be in the results? Acknowledge limitations, but only if they can explain the result obtained. If the study has found a reliable effect, be very careful suggesting limitations as you are doubting your results. Unless you can think of any c onfounding variable that can explain the results instead of the IV, it would be advisable to leave the section out.
  • Suggest constructive ways to improve your study if appropriate.
  • What are the implications of your findings? Say what your findings mean for how people behave in the real world.
  • Suggest an idea for further research triggered by your study, something in the same area but not simply an improved version of yours. Perhaps you could base this on a limitation of your study.
  • Concluding paragraph – Finish with a statement of your findings and the key points of the discussion (e.g., interpretation and implications) in no more than 3 or 4 sentences.

Reference Page

The reference section lists all the sources cited in the essay (alphabetically). It is not a bibliography (a list of the books you used).

In simple terms, every time you refer to a psychologist’s name (and date), you need to reference the original source of information.

If you have been using textbooks this is easy as the references are usually at the back of the book and you can just copy them down. If you have been using websites then you may have a problem as they might not provide a reference section for you to copy.

References need to be set out APA style :

Author, A. A. (year). Title of work . Location: Publisher.

Journal Articles

Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers

A simple way to write your reference section is to use Google scholar . Just type the name and date of the psychologist in the search box and click on the “cite” link.

google scholar search results

Next, copy and paste the APA reference into the reference section of your essay.

apa reference

Once again, remember that references need to be in alphabetical order according to surname.

Psychology Lab Report Example

Quantitative paper template.

Quantitative professional paper template: Adapted from “Fake News, Fast and Slow: Deliberation Reduces Belief in False (but Not True) News Headlines,” by B. Bago, D. G. Rand, and G. Pennycook, 2020,  Journal of Experimental Psychology: General ,  149 (8), pp. 1608–1613 ( https://doi.org/10.1037/xge0000729 ). Copyright 2020 by the American Psychological Association.

Qualitative paper template

Qualitative professional paper template: Adapted from “‘My Smartphone Is an Extension of Myself’: A Holistic Qualitative Exploration of the Impact of Using a Smartphone,” by L. J. Harkin and D. Kuss, 2020,  Psychology of Popular Media ,  10 (1), pp. 28–38 ( https://doi.org/10.1037/ppm0000278 ). Copyright 2020 by the American Psychological Association.

Print Friendly, PDF & Email

Related Articles

How To Cite A YouTube Video In APA Style – With Examples

Student Resources

How To Cite A YouTube Video In APA Style – With Examples

How to Write an Abstract APA Format

How to Write an Abstract APA Format

APA References Page Formatting and Example

APA References Page Formatting and Example

APA Title Page (Cover Page) Format, Example, & Templates

APA Title Page (Cover Page) Format, Example, & Templates

How do I Cite a Source with Multiple Authors in APA Style?

How do I Cite a Source with Multiple Authors in APA Style?

How to Write a Psychology Essay

How to Write a Psychology Essay

Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Homeschool Resources
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Outdoor Adventure
  • Private High School Spotlight
  • Research Programs
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Logo for OPEN SLCC

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

4 Writing the Materials and Methods (Methodology) Section

The Materials and Methods section briefly describes how you did your research. In other words, what did you do to answer your research question? If there were materials used for the research or materials experimented on you list them in this section. You also describe how you did the research or experiment. The key to a methodology is that another person must be able to replicate your research—follow the steps you take. For example if you used the internet to do a search it is not enough to say you “searched the internet.” A reader would need to know which search engine and what key words you used.

Open this section by describing the overall approach you took or the materials used. Then describe to the readers step-by-step the methods you used including any data analysis performed. See Fig. 2.5 below for an example of materials and methods section.

Writing tips:

  • Explain procedures, materials, and equipment used
  • Example: “We used an x-ray fluorescence spectrometer to analyze major and trace elements in the mystery mineral samples.”
  • Order events chronologically, perhaps with subheadings (Field work, Lab Analysis, Statistical Models)
  • Use past tense (you did X, Y, Z)
  • Quantify measurements
  • Include results in the methods! It’s easy to make this mistake!
  • Example: “W e turned on the machine and loaded in our samples, then calibrated the instrument and pushed the start button and waited one hour. . . .”

Materials and methods

Technical Writing @ SLCC Copyright © 2020 by Department of English, Linguistics, and Writing Studies at SLCC is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.

Conclusions

Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • The 10 Most Important Lab Safety Rules
  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Make a Science Fair Poster or Display
  • Understanding Simple vs Controlled Experiments
  • How to Organize Your Science Fair Poster
  • Scientific Method Lesson Plan
  • What Is an Experiment? Definition and Design
  • What Are the Elements of a Good Hypothesis?

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Your Methods

what is methodology in a lab report

Ensure understanding, reproducibility and replicability

What should you include in your methods section, and how much detail is appropriate?

Why Methods Matter

The methods section was once the most likely part of a paper to be unfairly abbreviated, overly summarized, or even relegated to hard-to-find sections of a publisher’s website. While some journals may responsibly include more detailed elements of methods in supplementary sections, the movement for increased reproducibility and rigor in science has reinstated the importance of the methods section. Methods are now viewed as a key element in establishing the credibility of the research being reported, alongside the open availability of data and results.

A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability.

For example, the Reproducibility Project: Cancer Biology project set out in 2013 to replicate experiments from 50 high profile cancer papers, but revised their target to 18 papers once they understood how much methodological detail was not contained in the original papers.

what is methodology in a lab report

What to include in your methods section

What you include in your methods sections depends on what field you are in and what experiments you are performing. However, the general principle in place at the majority of journals is summarized well by the guidelines at PLOS ONE : “The Materials and Methods section should provide enough detail to allow suitably skilled investigators to fully replicate your study. ” The emphases here are deliberate: the methods should enable readers to understand your paper, and replicate your study. However, there is no need to go into the level of detail that a lay-person would require—the focus is on the reader who is also trained in your field, with the suitable skills and knowledge to attempt a replication.

A constant principle of rigorous science

A methods section that enables other researchers to understand and replicate your results is a constant principle of rigorous, transparent, and Open Science. Aim to be thorough, even if a particular journal doesn’t require the same level of detail . Reproducibility is all of our responsibility. You cannot create any problems by exceeding a minimum standard of information. If a journal still has word-limits—either for the overall article or specific sections—and requires some methodological details to be in a supplemental section, that is OK as long as the extra details are searchable and findable .

Imagine replicating your own work, years in the future

As part of PLOS’ presentation on Reproducibility and Open Publishing (part of UCSF’s Reproducibility Series ) we recommend planning the level of detail in your methods section by imagining you are writing for your future self, replicating your own work. When you consider that you might be at a different institution, with different account logins, applications, resources, and access levels—you can help yourself imagine the level of specificity that you yourself would require to redo the exact experiment. Consider:

  • Which details would you need to be reminded of? 
  • Which cell line, or antibody, or software, or reagent did you use, and does it have a Research Resource ID (RRID) that you can cite?
  • Which version of a questionnaire did you use in your survey? 
  • Exactly which visual stimulus did you show participants, and is it publicly available? 
  • What participants did you decide to exclude? 
  • What process did you adjust, during your work? 

Tip: Be sure to capture any changes to your protocols

You yourself would want to know about any adjustments, if you ever replicate the work, so you can surmise that anyone else would want to as well. Even if a necessary adjustment you made was not ideal, transparency is the key to ensuring this is not regarded as an issue in the future. It is far better to transparently convey any non-optimal methods, or methodological constraints, than to conceal them, which could result in reproducibility or ethical issues downstream.

Visual aids for methods help when reading the whole paper

Consider whether a visual representation of your methods could be appropriate or aid understanding your process. A visual reference readers can easily return to, like a flow-diagram, decision-tree, or checklist, can help readers to better understand the complete article, not just the methods section.

Ethical Considerations

In addition to describing what you did, it is just as important to assure readers that you also followed all relevant ethical guidelines when conducting your research. While ethical standards and reporting guidelines are often presented in a separate section of a paper, ensure that your methods and protocols actually follow these guidelines. Read more about ethics .

Existing standards, checklists, guidelines, partners

While the level of detail contained in a methods section should be guided by the universal principles of rigorous science outlined above, various disciplines, fields, and projects have worked hard to design and develop consistent standards, guidelines, and tools to help with reporting all types of experiment. Below, you’ll find some of the key initiatives. Ensure you read the submission guidelines for the specific journal you are submitting to, in order to discover any further journal- or field-specific policies to follow, or initiatives/tools to utilize.

Tip: Keep your paper moving forward by providing the proper paperwork up front

Be sure to check the journal guidelines and provide the necessary documents with your manuscript submission. Collecting the necessary documentation can greatly slow the first round of peer review, or cause delays when you submit your revision.

Randomized Controlled Trials – CONSORT The Consolidated Standards of Reporting Trials (CONSORT) project covers various initiatives intended to prevent the problems of  inadequate reporting of randomized controlled trials. The primary initiative is an evidence-based minimum set of recommendations for reporting randomized trials known as the CONSORT Statement . 

Systematic Reviews and Meta-Analyses – PRISMA The Preferred Reporting Items for Systematic Reviews and Meta-Analyses ( PRISMA ) is an evidence-based minimum set of items focusing  on the reporting of  reviews evaluating randomized trials and other types of research.

Research using Animals – ARRIVE The Animal Research: Reporting of In Vivo Experiments ( ARRIVE ) guidelines encourage maximizing the information reported in research using animals thereby minimizing unnecessary studies. (Original study and proposal , and updated guidelines , in PLOS Biology .) 

Laboratory Protocols Protocols.io has developed a platform specifically for the sharing and updating of laboratory protocols , which are assigned their own DOI and can be linked from methods sections of papers to enhance reproducibility. Contextualize your protocol and improve discovery with an accompanying Lab Protocol article in PLOS ONE .

Consistent reporting of Materials, Design, and Analysis – the MDAR checklist A cross-publisher group of editors and experts have developed, tested, and rolled out a checklist to help establish and harmonize reporting standards in the Life Sciences . The checklist , which is available for use by authors to compile their methods, and editors/reviewers to check methods, establishes a minimum set of requirements in transparent reporting and is adaptable to any discipline within the Life Sciences, by covering a breadth of potentially relevant methodological items and considerations. If you are in the Life Sciences and writing up your methods section, try working through the MDAR checklist and see whether it helps you include all relevant details into your methods, and whether it reminded you of anything you might have missed otherwise.

Summary Writing tips

The main challenge you may find when writing your methods is keeping it readable AND covering all the details needed for reproducibility and replicability. While this is difficult, do not compromise on rigorous standards for credibility!

what is methodology in a lab report

  • Keep in mind future replicability, alongside understanding and readability.
  • Follow checklists, and field- and journal-specific guidelines.
  • Consider a commitment to rigorous and transparent science a personal responsibility, and not just adhering to journal guidelines.
  • Establish whether there are persistent identifiers for any research resources you use that can be specifically cited in your methods section.
  • Deposit your laboratory protocols in Protocols.io, establishing a permanent link to them. You can update your protocols later if you improve on them, as can future scientists who follow your protocols.
  • Consider visual aids like flow-diagrams, lists, to help with reading other sections of the paper.
  • Be specific about all decisions made during the experiments that someone reproducing your work would need to know.

what is methodology in a lab report

Don’t

  • Summarize or abbreviate methods without giving full details in a discoverable supplemental section.
  • Presume you will always be able to remember how you performed the experiments, or have access to private or institutional notebooks and resources.
  • Attempt to hide constraints or non-optimal decisions you had to make–transparency is the key to ensuring the credibility of your research.
  • How to Write a Great Title
  • How to Write an Abstract
  • How to Report Statistics
  • How to Write Discussions and Conclusions
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

what is methodology in a lab report

Princeton Correspondents on Undergraduate Research

How to Write An Effective Lab Report

what is methodology in a lab report

Whether you are in lab for general chemistry, independent work, or senior thesis, almost all lab experiments will be followed up with a lab report or paper. Although it should be relatively easy to write about an experiment you completed, this is often the most difficult part of lab work, especially when the results are unexpected. In this post, I will outline the components of a lab report while offering tips on how to write one.

Understand Your Experiments Thoroughly

Before you begin writing your draft, it is important that you understand your experiment, as this will help you decide what to include in your paper. When I wrote my first organic chemistry lab report, I rushed to begin answering the discussion questions only to realize halfway through that I had a major conceptual error. Because of this, I had to revise most of what I had written so far, which cost me a lot of time. Know what the purpose of the lab is, formulate the hypothesis, and begin to think about the results you are expecting. At this point, it is helpful to check in with your Lab TA, mentor, or principal investigator (PI) to ensure that you thoroughly understand your project. 

The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write your report first before trying to summarize it.

Introduction and Background

The introduction and background of your report should establish the purpose of your experiment (what principles you are examining), your hypothesis (what you expect to see and why), and relevant findings from others in the field. You have likely done extensive reading about the project from textbooks, lecture notes, or scholarly articles. But as you write, only include background information that is relevant to your specific experiments. For instance, over the summer when I was still learning about metabolic engineering and its role in yeast cells, I read several articles detailing this process. However, a lot of this information was a very broad introduction to the field and not directly related to my project, so I decided not to include most of it. 

This section of the lab report should not contain a step-by-step procedure of your experiments, but rather enough details should be included so that someone else can understand and replicate what you did. From this section, the reader should understand how you tested your hypothesis and why you chose that method. Explain the different parts of your project, the variables being tested, and controls in your experiments. This section will validate the data presented by confirming that variables are being tested in a proper way.

You cannot change the data you collect from your experiments; thus the results section will be written for you. Your job is to present these results in appropriate tables and charts. Depending on the length of your project, you may have months of data from experiments or just a three-hour lab period worth of results. For example, for in-class lab reports, there is usually only one major experiment, so I include most of the data I collect in my lab report. But for longer projects such as summer internships, there are various preliminary experiments throughout, so I select the data to include. Although you cannot change the data, you must choose what is relevant to include in your report. Determine what is included in your report based on the goals and purpose of your project.

Discussion and Conclusion

In this section, you should analyze your results and relate your data back to your hypothesis. You should mention whether the results you obtained matched what was expected and the conclusions that can be drawn from this. For this section, you should talk about your data and conclusions with your lab mentors or TAs before you begin writing. As I mentioned above, by consulting with your mentors, you will avoid making large conceptual error that may take a long time to address.

There is no correct order for how to write a report, but it is generally easier to write some sections before others. For instance, because your results cannot be changed, it is easier to write the results section first. Likewise, because you also cannot change the methods you used in your experiment, it is helpful to write this section after writing your results. Although there are multiple ways to write and format a lab report or research paper, the goals of every report are the same: to describe what you did, your results, and why they are significant. As you write, keep your audience and these goals in mind.

— Saira Reyes, Engineering Correspondent

Share this:

  • Share on Tumblr

what is methodology in a lab report

  • RMIT Australia
  • RMIT Europe
  • RMIT Vietnam
  • RMIT Global
  • RMIT Online
  • Alumni & Giving

RMIT University Library - Learning Lab

  • What will I do?
  • What will I need?
  • Who will help me?
  • About the institution
  • New to university?
  • Studying efficiently
  • Time management
  • Mind mapping
  • Note-taking
  • Reading skills
  • Argument analysis
  • Preparing for assessment
  • Critical thinking and argument analysis
  • Online learning skills
  • Starting my first assignment
  • Researching your assignment
  • What is referencing?
  • Understanding citations
  • When referencing isn't needed
  • Paraphrasing
  • Summarising
  • Synthesising
  • Integrating ideas with reporting words
  • Referencing with Easy Cite
  • Getting help with referencing
  • Acting with academic integrity
  • Artificial intelligence tools
  • Understanding your audience
  • Writing for coursework
  • Literature review
  • Academic style
  • Writing for the workplace
  • Spelling tips
  • Writing paragraphs
  • Writing sentences
  • Academic word lists
  • Annotated bibliographies
  • Artist statement
  • Case studies
  • Creating effective poster presentations
  • Essays, Reports, Reflective Writing
  • Law assessments
  • Oral presentations
  • Reflective writing
  • Art and design
  • Critical thinking
  • Maths and statistics
  • Sustainability
  • Educators' guide
  • Learning Lab content in context
  • Latest updates
  • Students Alumni & Giving Staff Library

Learning Lab

Getting started at uni, study skills, referencing.

  • When referencing isn't needed
  • Integrating ideas

Writing and assessments

  • Critical reading
  • Poster presentations
  • Postgraduate report writing

Subject areas

For educators.

  • Educators' guide
  • Methodology section in a report

Method/Methodology

The method section of a report details how the research was conducted, the research methods used and the reasons for choosing those methods. It should outline:

  • the participants and research methods used, e.g. surveys/questionnaire, interviews
  • refer to other relevant studies.

The methodology is a step-by-step explanation of the research process. It should be factual and is mainly written in the past tense.

Sample Methodology

The research used a quantitative methodology based on the approach advocated by Williams (2009). This study was conducted by questionnaire and investigated university teaching staff attitudes to the use of mobile phones in tutorials (see Appendix 1). The questionnaire used Likert scales to assess social attitudes (Jones 2007) to student mobile phone use and provided open-ended responses for additional comments. The survey was voluntary and anonymous. A total of 412 questionnaires were distributed online to randomly selected staff from each of the three colleges within the university. The completed questionnaires were returned by email.

  • 'Describe' is short for: describing how the research was done.
  • 'Refers' is short for: refers to relevant reading/literature.

[Describe: The research used a quantitative methodology based on the approach advocated by Williams (2009).] [Refer: This study was conducted by questionnaire and investigated university teaching staff attitudes to the use of mobile phones in tutorials (see Appendix 1). The questionnaire used Likert scales to assess social attitudes (Jones 2007) to student mobile phone use and provided open-ended responses for additional comments.] [Describes: The survey was voluntary and anonymous. A total of 412 questionnaires were distributed online to randomly selected staff from each of the three colleges within the university. The completed questionnaires were returned by email.]

  • Overall structure of a report
  • Example of a report
  • Report checklist
  • Writing a business research report

Still can't find what you need?

The RMIT University Library provides study support , one-on-one consultations and peer mentoring to RMIT students.

  • Facebook (opens in a new window)
  • Twitter (opens in a new window)
  • Instagram (opens in a new window)
  • Linkedin (opens in a new window)
  • YouTube (opens in a new window)
  • Weibo (opens in a new window)
  • Copyright © 2024 RMIT University |
  • Accessibility |
  • Learning Lab feedback |
  • Complaints |
  • ABN 49 781 030 034 |
  • CRICOS provider number: 00122A |
  • RTO Code: 3046 |
  • Open Universities Australia
  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Mar 8, 2024 2:26 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

Academic Editing and Proofreading

  • Tips to Self-Edit Your Dissertation
  • Guide to Essay Editing: Methods, Tips, & Examples
  • Journal Article Proofreading: Process, Cost, & Checklist
  • The A–Z of Dissertation Editing: Standard Rates & Involved Steps
  • Research Paper Editing | Guide to a Perfect Research Paper
  • Dissertation Proofreading | Definition & Standard Rates
  • Thesis Proofreading | Definition, Importance & Standard Pricing
  • Research Paper Proofreading | Definition, Significance & Standard Rates
  • Essay Proofreading | Options, Cost & Checklist
  • Top 10 Paper Editing Services of 2024 (Costs & Features)
  • Top 10 Essay Checkers in 2024 (Free & Paid)
  • 2024’s Best Proofreaders for Authors, Students & Businesses
  • Top 10 English Correctors to Perfect Your Text in 2024
  • Top 10 Essay Editing Services of 2024

Academic Research

  • Research Paper Outline: Templates & Examples
  • How to Write a Research Paper: A Step-by-Step Guide

How to Write a Lab Report: Examples from Academic Editors

  • Research Methodology Guide: Writing Tips, Types, & Examples
  • The 10 Best Essential Resources for Academic Research
  • 100+ Useful ChatGPT Prompts for Thesis Writing in 2024
  • Best ChatGPT Prompts for Academic Writing (100+ Prompts!)
  • Sampling Methods Guide: Types, Strategies, and Examples
  • Independent vs. Dependent Variables | Meaning & Examples

Academic Writing & Publishing

  • Difference Between Paper Editing and Peer Review
  • What are the different types of peer review?
  • How to deal with rejection from a journal?
  • Editing and Proofreading Academic Papers: A Short Guide
  • How to Carry Out Secondary Research
  • The Results Section of a Dissertation
  • Checklist: Is my Article Ready for Submitting to Journals?
  • Types of Research Articles to Boost Your Research Profile
  • 8 Types of Peer Review Processes You Should Know
  • The Ethics of Academic Research
  • How does LaTeX based proofreading work?
  • How to Improve Your Scientific Writing: A Short Guide
  • Chicago Title, Cover Page & Body | Paper Format Guidelines
  • How to Write a Thesis Statement: Examples & Tips
  • Chicago Style Citation: Quick Guide & Examples
  • The A-Z Of Publishing Your Article in A Journal
  • What is Journal Article Editing? 3 Reasons You Need It
  • 5 Powerful Personal Statement Examples (Template Included)
  • Complete Guide to MLA Format (9th Edition)
  • How to Cite a Book in APA Style | Format & Examples
  • How to Start a Research Paper | Step-by-step Guide
  • APA Citations Made Easy with Our Concise Guide for 2024
  • A Step-by-Step Guide to APA Formatting Style (7th Edition)
  • Top 10 Online Dissertation Editing Services of 2024
  • Academic Writing in 2024: 5 Key Dos & Don’ts + Examples
  • What Are the Standard Book Sizes for Publishing Your Book?
  • MLA Works Cited Page: Quick Tips & Examples
  • 2024’s Top 10 Thesis Statement Generators (Free Included!)
  • Top 10 Title Page Generators for Students in 2024
  • What Is an Open Access Journal? 10 Myths Busted!
  • Primary vs. Secondary Sources: Definition, Types & Examples
  • How To Write a College Admissions Essay That Stands Out
  • How to Write a Dissertation & Thesis Conclusion (+ Examples)
  • APA Journal Citation: 7 Types, In-Text Rules, & Examples
  • What Is Predatory Publishing and How to Avoid It!
  • What Is Plagiarism? Meaning, Types & Examples
  • Additional Resources
  • Plagiarism: How to avoid it in your thesis?
  • Final Submission Checklist | Dissertation & Thesis
  • 7 Useful MS Word Formatting Tips for Dissertation Writing
  • How to Write a MEAL Paragraph: Writing Plan Explained in Detail
  • Em Dash vs. En Dash vs. Hyphen: When to Use Which
  • The 10 Best Citation Generators in 2024 | Free & Paid Plans!
  • 2024’s Top 10 Self-Help Books for Better Living
  • Citation and Referencing
  • Citing References: APA, MLA, and Chicago
  • How to Cite Sources in the MLA Format
  • MLA Citation Examples: Cite Essays, Websites, Movies & More
  • Citations and References: What Are They and Why They Matter
  • APA Headings & Subheadings | Formatting Guidelines & Examples
  • Formatting an APA Reference Page | Template & Examples
  • Research Paper Format: APA, MLA, & Chicago Style
  • How to Create an MLA Title Page | Format, Steps, & Examples
  • How to Create an MLA Header | Format Guidelines & Examples
  • MLA Annotated Bibliography | Guidelines and Examples
  • APA Website Citation (7th Edition) Guide | Format & Examples
  • APA Citation Examples: The Bible, TED Talk, PPT & More
  • APA Header Format: 5 Steps & Running Head Examples
  • APA Title Page Format Simplified | Examples + Free Template
  • How to Write an Abstract in MLA Format: Tips & Examples
  • 10 Best Free Plagiarism Checkers of 2024 [100% Free Tools]
  • 5 Reasons to Cite Your Sources Properly | Avoid Plagiarism!
  • Dissertation Writing Guide
  • Writing a Dissertation Proposal
  • The Acknowledgments Section of a Dissertation
  • The Table of Contents Page of a Dissertation
  • The Introduction Chapter of a Dissertation
  • The Literature Review of a Dissertation
  • The Only Dissertation Toolkit You’ll Ever Need!
  • 5 Thesis Writing Tips for Master Procrastinators
  • How to Write a Dissertation | 5 Tips from Academic Editors
  • The Title Page of a Dissertation
  • The 5 Things to Look for in a Dissertation Editing Service
  • Top 10 Dissertation Editing & Proofreading Services
  • Why is it important to add references to your thesis?
  • Thesis Editing | Definition, Scope & Standard Rates
  • Expert Formatting Tips on MS Word for Dissertations
  • A 7-Step Guide on How to Choose a Dissertation Topic
  • 350 Best Dissertation Topic Ideas for All Streams in 2024
  • A Guide on How to Write an Abstract for a Research Paper
  • Dissertation Defense: What to Expect and How to Prepare
  • Essay Writing Guide
  • Essential Research Tips for Essay Writing
  • What Is a Mind Map? Free Mind Map Templates & Examples
  • How to Write an Essay Outline: 5 Examples & Free Template
  • How to Write an Essay Header: MLA and APA Essay Headers
  • What Is an Essay? Structure, Parts, and Types
  • How to Write an Essay in 8 Simple Steps (Examples Included)
  • 8 Types of Essays | Quick Summary with Examples
  • Expository Essays | Step-by-Step Manual with Examples
  • Narrative Essay | Step-by-Step Guide with Examples
  • How to Write an Argumentative Essay (Examples Included)
  • Guide to a Perfect Descriptive Essay [Examples & Outline Included]
  • How to Start an Essay: 4 Introduction Paragraph Examples
  • How to Write a Conclusion for an Essay (Examples Included!)
  • How to Write an Impactful Personal Statement (Examples Included)
  • Literary Analysis Essay: 5 Steps to a Perfect Assignment
  • Compare and Contrast Essay | Quick Guide with Examples
  • Top 10 Essay Writing Tools in 2024 | Plan, Write, Get Feedback
  • Top AI Essay Writers in 2024: 10 Must-Haves
  • 100 Best College Essay Topics & How to Pick the Perfect One!
  • College Essay Format: Tips, Examples, and Free Template
  • Structure of an Essay: 5 Tips to Write an Outstanding Essay

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services.

calender

  • Tags: Academic Research , Academic Writing

A lab report documents the theory, methods, and results of your experiment to demonstrate your understanding of research and scientific methodology. In this article, we’ll tell you how to write a lab report with the help of some useful examples.

For many students, writing a lab report can be confusing: how to format it, what to include and not include, and so on. The questions are endless! Just remember that your lab report will allow others to reproduce your results and draw their own conclusions. This will help you write a lab report that’s well-formatted and organized.

In true Resource Center fashion, let’s start with the basics: What exactly is a lab report?

Need help creating a perfect lab report? Learn more

What is a lab report? 

A laboratory report is a document written to describe and analyze an experiment that addresses a scientific inquiry. A lab report helps you conduct an experiment and then systematically design a conclusion based on your hypothesis. 

Note: A lab report is not the same as a lab notebook. A notebook is a detailed log you keep throughout the study. A lab report is a concise summary that you submit after the study is done, usually for a final grade. 

A lab report typically follows this format:  

  • Title 

Introduction 

  • Equipment/Materials 
  • Methods 
  • Discussion 
  • References 

This is a broad list of sections you might have to include in your lab report, but by no means is this compulsory or exhaustive. You should always refer to the course or university guidelines to understand the desired format. 

How to Write a Lab Report

A lab report should be clear, concise, and well-organized, and it should include all the necessary information for others to replicate your experiment. Since the lab report format is designed to serve this purpose, you must follow it to the bone while writing your report.

Let’s start with learning how to title a lab report.

Title  

The title of your lab report should:

  • Be clear, direct, and informative.
  • Include keywords that clarify your objectives and involved variables.
  • Be under ten words (ideally).

It’s a good idea to avoid phrasing the title as a question. Remember, your title doesn’t have to be witty or clever, just descriptive and to the point. Here are a few title examples that can clarify this for you:

  • Unraveling the genetic code through gel electrophoresis.
  • Hot and cold: How temperature affects enzymes yeast cells
  • Impervious alloys of Aluminium
  • How fast does Hydrogen Peroxide decompose?
  • The speed of growth: An Analysis of bacterial growth rates in different culture media

Analysis of DNA fragment lengths using gel electrophoresis

The effects of temperature on enzyme activity in yeast cells

Investigating the corrosion resistance of Aluminum alloys

Study of chemical kinetics through the decomposition of Hydrogen Peroxide

Quantifying bacterial growth rates in different culture media

While it’s not necessary to dedicate an entire page to the title, some universities might ask for a title page. If you’ve been asked to make this, include the following details:

  • The experiment title 
  • Your name and student details 
  • Course and program details 
  • Date and year of submission 

An abstract is a brief but comprehensive overview of the purpose, findings, and larger relevance of your experiment. It communicates the essential details of your study to your readers, whether it’s evaluators or peers.

Follow these tips to write a lab report abstract:

  • Clearly state the topic of your experiment.
  • Briefly describe the conditions of your study, the variables involved, and the method(s) used to collect data.
  • Lay out the major findings of your study and your interpretations of them.
  • Mention the relevance and importance of your study in brief.

An abstract is usually only a page long (typically between 100 and 250 words), so your writing must be concise and crisp.

Bonus tip: Although the abstract is the first section of your report, it’s best to write it toward the end. Much easier to summarize the report afte r it’s been written!

Lab report abstract example

This experiment aimed to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6. The experiment involved exposing samples of each alloy to a 3% NaCl solution for a period of 72 hours and then measuring the weight loss of the samples. The results showed that 6061-T6 had a weight loss of 0.10 g, while 7075-T6 had a weight loss of 0.25 g, indicating that 6061-T6 was more corrosion resistant. These findings suggest that the composition of the alloy has a significant impact on its resistance to corrosion. This information is important for industries that use aluminum alloys in environments that are prone to corrosion, such as marine applications or chemical processing. Further research could explore the specific mechanisms that contribute to the corrosion resistance of different aluminum alloys and could investigate the effects of other environmental factors on corrosion.

The lab report introduction provides your readers with background information on your experiment and its significance. It should be brief and to the point, so a few paragraphs is the maximum length recommended.

You can adopt either of two modes to write your introduction:

  • Beginning with the research question and then adding context, ultimately closing with your purpose.
  • Beginning with the broad topic and narrowing it down to your research question.

Follow these steps to write your lab report introduction:

  • Begin with a brief overview of the broad research area and existing literature. 
  • Include only essential background information and cite only highly relevant sources. 
  • Clearly define any key terms or concepts that you’ll use in the report.
  • State the specific purpose and objectives of your experiment.
  • Mention the relevance and significance of your study.
  • State a clear hypothesis and expected outcomes.
  • Check with your instructor about adding the variables, results, and conclusions to the introduction.
  • Refer to the university guidelines for instructions on labeling paragraphs in your introduction.
  • Use the past tense when describing the purpose and other specifics of the experiment since it has already been carried out and is in the past. (“This experiment aimed to investigate the corrosion resistance of two different aluminum alloys.”)
  • Use the present tense when describing the report, existing theories, and established facts. (“This information is important for industries that use aluminum alloys in environments prone to corrosion.”)

Make sure you use your own words rather than following a templatized format.

Lab report introduction example

Aluminum alloys are widely used in a variety of industrial applications due to their excellent strength-to-weight ratio, good corrosion resistance, and other desirable properties. However, the corrosion resistance of aluminum alloys can vary depending on their composition, and understanding the factors that contribute to corrosion resistance is crucial for their effective use in harsh environments. In this experiment, we aim to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6.

These alloys were selected because they are commonly used in industrial applications and have different compositions, with 6061-T6 containing magnesium and silicon, while 7075-T6 contains zinc and copper. By exposing samples of each alloy to a 3% NaCl solution and measuring the weight loss of the samples over time, we can determine which alloy is more corrosion-resistant and gain insight into the factors that contribute to their corrosion resistance. This information is important for industries that use aluminum alloys in harsh environments, such as marine and aerospace applications, and can contribute to the development of more effective corrosion-resistant materials.

The lab report methods section documents the methods, subjects, materials, and equipment you used to collect data. This is a record of the steps you followed and not the steps as they were prescribed.

Follow these tips to write a lab report method section:

  • List all materials and equipment used in the experiment, including their material specifications such as weight or amount. (Ex: 5 ml of 3% NaCl solution)
  • In the case of elaborate lists and sets of steps, you may include them in the appendix section and refer to them in the methods section. (Check this with your instructor!)
  • Detail the procedures you used to carry out the experiment step-by-step, including apparatus setup, mixing of reagents, and other technical processes.
  • Explain how you collected and recorded the data as well as the involved analytical methods and calculations.
  • Use the past tense to write this section.
  • Discuss the limitations and margins of error and how you tried to minimize them.
  • Where relevant, mention the safety precautions and protective equipment used during the experiment.

Your methods section should be accurate enough for other researchers to follow the instructions and obtain results similar to yours.

Lab report method example

  • Two aluminum alloy samples: 6061-T6 and 7075-T6
  • 3% NaCl solution
  • Two beakers
  • Two stirring rods
  • Digital scale
  • Vernier caliper
  • Cut four aluminum alloy samples, two from each type of alloy, each with dimensions of 1 cm x 1 cm x 0.2 cm.
  • Clean the samples thoroughly using ethanol to remove any impurities or oils.
  • Weigh each sample accurately using a digital scale and record the initial weight.
  • Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water.
  • Pour 250 mL of the 3% NaCl solution into each beaker.
  • Submerge two samples of each aluminum alloy in separate beakers containing the NaCl solution.
  • Use the stirring rods to stir the solutions gently to ensure uniformity.
  • Allow the samples to remain in the solutions for 72 hours at room temperature (25°C).
  • After 72 hours, carefully remove each sample from the solution and rinse with deionized water to remove any remaining salt.
  • Dry each sample using a lint-free cloth and measure its weight using the digital scale.
  • Record the final weight of each sample.
  • Calculate the weight loss of each sample by subtracting the final weight from the initial weight.
  • Use a Vernier caliper to measure the thickness of each sample, and record these measurements.
  • Calculate the corrosion rate for each sample by dividing the weight loss by the surface area of the sample and the time of immersion in the solution.

Data Collection:

Weight loss and thickness measurements were recorded for each sample after the 72-hour immersion period. Corrosion rates were calculated using the weight loss, surface area, and time of immersion.

The experiment was conducted in a well-ventilated area with appropriate personal protective equipment, including gloves and goggles. Care was taken when handling the NaCl solution to avoid contact with the skin or eyes.

Limitations:

The experiment was conducted under controlled conditions, which may not reflect real-world scenarios. The NaCl solution concentration used may not be representative of all environmental conditions that aluminum alloys may encounter in industrial applications. Further research could explore a wider range of environmental factors to more accurately predict the corrosion resistance of aluminum alloys.

The results section presents the findings of the experiment including the data you have collected and analyzed. In some cases, this section may be combined with the discussion section.

Put your findings into words and present relevant figures, tables, and graphs. You may also include the calculations you used to analyze the data.

Here are some guidelines on how to write a results section:

  • Begin with a concise summary of your key findings in the form of a brief paragraph or bullet points.
  • Present the data collected in the form of tables, graphs, or charts.
  • Describe important data to highlight any patterns you have observed.
  • Use descriptive statistics such as mean, median, and standard deviation, to summarize your data.

Add your raw data in the Appendices section and refer to it whenever required. Remember to use symbols and units of measurement correctly.

Lab report results example

The aluminum alloys tested have varying degrees of corrosion resistance. Table 1 shows the corrosion rates for each sample, calculated as the percentage weight loss over the duration of the experiment.

Table 1: Corrosion rates for aluminum alloy samples

Sample Corrosion rate (%)

Alloy sample Corrosion rate
A 0.12
B 0.08
C 0.02
D 0.05

As can be seen from Table 1, sample C had the lowest corrosion rate, indicating the highest resistance to corrosion among the four samples tested. Sample A had the highest corrosion rate, indicating the lowest corrosion resistance.

Figure 1 shows the corrosion morphology of the aluminum alloy samples after exposure to the saltwater solution for 7 days. The images were taken using scanning electron microscopy (SEM).

The SEM images show that sample C had the least amount of corrosion, with only small pits visible on the surface. Samples A and B showed more severe corrosion, with visible pitting and cracking. Sample D showed moderate corrosion, with some surface roughening and small pits.

In conclusion, the results of this experiment indicate that the corrosion resistance of aluminum alloys varies depending on the composition of the alloy. Sample C, which had the lowest corrosion rate and the least amount of corrosion morphology, showed the highest resistance to corrosion among the four samples tested. Further research could investigate the effect of different environmental conditions on the corrosion resistance of aluminum alloys.

The discussion section of a lab report is where you interpret and analyze the results of your experiment in the context of the research question or hypothesis. This is the most important part of the lab report because this is your contribution to your field of study.

Follow these guidelines to write your discussion section:

  • Begin with a brief summary of the main findings of the experiment.
  • Interpret the results and explain how they relate to your research question or hypothesis.
  • Compare the results to previous research in the field and analyze how they support or oppose existing theories or models.
  • Discuss any limitations or sources of error in the experiment and how they can be improved upon.
  • If applicable, include any additional analysis such as post-hoc tests or follow-up experiments.

Your discussion section shouldn’t simply repeat the results but offer a critical interpretation and analysis of them. Furthermore, it should also reflect upon the methods and procedures undertaken and take stock of whether you applied processes most favorable for your subject.

Lab report discussion example

The investigation into the corrosion resistance of aluminum alloys has provided valuable insight into the behavior of these materials under various conditions. The results of the experiment indicated that the aluminum alloys tested had varying degrees of corrosion resistance depending on the specific alloy composition and environmental conditions.

Comparing the results to previous research in the field, the findings are consistent with the general understanding that aluminum alloys are susceptible to corrosion under certain circumstances. However, the exact mechanisms of corrosion and the specific factors that influence corrosion resistance are still subject to ongoing research.

One limitation of the experiment is the relatively short duration of exposure to the corrosive environment. Longer exposure times may have provided additional insights into the behavior of the aluminum alloys over time. Additionally, the use of only one type of corrosive environment may not accurately reflect the behavior of the materials in other environments.

The unexpected finding of pitting corrosion in Alloy B warrants further investigation to determine the underlying causes and potential solutions. Future research could also explore the effects of additional factors, such as temperature and humidity, on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment demonstrate the importance of considering the specific composition and environmental conditions when evaluating the corrosion resistance of aluminum alloys. The findings have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

The conclusion summarizes the experiment and its significance in your field of study. It’s usually one brief paragraph, and in some cases might be omitted altogether. Check with your instructor about whether or not you need to write a lab report conclusion.

Here’s how to write a lab report conclusion:

  • State whether the experiment supported or opposed your hypothesis.
  • Reflect upon the significance and implications of your study.
  • Suggest avenues for future research.

Lab report conclusion example

The investigation into the corrosion resistance of aluminum alloys demonstrated that the aluminum alloys tested had varying degrees of corrosion resistance, depending on their specific composition and the nature of the corrosive environment. The results of the experiment are consistent with previous research in the field, and the findings support the notion that aluminum alloys are susceptible to corrosion under certain conditions.

The experiment also revealed some unexpected findings, such as the pitting corrosion observed in Alloy B. This finding warrants further investigation to determine the underlying causes and potential solutions.

The experiment was limited by the relatively short exposure time to the corrosive environment and the use of only one type of corrosive environment. Future research could explore the effects of longer exposure times and different corrosive environments on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment provide important insights into the behavior of aluminum alloys and have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

List all the sources you consulted while writing the lab report. Include the full bibliographic information in the appropriate format.

For lab reports in sciences and social sciences, the APA citation style is usually followed. Students of business, fine arts, and history will use Chicago style citations in their lab reports. In the rare event of a lab report under humanities, you’ll be expected to write your citations in MLA format .

Remember that failing to cite your sources is considered plagiarism and has serious consequences. Always give credit where credit is due!

Lab Report Example & Templates

A. basic lab report template, b. chemistry lab report example, c. example of good labeling.

The above examples accurately demonstrate the hallmarks of a good lab report. If you need help to perfect your lab report, you can consider taking our editing and proofreading services . Keep reading to perfect your writing skills! 

  • The Top 5 Dos & Don’ts of Academic Writing | Useful Examples
  • 10 Most Common Grammar Mistakes & How to Avoid Them
  • 14 Punctuation Marks: Examples & Free Guide on How to Use

Frequently Asked Questions

What is the primary purpose of writing a lab report, what should a lab report look like, how to write a lab report for biology, how long is a lab report, what is the longest part of a lab report.

Found this article helpful?

6 comments on “ How to Write a Lab Report: Examples from Academic Editors ”

Good info. Lucky me I came across your blog by chance. I’ve saved it for later!

Hi there, I don’t leave comments a lot but I must say, the lab report results part was quite well-written. Keep up the good work!

It’s quite well-written but you can improve the images maybe. Anyway, keep up writing.

You’ve explained each lab report section so easily! I appreciate the tips and example combination!

Honestly, the lab report examples could be better. But great work, super easy to read and informative

This information on lab report writing is so useful! Thanks for all the templates and examples, super helpful!

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Academic Writing and Publishing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies

what is methodology in a lab report

The methods section is where you describe how you got the results you did. This section should provide enough information so that someone could replicate your experiments. Leave out irrelevant and obvious details. For example:

Original: Emma put the tube in the centrifuge with the hinge on the outside and then waited for Ben from another group to put his tube opposite it. Then Emma turned the centrifuge on and set it to spin at 10,000 rpm for 5 min.

Revised: The tube was centrifuged for 5 min at 10,000 rpm.   

Your lab manual provides you with a protocol or step-by-step instructions for completing the experiments. When you come to write the methods section in your report you need to turn these instructions into a short narrative. Each experiment presented in the methods section should be mentioned in the results and discussion sections.  Use informative sub-headings to help guide your reader through the methods section of your report.

Protocol vs methods section

what is methodology in a lab report

Click on the bars below to see examples of methods sections.

1. Wash and re-suspend red blood cells in isotonic saline.

2. Label 5 test tubes and fill with 1 ml of isotonic solution.

3. Add varying amounts of red blood cells (0-200 µl) to each tube.  

4. Calibrate the LIM with the tubes and record the voltage output using Chart software.  

  • Written as a protocol rather than a narrative.
  • Written as step-by-step instructions. Methods sections are normally written in the past tense because they describe events that have happened in the past.
  • LIM acronym is not defined. 

Stock solutions of red blood cells (RBCs) were washed and re-suspended in isotonic saline. These cells were used as osmometers for investigating the membrane transport properties of cells. Changes in cell volume were measured using a light intensity meter (LIM) that gave a voltage output in response to changes in cell volume. The voltage was then recorded using the Power Lab system and the Scope and Chart software.

The LIM was calibrated using test tubes of isotonic solution with varying volumes of RBC suspension (ranging from 0-200 µL) and recording the voltage output using Chart software. A calibration curve was constructed and used to determine the concentration of RBCs in an unknown solution. 

  • Written as a narrative in the past tense. This method section summarises what was done in the laboratory rather than providing step-by-step instructions.
  • It also gives more information as to why the experiments were being performed.
  • LIM acronym has been defined.
  • Emphasis is placed on what was done rather than who did it by using the passive voice. It is not wrong to use the active voice. What is important is the information is presented in a logical order that makes sense to the reader. 

Are the following sentences suitable for the methods section or for a laboratory protocol?

« »
  • Select text to style.
  • Paste youtube/vimeo url to add embeded video.
  • Click + sign or type / at the beginning of line to show plugins selection.
  • Use image plugin to upload or copy/paste image searched from internet or paste in snip/sketched image from snap tool

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

states your hypothesis explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study
details how you tested your hypothesis clarifies why you performed your study in that particular way
provides raw (i.e., uninterpreted) data collected (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios
considers whether the data you obtained support the hypothesis explores the implications of your finding and judges the potential limitations of your experimental design

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058
432
7
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Banner

  • Phoenix College

Lab Report Writing

  • Materials and Methods
  • Lab Report Style
  • Lab Report Format
  • Introduction

Materials and Methods Section

Test yourself (materials and methods).

  • Discussion/Conclusion

Now that you've hooked your reader with a good introduction, you'll start getting into the details about how you performed your study or experiment. This section should be written with enough detail that anyone would be able to follow your procedures and repeat your experiment. But make sure you don't include so much detail that it becomes overwhelming! The Materials and Methods section is often the easiest part of a lab report to write because the procedure is either written in your lab manual, or you took notes on your procedure as you performed the study. Just make sure you write it in paragraph form with complete sentences, rather than just a list of your methods. As with the other parts of the paper, this section should usually be written in past tense with no personal pronouns (I or we). It's very important that in the Materials and Methods section you write only what you did, not what results you got. Save those for the next section. Here's a short section of the Materials and Methods section from the bone fracture article. Scroll over the highlighted portions to identify the use of third-person past-tense language.

From 1970 to 1973, all 2,841 men born between 1920 and 1924 and living in the municipality of Uppsala, Sweden, were invited to participate in a health survey, the Uppsala Longitudinal Study of Adult Men (ULSAM). A total of 2,322 men (82% of those invited), aged between 49 and 51 years, agreed to participate. Information regarding recreational physical activity was obtained by a reliability-tested questionnaire, but only 2,205 men (95%) responded to these questions, and it is these men who form the study base for the present investigation. At 60 years of age, 1,860 men took part in a second evaluation, at 70 years 1,221 men took part in a third evaluation, at 77 years 839 men participated and, at the final evaluation, at age 82 years, there were 530 participants.

Imagine that you're writing a paper for a lab in which you isolated the caffeine from a cup of coffee.  Select the sentence that you would write in the Materials and Methods section of a lab report.

a. Coffee is a beverage enjoyed by millions of people around the world every day. b. The second attempt resulted in the extraction of 73 mg of caffeine. c. 200 mL coffee heated to 90°C. d. 200 mL of coffee was placed in a flask and heated to 90°C.

D The Materials and Methods section should be written in complete sentences. It should talk only about the procedures used, rather than an introduction to the topic or the results of the study.

Click on the question, to see the answer.

  • << Previous: Introduction
  • Next: Results >>
  • Last Updated: Jan 13, 2022 10:50 AM
  • URL: https://phoenixcollege.libguides.com/LabReportWriting

Purdue University

  • Ask a Librarian

Chemistry Lab Resources (for CHM 1XX and 2XX Labs)

  • Organizing Your Lab Notebook
  • Parts of a Lab Report
  • Writing Your Lab Report/Worksheet
  • Graphs/Tables
  • Common Calculations
  • Citing Sources
  • Finding Chemical Properties
  • Lab techniques, instrumentation, and protocols
  • Chemical Safety

General tips

Whether you are filling out lab worksheets or writing up entire lab reports, there are a few tips that will help you to create more detailed and professional documents and to assist in grading:

  • Always label your units
  • Show all of your calculations (don’t leave out steps)
  • Use complete sentences
  • Write neatly
  • Strike out mistakes with a single line
  • Be aware of significant figures, noting the sensitivity of the device you are using for your measurements

Why do we write lab reports in passive voice?

It’s part of the scientific point of view.  We observe and record as objectively as possible, avoiding personal bias by removing ourselves.  Using the passive voice also clarifies procedures and descriptions so they can be easily reproduced and compared.

NOTE: DO NOT write reports as directions, such as those given in your lab manual. For example, do not write, "Heat the solution until it boils." Instead, write "The solution was heated to boiling."

Write in the third person - Scientific experiments demonstrate facts that do not depend on the observer, therefore, reports should avoid using the first and second person (I,me,my,we,our, OR us.)

Using the correct verb tense - Lab reports and research papers should be mainly written in the present tense. You should limit the use of the past tense to (1) describe specific experimental methods and observations, and (2) citing results published in the past.

Tables and Figures - Should be used when they are a more efficient ways to convey information than verbal description. They must be independent units, accompanied by explanatory captions that allow them to be understood by someone who has not read the text.

Writing in the passive voice

"Voice" refers to the way the verb is used in the sentence.  Remember that a sentence has to have a and a , and many verbs require . Here’s an example of :

             verb               direct object

            Purdue Pete      hit                 the baseball.

               action             receives action

In , the subject of the sentence also receives the action.  The doer of the action is someone else.  Here’s an example of :

              verb           

The baseball         is hit         by Purdue Pete.

       action        who did the action

Examples of passive voice in lab reports

200mL of distilled water was poured into a 500 mL beaker.

I poured 200mL of distilled water in a beaker. (active voice)

Pour 200mL water in a beaker. (direction/command)

The covered crucible was mounted on a ring stand.

We put the crucible on a ring stand. (active voice)

Set the crucible on a ring stand. (direction/command)

The temperature was initially measured at 75°C.

I measured the temperature at 75°C. (active voice)

Measure and write down the temperature. (direction/command)

It's understood that all actions were done by the experimenter.

Avoiding Plagiarism

  • Avoiding Plagiarism From Purdue's OWL

Passive voice information derived from original work at Delta College Teaching/Learning Center

http://www.delta.edu/files/TLC/Writing%20Lab%20Reports%2009.doc

Writing a Lab Report

Purdue students explain strategies for dividing the workload for writing a lab report.

Sample Lab Reports

  • Determination of the Alcohol Content of Whiskey [Courtesy of Univ. of Oregon]
  • Synthesis and Characterization of Luminol [Courtesy of Truman State Univ.]
  • Production of Biodiesel [Courtesy of Univ. of Vermont]
  • << Previous: Parts of a Lab Report
  • Next: Graphs/Tables >>
  • Last Edited: Feb 12, 2024 9:29 AM
  • URL: https://guides.lib.purdue.edu/chemlabs

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.

Interpretation

What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health

  • Health Topics
  • Drugs & Supplements
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • Customer Support

How to Understand Your Lab Results

What is a laboratory test.

A laboratory (lab) test checks a sample of your blood , urine (pee), or other body fluid or tissue to learn about your health. The sample is sent to a lab where health care professionals test it to see if it contains certain substances and, if so, how much.

Some lab tests can clearly show whether you do or don't have a specific health condition. For example, a pregnancy test can show whether or not a person is pregnant.

Other lab tests provide more general information about your health and possible problems. Test results that aren't normal give your health care provider clues about the type of health problems you may have. The results help your provider decide whether you need more tests and which ones will be most useful for diagnosing or ruling out certain conditions.

Lab tests are an important part of your health care. But they don't provide a complete picture of your health. Even though you may get your test results in your electronic health record (EHR), it's still important to talk with your provider to find out what your results really mean for you .

To get a full picture of your health, your provider will use your test results along with information from your physical exam, health history, family health history , and sometimes imaging tests, such as x-rays . In most cases, combining that information leads to a more accurate diagnosis than the results from any one lab test.

Why do I need a lab test?

Lab tests are used in different ways, including to help:

Diagnose or rule out a specific disease or condition. Tests to diagnose health problems are done when you have signs or symptoms of a certain disease or condition. Sometimes more than one test is needed to confirm a diagnosis.

A strep A test is an example of a diagnostic test. If you're sick with a bad sore throat and other symptoms, this test can show you whether you're infected with the bacteria that causes strep throat .

  • Tell you if you have a high risk for getting a specific disease. This alerts you to take steps to lower your risk. For example, a cholesterol test measures the amount of cholesterol in a sample of your blood. The results can help you understand your risk for heart disease .

Suggest whether you need more testing to check for a condition or disease. These screening tests look for signs that you may have a health problem so that you can have more testing to find out for sure. For example, one type of screening test for colon cancer looks for blood in your stool (poop). If blood is found, it could be a sign of cancer. So, your provider may order a colonoscopy to find out for sure whether you have cancer.

Monitor a disease and/or treatment. If you've already been diagnosed with a disease, you may need lab tests to see if your condition is getting better, worse, or staying the same. Tests can also show if your treatment is working.

A blood glucose test is an example of a monitoring test. It's used to monitor diabetes and diabetes treatment. It may also be used to diagnose the disease.

Plan your treatment. Certain tests can help show which treatments are likely to be most effective for a specific disease.

Tumor marker tests are an example of testing to find out which treatments are likely to work to fight certain types of cancer.

What is a reference range?

Lab test results are reported in different ways. Some results are a number. But how do you know what that number means?

To answer that question, your lab report tells you whether your test result is in a normal range called a reference range or "normal values."

A reference range is a set of numbers that are the high and low ends of the range of results that's considered to be normal. The ranges are based on the test results from large groups of healthy people. A test may have different reference ranges for different groups of people. For example, there may be separate ranges for children and adults.

Reference ranges are a general guide to "normal." If your test result is higher or lower than the range that applies to you, it may be a sign of a health problem, but not always. It's common for healthy people to sometimes have results outside the reference range. And people with health problems can have results in the normal range, too.

If your results are outside of the reference range, your provider will look at other information about your health to understand what may have affected your results. You may need more testing if your result is higher or lower than the reference range, or if you have a normal result even though you have symptoms.

When looking at your lab test results, it's helpful to know that:

  • To find out how your test results compare with the normal range, you need to check the reference range listed on your lab report. You can't compare your results to references ranges that you might find elsewhere. This is why our Medical Test information cannot provide normal reference ranges for most tests.
  • You can't compare test results from different labs.
  • If you're looking for trends in your test results over time, it's important to try to use the same lab for testing.
  • Mcg/dL = micrograms per deciliter
  • Micromole/L = micromoles per liter
  • Pg/mL = picograms per milliliter

What do negative, positive, and inconclusive results mean?

Some test results tell you whether a certain substance, germ, type of cell, or gene was or wasn't found in your test sample. On your test report, you may see these terms:

  • Negative or normal. This means "No, the test didn't find what it was looking for." So, you're unlikely to have the health problem you were tested for. But you may need more tests.
  • Positive or abnormal. This means, "Yes, the test found what it was looking for." The germ, substance, or gene being tested was in your sample. So, you may have a disease or infection. In certain cases, you may need more tests to confirm a diagnosis.
  • Inconclusive or uncertain. This means "not sure." Your test wasn't clearly positive or negative. There are many reasons why this may happen. If you get an uncertain result, you will probably be tested again.

Tests for the COVID-19 virus are an example of tests that tell you whether or not a specific germ was found in your sample.

What are false positive and false negative results?

Tests results are usually accurate, but no test is perfect.

  • A false positive result means your test shows you have a disease or condition, but you don't really have it.
  • A false negative result means your test shows you don't have a disease or condition, but you really do.

These incorrect results don't happen often, but they are more likely with certain of types tests, or if testing wasn't done right. If your provider thinks your test result may be inaccurate, you may need to have another test.

What can affect my results?

The accuracy of certain test results may be affected by what you eat, medicines you take, and even how your feel when you provide your test sample. Common things that affect tests include:

  • Eating and drinking certain foods and drinks
  • Taking certain medicines or supplements
  • Exercising hard before your test
  • Having a menstrual period at the time of your tested

Your provider will let you know if you need to prepare for your test. Follow your provider's instructions carefully. That will help make sure your test results are as accurate as possible. Before your test, let your provider know about all the prescription and over-the-counter medicines you take as well as vitamins and other supplements.

What if I do a home test?

At-home test kits are available for many types of lab tests. The kits provide everything you need to collect a sample of body fluid or cells to send to a lab. At-home tests should never replace testing that your provider orders. Ask your provider or pharmacist to recommend a test you can trust. And talk with your provider about your results, even if they're normal.

  • AARP [Internet]. Washington D.C.: AARP. Your Lab Results Decoded; [cited 2022 Jul 25]; [about 9 screens]. Available from: https://www.aarp.org/health/doctors-hospitals/info-02-2012/understanding-lab-test-results.html
  • FDA: U.S. Food and Drug Administration [Internet]. Silver Spring (MD): U.S. Department of Health and Human Services; Tests Used In Clinical Care; [updated 2018 Sep 27; cited 2022 Jul 25]; [about 2 screens]. Available from: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/LabTest/default.htm
  • MyHealthfinder.gov. [Internet]. Washington D.C.: Office of Disease Prevention and Health Promotion; National Health Information Center; Doctor Visits: Get Screened; [updated 2022 Jul 28; cited 2022 Jul 28]; [about 3 screens]. Available from: https://health.gov/myhealthfinder/doctor-visits/screening-tests/get-screened
  • Middlesex Hospital [Internet]. Middletown (CT): Middlesex Hospital c2022. Common Lab Tests; [cited 2022 Jul 25]; [about 5 screens]. Available from: https://middlesexhealth.org/laboratory-services/common-lab-tests
  • National Cancer Institute [Internet]. Bethesda (MD): U.S. Department of Health and Human Services; Understanding Laboratory Tests; [updated 2013 Dec 11; cited 2022 Jul 25]; [about 6 screens]. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/understanding-lab-tests-fact-sheet#q1
  • National Heart, Lung, and Blood Institute [Internet]. Bethesda (MD): U.S. Department of Health and Human Services; Blood Tests; [updated 2022 Mar 24; cited 2022 Jul 25]; [about 7 screens]. Available from: https://www.nhlbi.nih.gov/health/blood-tests
  • O'Kane MJ, Lopez B. Explaining laboratory test results to patients: what the clinician needs to know. BMJ [Internet]. 2015 Dec 3 [cited 2022 Jul 25]; 351(h):5552. Available from: https://www.bmj.com/content/351/bmj.h5552
  • Testing.com [Internet]. Seattle (WA): OneCare Media; c2022. Deciphering Your Lab Report; [modified 2021 Jan 27; cited 2022 Jul 25]; [about 7 screens]. Available from: https://www.testing.com/articles/how-to-read-your-laboratory-report/
  • Testing.com [Internet]. Seattle (WA): OneCare Media; c2022. Reference Ranges and What They Mean; [modified 2021 Nov 9; cited 2022 Jul 25]; [about 13 screens]. Available from: https://www.testing.com/articles/laboratory-test-reference-ranges/
  • UW Health [Internet]. Madison (WI): University of Wisconsin Hospitals and Clinics Authority; c2022. Health Information: Understanding Lab Test Results; [current 2021 Dec 27; cited 2022 Jul 26]; [about 5 screens]. Available from: https://patient.uwhealth.org/healthwise/article/en-us/zp3409
  • UW Health [Internet]. Madison (WI): University of Wisconsin Hospitals and Clinics Authority; c2022. Lab Test Results: Units of Measurement [updated 2021 Dec 27; cited 2022 Jul 25]; [about 5 screens]. Available from: https://patient.uwhealth.org/healthwise/article/en-us/zd1440

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

Slack blog illustration - Workforce Index Spring Summer 2024

Despite AI enthusiasm, Workforce Index reveals workers aren’t yet unlocking its benefits

By the team at Slack June 3rd, 2024

Quick take: Using AI tools at work is associated with a host of positive outcomes, from improved productivity to higher employee satisfaction. But executive urgency to incorporate AI is outpacing its use among employees. A new global survey of desk workers from the Workforce Lab at Slack, a Salesforce company, finds that two-thirds of workers have still not tried AI tools and 93% do not consider AI outputs completely trustworthy for work-related tasks.

Read on to learn about the top AI blockers for workers, the surprising AI gender gap emerging among Gen Z, and why we believe the AI hype cycle is just beginning.

Key findings

  • Executive urgency to incorporate AI tools into business operations has increased 7x over the past six months and is now a top concern, above inflation or the broader economy.
  • Among desk workers who use AI tools, 81% say it’s improving their productivity. And those who use AI show higher employee engagement and experience scores across the board, including 22% higher overall satisfaction.
  • And yet more than two-thirds of desk workers have never used AI at work, and nearly 2 in 5 say their company has no AI usage guidelines.
  • Just 7% of desk workers consider the outputs of AI completely trustworthy for work-related tasks , with 35% of desk workers saying AI results are only slightly or not at all trustworthy.
  • There’s an AI gender gap emerging, and it’s largest among Gen Z. While young people are most likely to have experimented with AI tools, Gen Z men are 25% more likely to have tried AI tools compared with Gen Z women.
  • Desk workers report spending a third of their day on average on tasks they consider low-value. But troublingly, instead of allocating the time saved by AI toward strategic or high-value activities like learning and skill building, employees are likely to spend 37% more of their time on routine administrative tasks.
  • Even so, the AI hype cycle shows no signs of slowing. Seventy-three percent of desk workers say that AI hype is warranted and the technology “will have a big impact,” and those who have used AI tools are even more convinced.

Slack blog illustration - Workforce Index Spring Summer 2024

See the data: June 2024 Workforce Index

In its latest survey of more than 10,000 desk workers around the globe, the Workforce Lab from Slack, a Salesforce company, finds that nearly all executives (96%) now feel an urgency to incorporate AI into business operations. The share of leaders aiming to do this “in the next 18 months” has grown 7x since September 2023, rising from 5% to 35% of all executives. And AI innovation now tops the list of executives ’ external concerns, above inflation or the broader economy.

At the same time, AI use among desk workers is up 23% since January and 60% since September. Thirty-two percent of desk workers have now experimented with AI tools and half of that group is using AI at work at least weekly.

Most AI users (81%) report that AI tools are improving their productivity. And notably, those using AI show higher scores across the board on all measures of employee engagement and experience, including:

  • +13% Level of access to relevant people, files and resources
  • +18% Work-life balance
  • +23% Ability to manage stress
  • +24% Overall satisfaction with work
  • +25% Flexibility
  • +29% more likely to say they feel highly passionate about their work

Workforce Lab Spring Summer 2024 - AI and employee engagement

“The data shows that employees using AI are having an all-around markedly better time on the job. They’re not just more productive; they’re experiencing greater excitement, fulfillment and pride in their work,” says Christina Janzer, head of the Workforce Lab. “Leaders should take note that using AI at work is correlated with a host of positive associations.”

That said, the data also shows that there’s a gap between executives’ urgency to incorporate AI tools and actual AI use among employees: the majority of desk workers —more than two-thirds—have still not tried AI for work.

So what’s stopping more employees from experimenting with AI tools? Concerns about privacy and data security followed by mistrust of data quality and accuracy top the list of blockers that desk workers cite as limiting factors. Just 7% of desk workers consider the outputs of AI completely trustworthy for work-related tasks, with 35% of desk workers saying AI results are only slightly or not at all trustworthy.

“Companies have urgent, ambitious goals for AI in the enterprise and our research shows there are huge productivity benefits to be gained—but many leaders are still figuring out how to kickstart adoption among employees,” says Denise Dresser, CEO of Slack. “While this is truly a seismic shift in the future of work, there are simple steps every business can take starting today to help onboard employees on AI while maintaining trust.”

What should leaders do to encourage uptake? The PET plan: Permission, education, training

Step one to boost workplace AI use is to clarify permission by establishing clear usage guidelines. This may sound obvious, yet nearly 2 in 5 desk workers (37%) say their company has no AI policy. Desk workers at companies that have established permissions for AI use are nearly 6x as likely to have experimented with AI tools.

The next step is education and training . Only a small percentage of global desk workers (15%) strongly agree that they have the education and training necessary to use AI effectively. Unsurprisingly, the more training and education workers have, the more likely they are to use AI tools, and those who are trained to use AI are up to 19x as likely to report that AI is improving their productivity.

Workforce Lab Spring Summer 2024 - Training Matters

Education and training are fundamental to building trust in AI tools; desk workers who are well trained in AI are 7x as likely to trust AI tools to assist them with work-related tasks compared with desk workers lacking AI training.

Another significant factor in a desk worker’s likelihood to try AI and to consider it trustworthy is whether that worker feels their manager trusts them as an employee. Desk workers who feel trusted by their employers are 94% more likely to have tried AI for work-related tasks, and they’re also more trusting of AI’s accuracy and reliability.

Forecasting the AI future: Three predictions for leaders

The ai hype cycle is far from peaking—it’s just gearing up..

You might think AI couldn’t possibly garner more hype. But sentiment from global desk workers indicates the buzz is just getting started. Today, 47% of global desk workers express enthusiasm for AI to handle tasks from their job (compared with 42% at the start of the year). The majority of desk workers—73%—believe the fanfare around AI is justified, saying they expect it to have a substantial impact on their work lives. This sentiment is even stronger among those who have firsthand experience using AI tools.

This trend is set to intensify as Gen Z and Gen Alpha enter the workforce. The youngest workers show the most enthusiasm for AI, with 55% of workers ages 18 to 29 saying they’re excited for AI and automation to handle parts of their work, compared with 33% of workers over age 60.

Our take: “AI fervor shows no signs of stopping,” says Nathalie Scardino, Salesforce’s Chief People Officer. “At Salesforce, we’ve seen how integrating AI into our workforce strategies can have massive benefits for employees and companies alike. Freeing up employees to focus on more impactful work is good for morale and for business.”

Mind the gap: AI could further marginalize women in the workforce—or give them a competitive edge.

There remains a small but stubborn gender gap in AI uptake, with more men trying AI for work (35% of respondents) compared with women (29% of respondents). Even though younger workers are most likely to have experimented with AI tools, the AI gender gap is largest among Gen Z, with men ages 18 to 29 25% more likely to have tried AI tools compared with women in the same age group.

One bright spot is that AI use is accelerating at a faster clip among workers of color, with 43% of Hispanic/Latinx desk workers, 42% of Black desk workers and 36% of Asian American desk workers having tried AI tools at work, compared with 29% of white desk workers. And there’s little to no gender gap among Hispanic/Latinx or Asian American employees.

Our take: “As we embrace our future with AI, it’s imperative that we continue to provide access to those who have historically been left out of technology shifts,” says Alexandra Legend Siegel, Salesforce’s Chief Equality Officer. “It is encouraging to see some of the findings on workplace AI tools and we’re committed to continuing to upskill and empower every community to leverage this technology for good in their workplace, careers and lives.”

Play Video

AI is at risk of increasing busywork rather than reducing it.

AI promises to transform our work lives, and the latest Workforce Index survey shows there’s room for improvement: the majority of desk workers (64%) experience burnout once a month or more, about a third say they regularly feel stress about work, and 30% do not feel passion for their job. At the same time, desk workers estimate they spend about a third of their day, on average, on tasks they consider “low-value” and “not meaningful to their job.”

The top three most commonly cited low-value tasks are unnecessary meetings or work events, managing low-value emails, and excessive paperwork or data entry. In a perfect world, we’d minimize these tasks with the help of AI, creating more time to focus on more meaningful work.

But when asked how they would prioritize the time they get back from AI, “more admin” topped the list, while innovating and creating, learning and skill-building, and networking with colleagues fell to the bottom.

what is methodology in a lab report

Our take: “AI could really open up a lot of time for workers, but it would be a shame if we waste that time on more busywork,” says Janzer. “If we want to make the most of what AI can offer, it’s up to us as leaders to help our people prioritize the most rewarding work.”

AI fast facts

Workforce Lab Workforce Index Spring Summer 2024 - Fast Facts 1

Methodology

The survey included 10,045 workers in the U.S., Australia, France, Germany, Japan and the U.K. between March 6 and March 22, 2024.

The survey was administered by Qualtrics and did not target Slack or Salesforce employees or customers. Respondents were all desk workers, defined as employed full-time (30 or more hours per week) and either having one of the roles listed below or saying they “work with data, analyze information or think creatively”: executive management (e.g. president/partner, CEO, CFO, C-suite), senior management (e.g. executive VP, senior VP), middle management (e.g. department/group manager, VP), junior management (e.g. manager, team leader), senior staff (i.e. non-management), skilled office worker (e.g. analyst, graphic designer).

For brevity, we refer to the survey population as “desk-based” or “desk workers.”

Was this post useful?

Thanks so much for your feedback!

Thanks for your feedback.

Oops! We're having trouble. Please try again later!

Try Slack with your team for free

  • Agile project management
  • Lean Methodology

What is Lean methodology?

Browse topics.

Like NASA mission control specialists, project managers must track numerous aspects to ensure their team delivers projects without incident. But while NASA manages spacecraft, project managers monitor deliverables.

Lean methodologies can help prevent project management disasters akin to the Apollo 13 catastrophe, allowing you to deliver projects on time and within budget. 

Lean methodology facilitates an ongoing process of incremental adjustment, significantly accelerating product delivery by optimizing resources and effort and allowing teams to work efficiently and effectively.

In this article, you will learn more about Lean methodology, its benefits, and how  Jira can help your software team implement its principles.

History of Lean methodology

Lean methodology aims to fully optimize your team’s process and output through continuous improvements. When done well, Lean allows teams to deliver customer value efficiently. 

Toyota Founder Kiichiro Toyoda developed the Lean methodology after World War II to conserve resources and eliminate waste. After observing the purchasing and restocking of items at a supermarket, he conceived the just-in-time concept, which focuses on making products exactly when customers need them. 

Toyoda's concept morphed into the Toyota Production System , which eventually became the Lean methodology. From these small beginnings, Lean evolved into the foundation of Agile project management —several industries, including software development, construction, and healthcare, now use Lean methodology.

Overview of Lean methodology

Lean methodology rests on two pillars that provide a framework for all Lean projects: Continuous improvement and respect for people.

  • Continuous improvement : An ongoing feedback loop helps teams make progressive changes to processes, products, and personnel to improve systems continuously. By identifying, evaluating, and modifying existing processes or systems – one cog at a time – teams can eliminate waste and improve efficiency on the whole.
  • Respect : Managers recognize the value of team contributions and customer feedback, and take those insights and ideas seriously. Lean managers distribute work throughout the workflow in the most efficient manner to encourage close collaboration and maximize value to customers. 

The core principles of Lean methodology have been developed with both of these factors.

Principles of Lean methodology

It’s essential to consider the impact your work will have on the customer experience. Lean’s five core principles help teams organize tasks and provide project managers with oversight. These five core principles include:

1. Identify value

To deliver value to your customers, you must first understand their needs. You can do this by:

  • Engaging directly with customers to learn about their pain points.
  • Identifying how your product helps mitigate those pain points.

Next, you need to define your product’s value in meeting customer needs and communicate this with your team. You can do this by framing the team’s work around how it impacts the customer experience and researching the best tools to help your team deliver value to your customers.

Identifying value saves time and money by ensuring your team builds only features that add value for your customers. 

2. Map the value stream

The activities needed to deliver quality customer experiences form part of the value stream. Value stream mapping uses diagrams to help visualize the project process, aiding in value stream management , which is critical to eliminating waste. 

Value stream mapping involves the following activities: 

  • Identify the problem and choose the right team : Identify your customers’ main pain points, and then choose a team with the skills to solve these problems. 
  • Bound and map the process : Limit the project's scope to necessary activities. You can then map the process using the Scrum board template in Jira and set dates for each deliverable. 
  • Collect data : Understand what resources are needed by tracking data such as the hours the team spends working on the project.
  • Assess and adjust : To ensure continuous process improvement, constantly assess processes and ask the question, “Is there a better way to do this?”

3. Create a flow

A flow state is when the team is in a groove and work is moving smoothly, so much so that we don’t notice the passage of time. Creating a flow state increases team engagement and performance. 

Team flow reflects the efficiency of the value stream, which you can continuously fine-tune using the ongoing feedback loop. Lean methodology requires a smooth and continuous flow to reduce delays and minimize handoff times.

“When implementing Lean, focus on flow,” says Atlassian’s Modern Work Coach Mark Cruth. “Flow is at the center of each element of Lean, whether it’s reducing waste, eliminating silos, or continuously improving…all elements come back to flow!”

You can improve your team’s flow by implementing the following: 

  • Cross-functional collaboration : Silos are the kryptonite of Lean. Your team should participate in the entire process and collaborate with other teams, if necessary, to accomplish their tasks. For example, this might involve looping in customer success teams and getting their input on customer pain points. Moreover, your team can deepen their knowledge of how other departments operate.

Task tracking : Kanban boards , or the Kanban template in Jira, can help you assign tasks, visualize work, and coordinate your team. These cards help teams track the progress of tasks throughout the project lifecycle . 

4. Establish pull

With a pull system, teams only work on what the customer needs when they need it, producing according to actual customer demand, not forecasted projections. 

To accurately assess customer needs, the team must talk to customers and seek their input.

5. Seek perfection

Lean requires a growth mindset and strives for perfection through continuous improvement, using an ongoing feedback loop to help the project manager, team, and company reduce waste and enhance efficiency. 

Benefits of Lean methodology

As a project manager, you’ve probably encountered a project hiccup or two, such as waiting for stakeholder feedback. If the feedback comes too late, the entire project stalls. Lean methodology has many benefits that alleviate such roadblocks, such as:

  • Increased efficiency : By mapping the value stream, you can center work around customer needs, eliminating unnecessary work on products and services customers do not want. 
  • Fewer issues : Lean mitigates issues, such as lack of communication and unrealistic deadlines, before they become larger problems. In the case of communication, Lean provides tracking and transparency so everyone is clear on tasks, responsibilities, and deadlines. Since the team participates more closely in the process, they can also push back on any unreasonable timelines. 
  • Reduced costs : By creating a clear plan and eliminating roadblocks, you can save money by producing just enough to meet customer demand. That way, you’re not producing more stock than necessary, which is especially important for physical products. 
  • Improved customer relationships : By focusing on customer value, you create stronger customer relationships, which is crucial to a business. 
  • Continuous improvement : Lean’s ongoing feedback loop helps refine and continually improve processes to deliver value efficiently. 
  • Team investment : Because Lean requires more involvement upfront from your team, they’ll be more engaged with the outcome. They’ll have a say on what they’re working on and when they expect to complete it. An empowered team is an engaged one. 

Potential challenges of Lean methodology

Despite its numerous benefits, practicing Lean may present some challenges that project managers should recognize and learn to overcome. These challenges include:

  • Fix : Get the team’s buy-in as early as possible and show them how Lean can help.
  • Fix : When onboarding the team, provide adequate training in Lean methodology. You can enroll your team in a Lean certification program that will provide hands-on training. With a certification, you’ll be confident that they have the proper knowledge of Lean methods. 

Focus on tools rather than culture : Putting tools before people decreases team engagement. An emphasis on tools in Lean may dehumanize and devalue your team and their work. When a team doesn’t feel valued, they’re less likely to give their best.  

Fix : Build a culture of trust using Lean's philosophy of continuous improvement . Providing continuous feedback and opportunities for growth shows that you, as a manager, are interested in your team’s career development.

  • Fix : Pay attention to the metrics to measure project success and look for improvement areas to develop your team.

Use Jira for project management

Lean accelerates your project management and keeps team agile by eliminating waste and continually streamlining processes. 

Jira can help software teams stay lean and deliver more customer value. Contextual insights empower teams to build and train muscles to continuously learn and improve their way of working. Scrum and Kanban boards give your team full visibility into what’s next so you can continuously deliver maximum output in minimal time. With Jira as the backbone of collaboration, all teams can stay in lockstep with each other and the rest of the organization.

Jira  also enables enterprises to visualize value streams. With this, your enterprise can:  

  • Set up process flow automation . Give your teams time back and reduce manual work with Jira’s powerful automation engine.Align work with business needs. See how day-to-day work ladders up to the strategic objectives and keeps important stakeholders informed with ready-made agile reports. 
  • Track investments . Understand what resources are being used and the time invested in any project so you can allocate efforts appropriate for the next. 
  • Uncover roadblocks . Identify potential roadblocks and prevent them before they happen. 
  • Deliver continuous value . With more clarity and insight, your team will be able to consistently deliver value to customers and the company as a whole.

This solution also works well for other methods such as Agile, Open DevOps , and value stream management. 

Lean methodology: frequently asked questions

What is the difference between agile and lean.

At first glance, it seems challenging to distinguish between Lean methodology vs. Agile. While both focus on efficiency and customer value, they emphasize different aspects of project management. Lean focuses on waste elimination, process, and delivering value, whereas Agile focuses on customers, mitigating uncertainty, and delivering working software.

Let’s break that down: 

  • Focus : As a top-down approach, Lean is concerned with process improvements. However, Agile is a bottom-up approach where work is broken down into smaller iteration loops. 
  • Product delivery : Both Lean and Agile teams work fast to deliver products as soon as possible. However, Agile is less concerned with speed than it is with feedback. So Agile teams build smaller, get feedback, and iterate. Lean is focused on improving the overall process to deliver faster.  
  • Frameworks : Lean doesn't have specific frameworks, whereas Agile does. Scrum and Kanban are two Agile project management frameworks that allow you to apply Agile principles. Jira offers a Scrum template and a Kanban template to help project managers get started with the Agile methodology.

What is the difference between DevOps and Lean?

DevOps creates functional collaboration between development and operational teams, allowing for faster software delivery. This is the core philosophy of DevOps: Continually deliver value to the business through a culture of understanding and collaboration.  

In contrast, Lean’s core philosophy is to deliver value through process improvements and waste elimination. 

Lean and DevOps are customer-centric methodologies, but they differ in two main areas:

  • Customer value: DevOps creates customer empathy image maps, framing business goals into customer value. Lean chooses customer value activities based on need. 
  • Focus : DevOps integrates development and operations with documentation and collaboration. Lean optimizes processes, resources, and effort. 

In addition, DevOps automates mundane tasks, such as pull requests—which the DevOps beginner's guide delves more deeply into. 

If you already use DevOps, Open DevOps —an out-of-the-box DevOps foundation powered by Jira with an open-tool approach and automation—can help your Agile team focus on shipping and operating quality software and ensure the "you build it, you run it" practice associated with DevOps principles.

Can you use Agile, Lean, and DevOps at the same time?

Yes! These methodologies complement each other in their aim to deliver quality and value to customers. DevOps breaks down silos to integrate the development and operations teams. Agile encourages continuous improvement. Lean puts continuous improvement ideals into practice. 

Using all three can speed up product delivery and customer value. For example, your company might be using all three but not in concert. Lean can help improve your Agile process. And Agile’s iterative approach can help with Lean’s continuous improvement. With DevOps, you can improve your cross-collaboration. 

Using all three, your company would become a powerhouse, delivering customer value through more efficient practices. 

You can connect these methodologies using Atlassian’s suite of project management tools.

Lean principles: advancing DevOps efficiency

Explore the power of Lean Principles and DevOps in streamlining project management, enhancing efficiency, and delivering value faster.

Lean Process Improvement [What is it & How to Implement]

Eliminate waste with lean process improvement. Explore how lean process improvement techniques can work with other principles for better project management

Why Birds Hit Windows—and How You Can Help Prevent It

american goldfinch killed by window strike

For birds, glass windows are worse than invisible. By reflecting foliage or sky, they look like inviting places to fly into. And because the sheer number of windows is so great, their toll on birds is huge. Up to about 1 billion birds die from window strikes in the U.S. each year, according to a 2014 study .

The good news is that you can greatly reduce the danger your home’s windows pose to birds with some simple remedies, according to Christine Sheppard, who directs the Bird Collisions Program of the American Bird Conservancy . The group offers extensive information on preventing collisions on its website. The Fatal Light Awareness Program also offers great information on preventing bird collisions.

New self-paced course: Learn How to Identify Bird Songs, Click to Learn More

What happens to birds that hit windows? Sadly, the bird often dies, even when it is only temporarily stunned and manages to fly away. Many times these birds die later from internal bleeding or bruising, especially on the brain. Daniel Klem of Muhlenberg College has researched this issue since the 1970s. He writes, “Glass is an indiscriminate killer that takes the fit as well as the unfit of a species’ population.”

Why Birds Collide With Windows

imprint of dove on plate glass window

There are two main types of window collisions: daytime and nighttime. In daylight, birds crash into windows because they see reflections of vegetation  or see through the glass to potted plants or vegetation on the other side. At night, nocturnal migrants (including most songbirds) crash  because they fly into lighted windows .

For reasons not entirely understood, lights divert nocturnal migrants from their original path, especially in low-ceiling or foggy conditions. In the lighted area, they mill about, sometimes colliding with one another or the lighted structure. As a subsequent hazard, migrants drawn off course by urban lighting may roost safely nearby, only to become vulnerable to daytime reflections in windows the following day. The BirdCast project and the Fatal Light Awareness Program have more about this problem.

There’s one additional reason: birds sometimes see their reflection in a window and attack it. This happens most frequently in the spring when territoriality is high. Although it can be annoying to the homeowner, it’s seldom a threat to the bird’s survival. Most of the remedies suggested below for window strikes will also help solve the problem of a bird attacking its reflection.

How to Safeguard Your Windows For Birds

reflection of foliage in window - hazard to birds

Start by identifying dangerous windows, including large picture windows, paired windows at right angles to each other, or windows with feeders outside. Go outside and look at your windows from a bird’s point of view. If you see branches or sky reflected in or visible through the glass, that’s what the birds will see, too. Past recommendations about safe distances for feeders outside windows are no longer thought to be valid, Sheppard says. “If you’ve got windows near a bird feeder, you should make them bird friendly and don’t worry about how far away they are.”

Treatments for Existing Windows

To deter small birds, vertical markings on windows should ideally be spaced in a 2-inch by 2-inch grid. (This will safeguard the windows for even the smallest birds such as hummingbirds, gnatcatchers, siskins, kinglets, and the like.) All marking techniques should be applied to the outside of the window.

  • Tempera paint or soap. Mark the outside of the window with soap or tempera paint, which is inexpensive and long lasting. You can use either a grid pattern of 2 inches by 2 inches (see above), or get creative and paint patterns or artwork on your window.
  • Decals.  Put decals, stickers, sun catchers, mylar strips, masking tape, or other objects (even sticky notes) on the outside surface of the window. These are only effective when spaced very closely (see above).  Note that hawk silhouettes do little to deter birds.  Remember: placing just one or two window stickers on a large window is not going to prevent collisions—they must cover most of the glass with the spaces between too narrow for birds to fly through.
  • Dot Patterns and Tape. Long-lasting tape products offer an easier way to apply the correct spacing of dots across your window. Products such as those available at Feather Friendly work well in preventing collisions.
  • Acopian Bird Savers.  Also known as “zen curtains,” these closely spaced ropes hang down over windows. They do the work of tape or decals but are easier to install and can be aesthetically pleasing. They are highly effective and are the method we use to safeguard windows at the Cornell Lab headquarters . You can order them to fit your windows or make your own .
  • Screens.  Installing mosquito screens over your windows is very effective, as long as they are on the outside of the window and cover the entire surface.
  • Netting. Cover the glass on the outside with netting at least 3 inches from the glass, taut enough to bounce birds off before they hit. Small-mesh netting (around 5/8″ or 1.6 cm)  is best, so that birds don’t get their heads or bodies entangled but will bounce off unharmed. You can mount the netting on a frame, such as a storm-window frame, for easy installation and removal.
  • One-way transparent film. Products such as Collidescape permit people on the inside to see out, but makes the window appear opaque on the outside. They can reduce the amount of light that comes in your window (this can also reduce your cooling costs), according to Sheppard.

New Homes and Remodels

  • Install external shutters and keep them closed when you’re not in the room or taking advantage of the light or view. (These can be huge energy savers, too!)
  • Install external sun shades or awnings on windows, to block the reflection of sunlight. Remote controlled shades are available.
  • On new construction or when putting in new windows, consider windows that have the screen on the entire outside of the glass.
  • Add interior vertical blinds and keep the slats only half open.
  • Avoid visual paths to sky and greenery. Bright windows on the opposite wall from your picture window may give the illusion of an open path to the other side. Closing a window shade or a door between rooms can sometimes solve this situation.

Lights Out initiatives are gaining ground in U.S. cities including Dallas, Houston, Philadelphia, and New York. The all-night glow of office buildings and streetlights in cities is especially dangerous for drawing migrating birds off course, delaying their migrations and making them vulnerable to window collisions. Turning off nonessential lights and installing downward-facing lighting are relatively simple ways to reduce the problem of artificial light at night. It’s still wise to take precautions against window collisions using any of the above methods, especially for homeowners.

How to Help a Window Collision Victim

When a bird strikes a window, its best chance for recovery is to get help from a wildlife rehabilitation facility immediately. Window collision victims may suffer from pain and internal injuries that are not visible at first but will worsen with time. They are vulnerable to predators and pedestrian traffic if left alone. If you find a bird dazed from a window collision, here’s what to do:

  • Try to capture and contain it. Approach the bird from behind and use both hands to gently cover it. The bird may flutter or call out—don’t be startled. Note that small birds are very fragile, so don’t close your fingers or hand tightly around their body—hold the bird gently but securely. 
  • Find a suitable container such as an unwaxed paper bag or small cardboard box lined with tissue paper or paper towel to allow the bird to grip. Place the closed container somewhere dark, quiet, warm, and away from children and pets.
  • Do not handle, feed, or water the bird once it’s in the container. Remember, wild birds may perceive humans as predators, so try not to stress the bird. 
  • Find a rehabber near you (via this   online directory ) and contact them for further instructions. If you are unable to transport the bird, let the wildlife rehab facility know and they may be able to offer other options. 
  • If the facility instructs you to try releasing the bird , take it to a wooded area (or other habitat as appropriate for the species) far away from buildings. Before releasing the bird, keep some distance from any trees/vegetation so you can assess the bird’s flight. Point the bag/box in the direction of vegetation and slowly open the top. If the bird does not fly well, try to recapture it and reconnect with the wildlife rehab facility for more guidance.  

The Cornell Lab

All About Birds is a free resource

Available for everyone, funded by donors like you

American Kestrel by Blair Dudeck / Macaulay Library

Or Browse Bird Guide by Family or Shape

Need Bird ID Help? Try Merlin

Don't miss a thing! Join our email list

The Cornell Lab will send you updates about birds, birding, and opportunities to help bird conservation.

IMAGES

  1. Research Methodology Report Example

    what is methodology in a lab report

  2. Lab Report Format: What's in a Lab Report?

    what is methodology in a lab report

  3. How to Write a Lab Report: Writing Steps, Format & Examples

    what is methodology in a lab report

  4. Example Of Methodology In Lab Report / How To Write A Psychology Report

    what is methodology in a lab report

  5. Lab reports

    what is methodology in a lab report

  6. TEP025 Writing the Methods and Materials section of your laboratory report

    what is methodology in a lab report

VIDEO

  1. Research Methodology and Project Report

  2. Methodology

  3. Airbrush Safety Eyes and Lungs First

  4. B Com 3 3 Research Methodology & Project Report 2nd unit explanation By Abdullah Baswaid M.C.A

  5. The content of the methodology

  6. Research Methodology and Project Report || KU 6sem Regular paper 2024 May||

COMMENTS

  1. How To Write A Lab Report

    A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper.

  2. Writing Lab Reports: Methods

    Example 1: "First, each group chose a turtle. A member of each group then measured the carapace length, while another recorded the measurement in the lab book. A different group member then recorded the turtle's weight.". Example 2: "Students determined carapace length (cm) and weight (g) for all individuals.".

  3. Complete Guide to Writing a Lab Report (With Example)

    As with all forms of writing, it's not the report's length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar ...

  4. How to Write a Lab Report: Step-by-Step Guide & Examples

    A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion. The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

  5. Materials & Methods

    The Materials and Methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment (s) discussed in the report. Such an account is very important, not only so that the reader has a clear understanding of the experiment, but a well ...

  6. How to Write a Lab Report

    Lab Report Example (Continued) Materials: Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment. Methods: This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study.

  7. PDF Writing a Methods Section for a Lab Report

    Writing a Methods Section for a Lab Report. The main purpose of this section is to describe the steps taken to achieve the end result or product. Furthermore, a methods section explains why we performed these major steps (i.e., the processes involved in conducting an experiment). For example, explaining why an

  8. 4 Writing the Materials and Methods (Methodology) Section

    A reader would need to know which search engine and what key words you used. Open this section by describing the overall approach you took or the materials used. Then describe to the readers step-by-step the methods you used including any data analysis performed. See Fig. 2.5 below for an example of materials and methods section. Writing tips: Do:

  9. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  10. How to Write Your Methods

    Your Methods Section contextualizes the results of your study, giving editors, reviewers and readers alike the information they need to understand and interpret your work. Your methods are key to establishing the credibility of your study, along with your data and the results themselves. A complete methods section should provide enough detail ...

  11. How to Write An Effective Lab Report

    Abstract. The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write ...

  12. Methodology section in a report

    The method section of a report details how the research was conducted, the research methods used and the reasons for choosing those methods. It should outline: the participants and research methods used, e.g. surveys/questionnaire, interviews. refer to other relevant studies. The methodology is a step-by-step explanation of the research process.

  13. Library Research Guides: STEM: How To Write A Lab Report

    Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. Title.

  14. How to Write a Lab Report: Examples from Academic Editors

    Method. The lab report methods section documents the methods, subjects, materials, and equipment you used to collect data. This is a record of the steps you followed and not the steps as they were prescribed. Follow these tips to write a lab report method section:

  15. PDF The Complete Guide to Writing a Report for a Scientific ...

    What are the main components of an experimental lab report? Generally, a report for a lab experiment comprises of a few essential sections that are common to all. However, depending on the type of experiment or the methodology used, there could be variations in the basic structure. Title Like any other formal document, the lab report should ...

  16. Lab report writing 101

    Methods. 1. Wash and re-suspend red blood cells in isotonic saline. 2. Label 5 test tubes and fill with 1 ml of isotonic solution. 3. Add varying amounts of red blood cells (0-200 µl) to each tube. 4. Calibrate the LIM with the tubes and record the voltage output using Chart software.

  17. How to Write a Lab Report

    Lab reports include a title, introduction, methods, results, conclusion or discussion, and references. Reports should use a professional font and size, with double-line spacing and page numbers. Specific sections of the report should have separate headings and subheadings.

  18. Scientific Reports

    What this handout is about. This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach ...

  19. LibGuides: Lab Report Writing: Materials and Methods

    Select the sentence that you would write in the Materials and Methods section of a lab report. a. Coffee is a beverage enjoyed by millions of people around the world every day. b. The second attempt resulted in the extraction of 73 mg of caffeine. c. 200 mL coffee heated to 90°C. d. 200 mL of coffee was placed in a flask and heated to 90°C.

  20. How to Write the Materials and Methods Section of a Lab Report

    The materials and methods section provides details related to the experimental requirements and procedures. This section appears just after the introduction section in a lab report and before the results section. From equipment used during the experiment to measures taken to ensure lab safety, the materials and methods section is an important ...

  21. Writing Your Lab Report/Worksheet

    Write in the third person - Scientific experiments demonstrate facts that do not depend on the observer, therefore, reports should avoid using the first and second person (I,me,my,we,our, OR us.). Using the correct verb tense - Lab reports and research papers should be mainly written in the present tense.You should limit the use of the past tense to (1) describe specific experimental methods ...

  22. PDF Lab Report Guide: How to Write in the Format of a Scientific Paper

    The purpose of this guide is to help you write lab reports in biology. It is designed to make the writing process clear, and should help protect you from unnecessary frustration. Before beginning your first report, read "The Fundamentals" below. Then read the brief "Overview" for each section of the lab report; the

  23. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  24. How to Understand Your Lab Results

    When looking at your lab test results, it's helpful to know that: Labs use different reference ranges to describe normal results. That's because they often use different testing methods. This means that: To find out how your test results compare with the normal range, you need to check the reference range listed on your lab report.

  25. Solved I have a lab that I need help with, please help

    Question: I have a lab that I need help with, please help explain a method as to how I would do this.PART 2:Design a "Methodology" on how you will determine the area of your bedroom using only the tip or dot of the pencil you have. You will now work like a scientist.Write a lab report which contains the following parts:MethodologyData (in

  26. Despite AI enthusiasm, Workforce Index reveals workers aren't yet

    Quick take: Using AI tools at work is associated with a host of positive outcomes, from improved productivity to higher employee satisfaction. But executive urgency to incorporate AI is outpacing its use among employees. A new global survey of desk workers from the Workforce Lab at Slack, a Salesforce company, finds that two-thirds of workers have still not tried AI tools and 93% do not ...

  27. What is Lean Methodology?

    Lean methodology rests on two pillars that provide a framework for all Lean projects: Continuous improvement and respect for people. Continuous improvement: An ongoing feedback loop helps teams make progressive changes to processes, products, and personnel to improve systems continuously.By identifying, evaluating, and modifying existing processes or systems - one cog at a time - teams can ...

  28. Why Birds Hit Windows—and How You Can Help Prevent It

    Also known as "zen curtains," these closely spaced ropes hang down over windows. They do the work of tape or decals but are easier to install and can be aesthetically pleasing. They are highly effective and are the method we use to safeguard windows at the Cornell Lab headquarters. You can order them to fit your windows or make your own ...