SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Logo for OPEN OKSTATE

Unit 1: What Is Philosophy?

LOGOS: Critical Thinking, Arguments, and Fallacies

Heather Wilburn, Ph.D

Critical Thinking:

With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it’s popular or enticing in some way). Ultimately, this means that we may be using the phrase without a clear sense of what we even mean by it. So, here we are going to think about what this phrase might mean and look at some examples. As a former colleague of mine, Henry Imler, explains:

By critical thinking, we refer to thinking that is recursive in nature. Any time we encounter new information or new ideas, we double back and rethink our prior conclusions on the subject to see if any other conclusions are better suited. Critical thinking can be contrasted with Authoritarian thinking. This type of thinking seeks to preserve the original conclusion. Here, thinking and conclusions are policed, as to question the system is to threaten the system. And threats to the system demand a defensive response. Critical thinking is short-circuited in authoritarian systems so that the conclusions are conserved instead of being open for revision. [1]

A condition for being recursive is to be open and not arrogant. If we come to a point where we think we have a handle on what is True, we are no longer open to consider, discuss, or accept information that might challenge our Truth. One becomes closed off and rejects everything that is different or strange–out of sync with one’s own Truth. To be open and recursive entails a sense of thinking about your beliefs in a critical and reflective way, so that you have a chance to either strengthen your belief system or revise it if needed. I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop. In close but second place is communication, In my view, communication skills follow as a natural result of critical thinking because you are attempting to think through and articulate stronger and rationally justified views. At the risk of sounding cliche, education isn’t about instilling content; it is about learning how to think.

In your philosophy classes your own ideas and beliefs will very likely be challenged. This does not mean that you will be asked to abandon your beliefs, but it does mean that you might be asked to defend them. Additionally, your mind will probably be twisted and turned about, which can be an uncomfortable experience. Yet, if at all possible, you should cherish these experiences and allow them to help you grow as a thinker. To be challenged and perplexed is difficult; however, it is worthwhile because it compels deeper thinking and more significant levels of understanding. In turn, thinking itself can transform us not only in thought, but in our beliefs, and our actions. Hannah Arendt, a social and political philosopher that came to the United States in exile during WWII, relates the transformative elements of philosophical thinking to Socrates. She writes:

Socrates…who is commonly said to have believed in the teachability of virtue, seems to have held that talking and thinking about piety, justice, courage, and the rest were liable to make men more pious, more just, more courageous, even though they were not given definitions or “values” to direct their further conduct. [2]

Thinking and communication are transformative insofar as these activities have the potential to alter our perspectives and, thus, change our behavior. In fact, Arendt connects the ability to think critically and reflectively to morality. As she notes above, morality does not have to give a predetermined set of rules to affect our behavior. Instead, morality can also be related to the open and sometimes perplexing conversations we have with others (and ourselves) about moral issues and moral character traits. Theodor W. Adorno, another philosopher that came to the United States in exile during WWII, argues that autonomous thinking (i.e. thinking for oneself) is crucial if we want to prevent the occurrence of another event like Auschwitz, a concentration camp where over 1 million individuals died during the Holocaust. [3] To think autonomously entails reflective and critical thinking—a type of thinking rooted in philosophical activity and a type of thinking that questions and challenges social norms and the status quo. In this sense thinking is critical of what is, allowing us to think beyond what is and to think about what ought to be, or what ought not be. This is one of the transformative elements of philosophical activity and one that is useful in promoting justice and ethical living.

With respect to the meaning of education, the German philosopher Hegel uses the term bildung, which means education or upbringing, to indicate the differences between the traditional type of education that focuses on facts and memorization, and education as transformative. Allen Wood explains how Hegel uses the term bildung: it is “a process of self-transformation and an acquisition of the power to grasp and articulate the reasons for what one believes or knows.” [4] If we think back through all of our years of schooling, particularly those subject matters that involve the teacher passing on information that is to be memorized and repeated, most of us would be hard pressed to recall anything substantial. However, if the focus of education is on how to think and the development of skills include analyzing, synthesizing, and communicating ideas and problems, most of us will use those skills whether we are in the field of philosophy, politics, business, nursing, computer programming, or education. In this sense, philosophy can help you develop a strong foundational skill set that will be marketable for your individual paths. While philosophy is not the only subject that will foster these skills, its method is one that heavily focuses on the types of activities that will help you develop such skills.

Let’s turn to discuss arguments. Arguments consist of a set of statements, which are claims that something is or is not the case, or is either true or false. The conclusion of your argument is a statement that is being argued for, or the point of view being argued for. The other statements serve as evidence or support for your conclusion; we refer to these statements as premises. It’s important to keep in mind that a statement is either true or false, so questions, commands, or exclamations are not statements. If we are thinking critically we will not accept a statement as true or false without good reason(s), so our premises are important here. Keep in mind the idea that supporting statements are called premises and the statement that is being supported is called the conclusion. Here are a couple of examples:

Example 1: Capital punishment is morally justifiable since it restores some sense of

balance to victims or victims’ families.

Let’s break it down so it’s easier to see in what we might call a typical argument form:

Premise: Capital punishment restores some sense of balance to victims or victims’ families.

Conclusion: Capital punishment is morally justifiable.

Example 2 : Because innocent people are sometimes found guilty and potentially

executed, capital punishment is not morally justifiable.

Premise: Innocent people are sometimes found guilty and potentially executed.

Conclusion: Capital punishment is not morally justifiable.

It is worth noting the use of the terms “since” and “because” in these arguments. Terms or phrases like these often serve as signifiers that we are looking at evidence, or a premise.

Check out another example:

Example 3 : All human beings are mortal. Heather is a human being. Therefore,

Heather is mortal.

Premise 1: All human beings are mortal.

Premise 2: Heather is a human being.

Conclusion: Heather is mortal.

In this example, there are a couple of things worth noting: First, there can be more than one premise. In fact, you could have a rather complex argument with several premises. If you’ve written an argumentative paper you may have encountered arguments that are rather complex. Second, just as the arguments prior had signifiers to show that we are looking at evidence, this argument has a signifier (i.e. therefore) to demonstrate the argument’s conclusion.

So many arguments!!! Are they all equally good?

No, arguments are not equally good; there are many ways to make a faulty argument. In fact, there are a lot of different types of arguments and, to some extent, the type of argument can help us figure out if the argument is a good one. For a full elaboration of arguments, take a logic class! Here’s a brief version:

Deductive Arguments: in a deductive argument the conclusion necessarily follows the premises. Take argument Example 3 above. It is absolutely necessary that Heather is a mortal, if she is a human being and if mortality is a specific condition for being human. We know that all humans die, so that’s tight evidence. This argument would be a very good argument; it is valid (i.e the conclusion necessarily follows the premises) and it is sound (i.e. all the premises are true).

Inductive Arguments : in an inductive argument the conclusion likely (at best) follows the premises. Let’s have an example:

Example 4 : 98.9% of all TCC students like pizza. You are a TCC student. Thus, you like pizza.

Premise 1: 98.9% of all TCC students like pizza

Premise 2: You are a TCC student.

Conclusion: You like pizza. (*Thus is a conclusion indicator)

In this example, the conclusion doesn’t necessarily follow; it likely follows. But you might be part of that 1.1% for whatever reason. Inductive arguments are good arguments if they are strong. So, instead of saying an inductive argument is valid, we say it is strong. You can also use the term sound to describe the truth of the premises, if they are true. Let’s suppose they are true and you absolutely love Hideaway pizza. Let’s also assume you are a TCC student. So, the argument is really strong and it is sound.

There are many types of inductive argument, including: causal arguments, arguments based on probabilities or statistics, arguments that are supported by analogies, and arguments that are based on some type of authority figure. So, when you encounter an argument based on one of these types, think about how strong the argument is. If you want to see examples of the different types, a web search (or a logic class!) will get you where you need to go.

Some arguments are faulty, not necessarily because of the truth or falsity of the premises, but because they rely on psychological and emotional ploys. These are bad arguments because people shouldn’t accept your conclusion if you are using scare tactics or distracting and manipulating reasoning. Arguments that have this issue are called fallacies. There are a lot of fallacies, so, again, if you want to know more a web search will be useful. We are going to look at several that seem to be the most relevant for our day-to-day experiences.

  • Inappropriate Appeal to Authority : We are definitely going to use authority figures in our lives (e.g. doctors, lawyers, mechanics, financial advisors, etc.), but we need to make sure that the authority figure is a reliable one.

Things to look for here might include: reputation in the field, not holding widely controversial views, experience, education, and the like. So, if we take an authority figure’s word and they’re not legit, we’ve committed the fallacy of appeal to authority.

Example 5 : I think I am going to take my investments to Voya. After all, Steven Adams advocates for Voya in an advertisement I recently saw.

If we look at the criteria for evaluating arguments that appeal to authority figures, it is pretty easy to see that Adams is not an expert in the finance field. Thus, this is an inappropropriate appeal to authority.

  • Slippery Slope Arguments : Slippery slope arguments are found everywhere it seems. The essential characteristic of a slippery slope argument is that it uses problematic premises to argue that doing ‘x’ will ultimately lead to other actions that are extreme, unlikely, and disastrous. You can think of this type of argument as a faulty chain of events or domino effect type of argument.

Example 6 : If you don’t study for your philosophy exam you will not do well on the exam. This will lead to you failing the class. The next thing you know you will have lost your scholarship, dropped out of school, and will be living on the streets without any chance of getting a job.

While you should certainly study for your philosophy exam, if you don’t it is unlikely that this will lead to your full economic demise.

One challenge to evaluating slippery slope arguments is that they are predictions, so we cannot be certain about what will or will not actually happen. But this chain of events type of argument should be assessed in terms of whether the outcome will likely follow if action ‘x” is pursued.

  • Faulty Analogy : We often make arguments based on analogy and these can be good arguments. But we often use faulty reasoning with analogies and this is what we want to learn how to avoid.

When evaluating an argument that is based on an analogy here are a few things to keep in mind: you want to look at the relevant similarities and the relevant differences between the things that are being compared. As a general rule, if there are more differences than similarities the argument is likely weak.

Example 7 : Alcohol is legal. Therefore, we should legalize marijuana too.

So, the first step here is to identify the two things being compared, which are alcohol and marijuana. Next, note relevant similarities and differences. These might include effects on health, community safety, economic factors, criminal justice factors, and the like.

This is probably not the best argument in support for marijuana legalization. It would seem that one could just as easily conclude that since marijuana is illegal, alcohol should be too. In fact, one might find that alcohol is an often abused and highly problematic drug for many people, so it is too risky to legalize marijuana if it is similar to alcohol.

  • Appeal to Emotion : Arguments should be based on reason and evidence, not emotional tactics. When we use an emotional tactic, we are essentially trying to manipulate someone into accepting our position by evoking pity or fear, when our positions should actually be backed by reasonable and justifiable evidence.

Example 8 : Officer please don’t give me a speeding ticket. My girlfriend broke up with me last night, my alarm didn’t go off this morning, and I’m late for class.

While this is a really horrible start to one’s day, being broken up with and an alarm malfunctioning is not a justifiable reason for speeding.

Example 9 : Professor, I’d like you to remember that my mother is a dean here at TCC. I’m sure that she will be very disappointed if I don’t receive an A in your class.

This is a scare tactic and is not a good way to make an argument. Scare tactics can come in the form of psychological or physical threats; both forms are to be avoided.

  • Appeal to Ignorance : This fallacy occurs when our argument relies on lack of evidence when evidence is actually needed to support a position.

Example 10 : No one has proven that sasquatch doesn’t exist; therefore it does exist.

Example 11 : No one has proven God exists; therefore God doesn’t exist.

The key here is that lack of evidence against something cannot be an argument for something. Lack of evidence can only show that we are ignorant of the facts.

  • Straw Man : A straw man argument is a specific type of argument that is intended to weaken an opponent’s position so that it is easier to refute. So, we create a weaker version of the original argument (i.e. a straw man argument), so when we present it everyone will agree with us and denounce the original position.

Example 12 : Women are crazy arguing for equal treatment. No one wants women hanging around men’s locker rooms or saunas.

This is a misrepresentation of arguments for equal treatment. Women (and others arguing for equal treatment) are not trying to obtain equal access to men’s locker rooms or saunas.

The best way to avoid this fallacy is to make sure that you are not oversimplifying or misrepresenting others’ positions. Even if we don’t agree with a position, we want to make the strongest case against it and this can only be accomplished if we can refute the actual argument, not a weakened version of it. So, let’s all bring the strongest arguments we have to the table!

  • Red Herring : A red herring is a distraction or a change in subject matter. Sometimes this is subtle, but if you find yourself feeling lost in the argument, take a close look and make sure there is not an attempt to distract you.

Example 13 : Can you believe that so many people are concerned with global warming? The real threat to our country is terrorism.

It could be the case that both global warming and terrorism are concerns for us. But the red herring fallacy is committed when someone tries to distract you from the argument at hand by bringing up another issue or side-stepping a question. Politicians are masters at this, by the way.

  • Appeal to the Person : This fallacy is also referred to as the ad hominem fallacy. We commit this fallacy when we dismiss someone’s argument or position by attacking them instead of refuting the premises or support for their argument.

Example 14 : I am not going to listen to what Professor ‘X’ has to say about the history of religion. He told one of his previous classes he wasn’t religious.

The problem here is that the student is dismissing course material based on the professor’s religious views and not evaluating the course content on its own ground.

To avoid this fallacy, make sure that you target the argument or their claims and not the person making the argument in your rebuttal.

  • Hasty Generalization : We make and use generalizations on a regular basis and in all types of decisions. We rely on generalizations when trying to decide which schools to apply to, which phone is the best for us, which neighborhood we want to live in, what type of job we want, and so on. Generalizations can be strong and reliable, but they can also be fallacious. There are three main ways in which a generalization can commit a fallacy: your sample size is too small, your sample size is not representative of the group you are making a generalization about, or your data could be outdated.

Example 15 : I had horrible customer service at the last Starbucks I was at. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization is that the claim made about all Starbucks is based on one experience. While it is tempting to not spend your money where people are rude to their customers, this is only one employee and presumably doesn’t reflect all employees or the company as a whole. So, to make this a stronger generalization we would want to have a larger sample size (multiple horrible experiences) to support the claim. Let’s look at a second hasty generalization:

Example 16 : I had horrible customer service at the Starbucks on 81st street. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization mirrors the previous problem in that the claim is based on only one experience. But there’s an additional issue here as well, which is that the claim is based off of an experience at one location. To make a claim about the whole company, our sample group needs to be larger than one and it needs to come from a variety of locations.

  • Begging the Question : An argument begs the question when the argument’s premises assume the conclusion, instead of providing support for the conclusion. One common form of begging the question is referred to as circular reasoning.

Example 17 : Of course, everyone wants to see the new Marvel movie is because it is the most popular movie right now!

The conclusion here is that everyone wants to see the new Marvel movie, but the premise simply assumes that is the case by claiming it is the most popular movie. Remember the premise should give reasons for the conclusion, not merely assume it to be true.

  • Equivocation : In the English language there are many words that have different meanings (e.g. bank, good, right, steal, etc.). When we use the same word but shift the meaning without explaining this move to your audience, we equivocate the word and this is a fallacy. So, if you must use the same word more than once and with more than one meaning you need to explain that you’re shifting the meaning you intend. Although, most of the time it is just easier to use a different word.

Example 18 : Yes, philosophy helps people argue better, but should we really encourage people to argue? There is enough hostility in the world.

Here, argue is used in two different senses. The meaning of the first refers to the philosophical meaning of argument (i.e. premises and a conclusion), whereas the second sense is in line with the common use of argument (i.e. yelling between two or more people, etc.).

  • Henry Imler, ed., Phronesis An Ethics Primer with Readings, (2018). 7-8. ↵
  • Arendt, Hannah, “Thinking and Moral Considerations,” Social Research, 38:3 (1971: Autumn): 431. ↵
  • Theodor W. Adorno, “Education After Auschwitz,” in Can One Live After Auschwitz, ed. by Rolf Tiedemann, trans. by Rodney Livingstone (Stanford: Stanford University Press, 2003): 23. ↵
  • Allen W. Wood, “Hegel on Education,” in Philosophers on Education: New Historical Perspectives, ed. Amelie O. Rorty (London: Routledge 1998): 302. ↵

LOGOS: Critical Thinking, Arguments, and Fallacies Copyright © 2020 by Heather Wilburn, Ph.D is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Pursuing Truth: A Guide to Critical Thinking

Chapter 2 arguments.

The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python’s Flying Circus : 3

2.1 Identifying Arguments

People often use “argument” to refer to a dispute or quarrel between people. In critical thinking, an argument is defined as

A set of statements, one of which is the conclusion and the others are the premises.

There are three important things to remember here:

  • Arguments contain statements.
  • They have a conclusion.
  • They have at least one premise

Arguments contain statements, or declarative sentences. Statements, unlike questions or commands, have a truth value. Statements assert that the world is a particular way; questions do not. For example, if someone asked you what you did after dinner yesterday evening, you wouldn’t accuse them of lying. When the world is the way that the statement says that it is, we say that the statement is true. If the statement is not true, it is false.

One of the statements in the argument is called the conclusion. The conclusion is the statement that is intended to be proved. Consider the following argument:

Calculus II will be no harder than Calculus I. Susan did well in Calculus I. So, Susan should do well in Calculus II.

Here the conclusion is that Susan should do well in Calculus II. The other two sentences are premises. Premises are the reasons offered for believing that the conclusion is true.

2.1.1 Standard Form

Now, to make the argument easier to evaluate, we will put it into what is called “standard form.” To put an argument in standard form, write each premise on a separate, numbered line. Draw a line underneath the last premise, the write the conclusion underneath the line.

  • Calculus II will be no harder than Calculus I.
  • Susan did well in Calculus I.
  • Susan should do well in Calculus II.

Now that we have the argument in standard form, we can talk about premise 1, premise 2, and all clearly be referring to the same thing.

2.1.2 Indicator Words

Unfortunately, when people present arguments, they rarely put them in standard form. So, we have to decide which statement is intended to be the conclusion, and which are the premises. Don’t make the mistake of assuming that the conclusion comes at the end. The conclusion is often at the beginning of the passage, but could even be in the middle. A better way to identify premises and conclusions is to look for indicator words. Indicator words are words that signal that statement following the indicator is a premise or conclusion. The example above used a common indicator word for a conclusion, ‘so.’ The other common conclusion indicator, as you can probably guess, is ‘therefore.’ This table lists the indicator words you might encounter.

Each argument will likely use only one indicator word or phrase. When the conlusion is at the end, it will generally be preceded by a conclusion indicator. Everything else, then, is a premise. When the conclusion comes at the beginning, the next sentence will usually be introduced by a premise indicator. All of the following sentences will also be premises.

For example, here’s our previous argument rewritten to use a premise indicator:

Susan should do well in Calculus II, because Calculus II will be no harder than Calculus I, and Susan did well in Calculus I.

Sometimes, an argument will contain no indicator words at all. In that case, the best thing to do is to determine which of the premises would logically follow from the others. If there is one, then it is the conclusion. Here is an example:

Spot is a mammal. All dogs are mammals, and Spot is a dog.

The first sentence logically follows from the others, so it is the conclusion. When using this method, we are forced to assume that the person giving the argument is rational and logical, which might not be true.

2.1.3 Non-Arguments

One thing that complicates our task of identifying arguments is that there are many passages that, although they look like arguments, are not arguments. The most common types are:

  • Explanations
  • Mere asssertions
  • Conditional statements
  • Loosely connected statements

Explanations can be tricky, because they often use one of our indicator words. Consider this passage:

Abraham Lincoln died because he was shot.

If this were an argument, then the conclusion would be that Abraham Lincoln died, since the other statement is introduced by a premise indicator. If this is an argument, though, it’s a strange one. Do you really think that someone would be trying to prove that Abraham Lincoln died? Surely everyone knows that he is dead. On the other hand, there might be people who don’t know how he died. This passage does not attempt to prove that something is true, but instead attempts to explain why it is true. To determine if a passage is an explanation or an argument, first find the statement that looks like the conclusion. Next, ask yourself if everyone likely already believes that statement to be true. If the answer to that question is yes, then the passage is an explanation.

Mere assertions are obviously not arguments. If a professor tells you simply that you will not get an A in her course this semester, she has not given you an argument. This is because she hasn’t given you any reasons to believe that the statement is true. If there are no premises, then there is no argument.

Conditional statements are sentences that have the form “If…, then….” A conditional statement asserts that if something is true, then something else would be true also. For example, imagine you are told, “If you have the winning lottery ticket, then you will win ten million dollars.” What is being claimed to be true, that you have the winning lottery ticket, or that you will win ten million dollars? Neither. The only thing claimed is the entire conditional. Conditionals can be premises, and they can be conclusions. They can be parts of arguments, but that cannot, on their own, be arguments themselves.

Finally, consider this passage:

I woke up this morning, then took a shower and got dressed. After breakfast, I worked on chapter 2 of the critical thinking text. I then took a break and drank some more coffee….

This might be a description of my day, but it’s not an argument. There’s nothing in the passage that plays the role of a premise or a conclusion. The passage doesn’t attempt to prove anything. Remember that arguments need a conclusion, there must be something that is the statement to be proved. Lacking that, it simply isn’t an argument, no matter how much it looks like one.

2.2 Evaluating Arguments

The first step in evaluating an argument is to determine what kind of argument it is. We initially categorize arguments as either deductive or inductive, defined roughly in terms of their goals. In deductive arguments, the truth of the premises is intended to absolutely establish the truth of the conclusion. For inductive arguments, the truth of the premises is only intended to establish the probable truth of the conclusion. We’ll focus on deductive arguments first, then examine inductive arguments in later chapters.

Once we have established that an argument is deductive, we then ask if it is valid. To say that an argument is valid is to claim that there is a very special logical relationship between the premises and the conclusion, such that if the premises are true, then the conclusion must also be true. Another way to state this is

An argument is valid if and only if it is impossible for the premises to be true and the conclusion false.

An argument is invalid if and only if it is not valid.

Note that claiming that an argument is valid is not the same as claiming that it has a true conclusion, nor is it to claim that the argument has true premises. Claiming that an argument is valid is claiming nothing more that the premises, if they were true , would be enough to make the conclusion true. For example, is the following argument valid or not?

  • If pigs fly, then an increase in the minimum wage will be approved next term.
  • An increase in the minimum wage will be approved next term.

The argument is indeed valid. If the two premises were true, then the conclusion would have to be true also. What about this argument?

  • All dogs are mammals
  • Spot is a mammal.
  • Spot is a dog.

In this case, both of the premises are true and the conclusion is true. The question to ask, though, is whether the premises absolutely guarantee that the conclusion is true. The answer here is no. The two premises could be true and the conclusion false if Spot were a cat, whale, etc.

Neither of these arguments are good. The second fails because it is invalid. The two premises don’t prove that the conclusion is true. The first argument is valid, however. So, the premises would prove that the conclusion is true, if those premises were themselves true. Unfortunately, (or fortunately, I guess, considering what would be dropping from the sky) pigs don’t fly.

These examples give us two important ways that deductive arguments can fail. The can fail because they are invalid, or because they have at least one false premise. Of course, these are not mutually exclusive, an argument can be both invalid and have a false premise.

If the argument is valid, and has all true premises, then it is a sound argument. Sound arguments always have true conclusions.

A deductively valid argument with all true premises.

Inductive arguments are never valid, since the premises only establish the probable truth of the conclusion. So, we evaluate inductive arguments according to their strength. A strong inductive argument is one in which the truth of the premises really do make the conclusion probably true. An argument is weak if the truth of the premises fail to establish the probable truth of the conclusion.

There is a significant difference between valid/invalid and strong/weak. If an argument is not valid, then it is invalid. The two categories are mutually exclusive and exhaustive. There can be no such thing as an argument being more valid than another valid argument. Validity is all or nothing. Inductive strength, however, is on a continuum. A strong inductive argument can be made stronger with the addition of another premise. More evidence can raise the probability of the conclusion. A valid argument cannot be made more valid with an additional premise. Why not? If the argument is valid, then the premises were enough to absolutely guarantee the truth of the conclusion. Adding another premise won’t give any more guarantee of truth than was already there. If it could, then the guarantee wasn’t absolute before, and the original argument wasn’t valid in the first place.

2.3 Counterexamples

One way to prove an argument to be invalid is to use a counterexample. A counterexample is a consistent story in which the premises are true and the conclusion false. Consider the argument above:

By pointing out that Spot could have been a cat, I have told a story in which the premises are true, but the conclusion is false.

Here’s another one:

  • If it is raining, then the sidewalks are wet.
  • The sidewalks are wet.
  • It is raining.

The sprinklers might have been on. If so, then the sidewalks would be wet, even if it weren’t raining.

Counterexamples can be very useful for demonstrating invalidity. Keep in mind, though, that validity can never be proved with the counterexample method. If the argument is valid, then it will be impossible to give a counterexample to it. If you can’t come up with a counterexample, however, that does not prove the argument to be valid. It may only mean that you’re not creative enough.

  • An argument is a set of statements; one is the conclusion, the rest are premises.
  • The conclusion is the statement that the argument is trying to prove.
  • The premises are the reasons offered for believing the conclusion to be true.
  • Explanations, conditional sentences, and mere assertions are not arguments.
  • Deductive reasoning attempts to absolutely guarantee the truth of the conclusion.
  • Inductive reasoning attempts to show that the conclusion is probably true.
  • In a valid argument, it is impossible for the premises to be true and the conclusion false.
  • In an invalid argument, it is possible for the premises to be true and the conclusion false.
  • A sound argument is valid and has all true premises.
  • An inductively strong argument is one in which the truth of the premises makes the the truth of the conclusion probable.
  • An inductively weak argument is one in which the truth of the premises do not make the conclusion probably true.
  • A counterexample is a consistent story in which the premises of an argument are true and the conclusion is false. Counterexamples can be used to prove that arguments are deductively invalid.

( Cleese and Chapman 1980 ) . ↩︎

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

give the definition to the basics of critical thinking claims issues and arguments

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 6-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

give the definition to the basics of critical thinking claims issues and arguments

  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

What is Critical Thinking?

Critical Thinking Definition

September 2, 2005, by The Critical Thinking Co. Staff

The Critical Thinking Co.™ "Critical thinking is the identification and evaluation of evidence to guide decision making. A critical thinker uses broad in-depth analysis of evidence to make decisions and communicate their beliefs clearly and accurately."

Other Definitions of Critical Thinking: Robert H. Ennis , Author of The Cornell Critical Thinking Tests "Critical thinking is reasonable, reflective thinking that is focused on deciding what to believe and do."

A SUPER-STREAMLINED CONCEPTION OF CRITICAL THINKING Robert H. Ennis, 6/20/02

Assuming that critical thinking is reasonable reflective thinking focused on deciding what to believe or do, a critical thinker:

1. Is open-minded and mindful of alternatives 2. Tries to be well-informed 3. Judges well the credibility of sources 4. Identifies conclusions, reasons, and assumptions 5. Judges well the quality of an argument, including the acceptability of its reasons, assumptions, and evidence 6. Can well develop and defend a reasonable position 7. Asks appropriate clarifying questions 8. Formulates plausible hypotheses; plans experiments well 9. Defines terms in a way appropriate for the context 10. Draws conclusions when warranted, but with caution 11. Integrates all items in this list when deciding what to believe or do

Critical Thinkers are disposed to:

1. Care that their beliefs be true, and that their decisions be justified; that is, care to "get it right" to the extent possible. This includes the dispositions to

a. Seek alternative hypotheses, explanations, conclusions, plans, sources, etc., and be open to them b. Endorse a position to the extent that, but only to the extent that, it is justified by the information that is available c. Be well informed d. Consider seriously other points of view than their own

2. Care to present a position honestly and clearly, theirs as well as others'. This includes the dispositions to

a. Be clear about the intended meaning of what is said, written, or otherwise communicated, seeking as much precision as the situation requires b. Determine, and maintain focus on, the conclusion or question c. Seek and offer reasons d. Take into account the total situation e. Be reflectively aware of their own basic beliefs

3. Care about the dignity and worth of every person (a correlative disposition). This includes the dispositions to

a. Discover and listen to others' view and reasons b. Avoid intimidating or confusing others with their critical thinking prowess, taking into account others' feelings and level of understanding c. Be concerned about others' welfare

Critical Thinking Abilities:

Ideal critical thinkers have the ability to (The first three items involve elementary clarification.)

1. Focus on a question

a. Identify or formulate a question b. Identify or formulate criteria for judging possible answers c. Keep the situation in mind

2. Analyze arguments

a. Identify conclusions b. Identify stated reasons c. Identify unstated reasons d. Identify and handle irrelevance e. See the structure of an argument f. Summarize

3. Ask and answer questions of clarification and/or challenge, such as,

a. Why? b. What is your main point? c. What do you mean by…? d. What would be an example? e. What would not be an example (though close to being one)? f. How does that apply to this case (describe a case, which might well appear to be a counter example)? g. What difference does it make? h. What are the facts? i. Is this what you are saying: ____________? j. Would you say some more about that?

(The next two involve the basis for the decision.)

4. Judge the credibility of a source. Major criteria (but not necessary conditions):

a. Expertise b. Lack of conflict of interest c. Agreement among sources d. Reputation e. Use of established procedures f. Known risk to reputation g. Ability to give reasons h. Careful habits

5. Observe, and judge observation reports. Major criteria (but not necessary conditions, except for the first):

a. Minimal inferring involved b. Short time interval between observation and report c. Report by the observer, rather than someone else (that is, the report is not hearsay) d. Provision of records. e. Corroboration f. Possibility of corroboration g. Good access h. Competent employment of technology, if technology is useful i. Satisfaction by observer (and reporter, if a different person) of the credibility criteria in Ability # 4 above.

(The next three involve inference.)

6. Deduce, and judge deduction

a. Class logic b. Conditional logic c. Interpretation of logical terminology in statements, including (1) Negation and double negation (2) Necessary and sufficient condition language (3) Such words as "only", "if and only if", "or", "some", "unless", "not both".

7. Induce, and judge induction

a. To generalizations. Broad considerations: (1) Typicality of data, including sampling where appropriate (2) Breadth of coverage (3) Acceptability of evidence b. To explanatory conclusions (including hypotheses) (1) Major types of explanatory conclusions and hypotheses: (a) Causal claims (b) Claims about the beliefs and attitudes of people (c) Interpretation of authors’ intended meanings (d) Historical claims that certain things happened (including criminal accusations) (e) Reported definitions (f) Claims that some proposition is an unstated reason that the person actually used (2) Characteristic investigative activities (a) Designing experiments, including planning to control variables (b) Seeking evidence and counter-evidence (c) Seeking other possible explanations (3) Criteria, the first five being essential, the sixth being desirable (a) The proposed conclusion would explain the evidence (b) The proposed conclusion is consistent with all known facts (c) Competitive alternative explanations are inconsistent with facts (d) The evidence on which the hypothesis depends is acceptable. (e) A legitimate effort should have been made to uncover counter-evidence (f) The proposed conclusion seems plausible

8. Make and judge value judgments: Important factors:

a. Background facts b. Consequences of accepting or rejecting the judgment c. Prima facie application of acceptable principles d. Alternatives e. Balancing, weighing, deciding

(The next two abilities involve advanced clarification.)

9. Define terms and judge definitions. Three dimensions are form, strategy, and content.

a. Form. Some useful forms are: (1) Synonym (2) Classification (3) Range (4) Equivalent expression (5) Operational (6) Example and non-example b. Definitional strategy (1) Acts (a) Report a meaning (b) Stipulate a meaning (c) Express a position on an issue (including "programmatic" and "persuasive" definitions) (2) Identifying and handling equivocation c. Content of the definition

10. Attribute unstated assumptions (an ability that belongs under both clarification and, in a way, inference)

(The next two abilities involve supposition and integration.)

11. Consider and reason from premises, reasons, assumptions, positions, and other propositions with which they disagree or about which they are in doubt -- without letting the disagreement or doubt interfere with their thinking ("suppositional thinking")

12. Integrate the other abilities and dispositions in making and defending a decision

(The first twelve abilities are constitutive abilities. The next three are auxiliary critical thinking abilities: Having them, though very helpful in various ways, is not constitutive of being a critical thinker.)

13. Proceed in an orderly manner appropriate to the situation. For example:

a. Follow problem solving steps b. Monitor one's own thinking (that is, engage in metacognition) c. Employ a reasonable critical thinking checklist

14. Be sensitive to the feelings, level of knowledge, and degree of sophistication of others

15. Employ appropriate rhetorical strategies in discussion and presentation (orally and in writing), including employing and reacting to "fallacy" labels in an appropriate manner.

Examples of fallacy labels are "circularity," "bandwagon," "post hoc," "equivocation," "non sequitur," and "straw person."

Dewey, John Critical thinking is "active, persistent, and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends (Dewey 1933: 118)."

Glaser (1) an attitude of being disposed to consider in a thoughtful way the problems and subjects that come within the range of one's experiences, (2) knowledge of the methods of logical inquiry and reasoning, and (3) some skill in applying those methods. Critical thinking calls for a persistent effort to examine any belief or supposed form of knowledge in the light of the evidence that supports it and the further conclusions to which it tends. (Glaser 1941, pp. 5-6).

Abilities include: "(a) to recognize problems, (b) to find workable means for meeting those problems, (c) to gather and marshal pertinent information, (d) to recognize unstated assumptions and values, (e) to comprehend and use language with accuracy, clarity and discrimination, (f) to interpret data, (g) to appraise evidence and evaluate statements, (h) to recognize the existence of logical relationships between propositions, (i) to draw warranted conclusions and generalizations, (j) to put to test the generalizations and conclusions at which one arrives, (k) to reconstruct one's patterns of beliefs on the basis of wider experience; and (l) to render accurate judgments about specific things and qualities in everyday life." (p.6)

MCC General Education Initiatives "Critical thinking includes the ability to respond to material by distinguishing between facts and opinions or personal feelings, judgments and inferences, inductive and deductive arguments, and the objective and subjective. It also includes the ability to generate questions, construct, and recognize the structure of arguments, and adequately support arguments; define, analyze, and devise solutions for problems and issues; sort, organize, classify, correlate, and analyze materials and data; integrate information and see relationships; evaluate information, materials, and data by drawing inferences, arriving at reasonable and informed conclusions, applying understanding and knowledge to new and different problems, developing rational and reasonable interpretations, suspending beliefs and remaining open to new information, methods, cultural systems, values and beliefs and by assimilating information."

Nickerson, Perkins and Smith (1985) "The ability to judge the plausibility of specific assertions, to weigh evidence, to assess the logical soundness of inferences, to construct counter-arguments and alternative hypotheses."

Moore and Parker , Critical Thinking Critical Thinking is "the careful, deliberate determination of whether we should accept, reject, or suspend judgment about a claim, and the degree of confidence with which we accept or reject it."

Delphi Report "We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. CT is essential as a tool of inquiry. As such, CT is a liberating force in education and a powerful resource in one's personal and civic life. While not synonymous with good thinking, CT is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fair-minded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit. Thus, educating good critical thinkers means working toward this ideal. It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society."

A little reformatting helps make this definition more comprehensible:

We understand critical thinking to be purposeful, self-regulatory judgment which results in

  • interpretation

as well as explanation of the

  • methodological
  • criteriological

considerations upon which that judgment is based.

Francis Bacon (1605) "For myself, I found that I was fitted for nothing so well as for the study of Truth; as having a mind nimble and versatile enough to catch the resemblances of things … and at the same time steady enough to fix and distinguish their subtler differences; as being gifted by nature with desire to seek, patience to doubt, fondness to meditate, slowness to assert, readiness to consider, carefulness to dispose and set in order; and as being a man that neither affects what is new nor admires what is old, and that hates every kind of imposture."

A shorter version is "the art of being right."

Or, more prosaically: critical thinking is "the skillful application of a repertoire of validated general techniques for deciding the level of confidence you should have in a proposition in the light of the available evidence."

HELPFUL REFERENCE: http://plato.stanford.edu/entries/logic-informal/

Module 1: Success Skills

Critical thinking, introduction, learning objectives.

  • define critical thinking
  • identify the role that logic plays in critical thinking
  • apply critical thinking skills to problem-solving scenarios
  • apply critical thinking skills to evaluation of information

Woman lying on her back outdoors, in a reflective posture

Consider these thoughts about the critical thinking process, and how it applies not just to our school lives but also our personal and professional lives.

“Thinking Critically and Creatively”

Critical thinking skills are perhaps the most fundamental skills involved in making judgments and solving problems. You use them every day, and you can continue improving them.

The ability to think critically about a matter—to analyze a question, situation, or problem down to its most basic parts—is what helps us evaluate the accuracy and truthfulness of statements, claims, and information we read and hear. It is the sharp knife that, when honed, separates fact from fiction, honesty from lies, and the accurate from the misleading. We all use this skill to one degree or another almost every day. For example, we use critical thinking every day as we consider the latest consumer products and why one particular product is the best among its peers. Is it a quality product because a celebrity endorses it? Because a lot of other people may have used it? Because it is made by one company versus another? Or perhaps because it is made in one country or another? These are questions representative of critical thinking.

The academic setting demands more of us in terms of critical thinking than everyday life. It demands that we evaluate information and analyze myriad issues. It is the environment where our critical thinking skills can be the difference between success and failure. In this environment we must consider information in an analytical, critical manner. We must ask questions—What is the source of this information? Is this source an expert one and what makes it so? Are there multiple perspectives to consider on an issue? Do multiple sources agree or disagree on an issue? Does quality research substantiate information or opinion? Do I have any personal biases that may affect my consideration of this information?

It is only through purposeful, frequent, intentional questioning such as this that we can sharpen our critical thinking skills and improve as students, learners and researchers.

—Dr. Andrew Robert Baker,  Foundations of Academic Success: Words of Wisdom

Defining Critical Thinking

Thinking comes naturally. You don’t have to make it happen—it just does. But you can make it happen in different ways. For example, you can think positively or negatively. You can think with “heart” and you can think with rational judgment. You can also think strategically and analytically, and mathematically and scientifically. These are a few of multiple ways in which the mind can process thought.

What are some forms of thinking you use? When do you use them, and why?

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s not restricted to a particular subject area.

Handwritten poster. Guidelines for Critical Thinking when…talking/ reading/ blogging/ writing/ living. 4: justify your answers with text evidence (…because…) and examples from your life/world; agree and disagree with others and authors; ask questions of others and authors; complete sentences, correct punctuation/ capitols. 3: agree and disagree with others and authors; justify your opinions, tell why you agree and disagree; speak and write in complete sentences. 2: answers questions but not justify them; agree and disagree but you can’t tell why; incomplete sentences, incorrect punctuation. 1: does not contribute to the conversation; does not share your thinking; does not agree or disagree with others. Justify: to defend your thinking by showing and telling with examples and evidence.

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read.

Imagine, for example, that you’re reading a history textbook. You wonder who wrote it and why, because you detect certain assumptions in the writing. You find that the author has a limited scope of research focused only on a particular group within a population. In this case, your critical thinking reveals that there are “other sides to the story.”

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit.

This may well be you!

No matter where you are on the road to being a critical thinker, you can always more fully develop your skills. Doing so will help you develop more balanced arguments, express yourself clearly, read critically, and absorb important information efficiently. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching.

Critical Thinking in Action

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination.

Logic’s Relationship to Critical Thinking

The word logic comes from the Ancient Greek logike , referring to the science or art of reasoning. Using logic, a person evaluates arguments and strives to distinguish between good and bad reasoning, or between truth and falsehood. Using logic, you can evaluate ideas or claims people make, make good decisions, and form sound beliefs about the world. [1]

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a PhD in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community.

The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him.

In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

The following questions, presented in Figure 1, below, are ones you may apply to formulating a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Infographic titled "Questions a Critical Thinker Asks." From the top, text reads: What's Happening? Gather the basic information and begin to think of questions (image of two stick figures talking to each other). Why is it Important? Ask yourself why it's significant and whether or not you agree. (Image of bearded stick figure sitting on a rock.) What Don't I See? Is there anything important missing? (Image of stick figure wearing a blindfold, whistling, walking away from a sign labeled Answers.) How Do I Know? Ask yourself where the information came from and how it was constructed. (Image of stick figure in a lab coat, glasses, holding a beaker.) Who is Saying It? What's the position of the speaker and what is influencing them? (Image of stick figure reading a newspaper.) What Else? What If? What other ideas exist and are there other possibilities? (Stick figure version of Albert Einstein with a thought bubble saying "If only time were relative...".

Problem-Solving With Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution. Below are some examples of using critical thinking to problem-solve:

  • Your roommate was upset and said some unkind words to you, which put a crimp in your relationship. You try to see through the angry behaviors to determine how you might best support your roommate and help bring your relationship back to a comfortable spot.

Young man in black jacket looking deep in thought, in foreground of busy street scene

  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

Evaluating Information With Critical Thinking

Evaluating information can be one of the most complex tasks you will be faced with in college. But if you utilize the following four strategies, you will be well on your way to success:

  • Read for understanding by using text coding
  • Examine arguments
  • Clarify thinking

Photo of a group of students standing around a poster on the wall, where they're adding post-it notes with handwriting on them

1. Read for Understanding Using Text Coding

When you read and take notes, use the text coding strategy . Text coding is a way of tracking your thinking while reading. It entails marking the text and recording what you are thinking either in the margins or perhaps on Post-it notes. As you make connections and ask questions in response to what you read,  you monitor your comprehension and enhance your long-term understanding of the material.

With text coding, mark important arguments and key facts. Indicate where you agree and disagree or have further questions. You don’t necessarily need to read every word, but make sure you understand the concepts or the intentions behind what is written. Feel free to develop your own shorthand style when reading or taking notes. The following are a few options to consider using while coding text.

See more text coding from PBWorks and Collaborative for Teaching and Learning .

2. Examine Arguments

When you examine arguments or claims that an author, speaker, or other source is making, your goal is to identify and examine the hard facts. You can use the spectrum of authority strategy for this purpose. The spectrum of authority strategy assists you in identifying the “hot” end of an argument—feelings, beliefs, cultural influences, and societal influences—and the “cold” end of an argument—scientific influences. The following video explains this strategy.

3. Clarify Thinking

When you use critical thinking to evaluate information, you need to clarify your thinking to yourself and likely to others. Doing this well is mainly a process of asking and answering probing questions, such as the logic questions discussed earlier. Design your questions to fit your needs, but be sure to cover adequate ground. What is the purpose? What question are we trying to answer? What point of view is being expressed? What assumptions are we or others making? What are the facts and data we know, and how do we know them? What are the concepts we’re working with? What are the conclusions, and do they make sense? What are the implications?

4. Cultivate “Habits of Mind”

“Habits of mind” are the personal commitments, values, and standards you have about the principle of good thinking. Consider your intellectual commitments, values, and standards. Do you approach problems with an open mind, a respect for truth, and an inquiring attitude? Some good habits to have when thinking critically are being receptive to having your opinions changed, having respect for others, being independent and not accepting something is true until you’ve had the time to examine the available evidence, being fair-minded, having respect for a reason, having an inquiring mind, not making assumptions, and always, especially, questioning your own conclusions—in other words, developing an intellectual work ethic. Try to work these qualities into your daily life.

  • "logic." Wordnik . n.d. Web. 16 Feb 2016 . ↵
  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Outcome: Critical Thinking. Provided by : Lumen Learning. License : CC BY: Attribution
  • Self Check: Critical Thinking. Provided by : Lumen Learning. License : CC BY: Attribution
  • Foundations of Academic Success. Authored by : Thomas C. Priester, editor. Provided by : Open SUNY Textbooks. Located at : http://textbooks.opensuny.org/foundations-of-academic-success/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Image of woman thinking. Authored by : Moyan Brenn. Located at : https://flic.kr/p/8YV4K5 . License : CC BY: Attribution
  • Critical Thinking. Provided by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. Project : https://courses.lumenlearning.com/lumencollegesuccess/chapter/critical-thinking-skills/. License : CC BY: Attribution
  • Image of critical thinking poster. Authored by : Melissa Robison. Located at : https://flic.kr/p/bwAzyD . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Critical Thinking 101: Spectrum of Authority. Authored by : UBC Leap. Located at : https://youtu.be/9G5xooMN2_c . License : CC BY: Attribution
  • Image of students putting post-its on wall. Authored by : Hector Alejandro. Located at : https://flic.kr/p/7b2Ax2 . License : CC BY: Attribution
  • Image of man thinking. Authored by : Chad Santos. Located at : https://flic.kr/p/phLKY . License : CC BY: Attribution
  • Critical Thinking.wmv. Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Arguments and Critical Thinking

J. anthony blair, introduction [1].

This chapter discusses two different conceptions of argument, and then discusses the role of arguments in critical thinking. It is followed by a chapter in which David Hitchcock carefully analyses one common concept of an argument.

1. Two meanings of ‘argument’

The word ‘argument’ is used in a great many ways. Any thorough understanding of arguments requires understanding ‘argument’ in each of its senses or uses. These may be divided into two large groupings: arguments had or engaged in , and arguments made or used . I begin with the former.

1.1 A n ‘a rgument’ as something two parties have with each othe r, something they get into, the kind of ‘argument’ one has in mind in de scribing two people as “arguing all the time ”

For many people outside academia or the practice of law, an argument is a quarrel . It is usually a verbal quarrel, but it doesn’t have to use words. If dishes are flying or people are glaring at each other in angry silence, it can still be an argument. What makes a quarrel an argument is that it involves a communication between two or more parties (however dysfunctional the communication may be) in which the parties disagree and in which that disagreement and reasons, actual or alleged, motivating it are expressed—usually in words or other communicative gestures.

Quarrels are emotional. The participants experience and express emotions, although that feature is not exclusive to arguments that are quarrels. People can and do argue emotionally, and (or) when inspired by strong emotions, when they are not quarrelling. Heated arguments are not necessarily quarrels; but quarrels tend to be heated.

What makes quarrels emotional in some cases is that at least one party experiences the disagreement as representing some sort of personal attack, and so experiences his or her ego or sense of self-worth as being threatened. Fear is a reaction to a perceived threat, and anger is a way of coping with fear and also with embarrassment and shame. In other cases, the argument about the ostensible disagreement is a reminder of or a pretext for airing another, deeper grievance. Jealousy and resentment fuel quarrels. Traces of ego-involvement often surface even in what are supposed to be more civilized argumentative exchanges, such as scholarly disputes. Quarrels tend not to be efficient ways of resolving the disagreements that gives rise to them because the subject of a disagreement changes as the emotional attacks escalate or because the quarrel was often not really about that ostensible disagreement in the first place.

In teaching that ‘argument’ has different senses, it is misleading to leave the impression (as many textbooks do) that quarrels are the only species of argument of this genus. In fact they are just one instance of a large class of arguments in this sense of extended, expressed, disagreements between or among two or more parties.

A dispute is an argument in this sense that need not be a quarrel. It is a disagreement between usually two parties about the legality, or morality, or the propriety on some other basis, of a particular act or policy. It can be engaged in a civil way by the disputants or their proxies (e.g., their spokespersons or their lawyers). Sometimes only the disputing parties settle their difference; sometimes a third party such as a mediator, arbitrator or judge is called in to impose a settlement.

A debate is another argument of this general kind. Debates are more or less formalized or regimented verbal exchanges between parties who might disagree, but in any case who take up opposing sides on an issue. Procedural rules that govern turn-taking, time available for each turn, and topics that may be addressed are agreed to when political opponents debate one another. Strict and precise rules of order govern who may speak, who must be addressed, sometimes time limits for interventions, in parliamentary or congressional debates in political decision-making bodies, or in formal intercollegiate competitive debates. Usually the “opponent” directly addressed in the debate is not the party that each speaker is trying to influence, so although the expressed goal is to “win” the debate, winning does not entail getting the opponent to concede. Instead, it calls for convincing an on-looking party or audience—the judge of the debate or the jury in a courtroom or the television audience or the press or the electorate as a whole—of the superior merits of one’s case for the opinion being argued for in the debate.

To be distinguished from a debate and a dispute by such factors as scale is a controversy . Think of such issues as the abortion controversy, the climate change controversy, the same-sex marriage controversy, the LGBT rights controversy, the animal rights controversy. The participants are many—often millions. The issues are complex and there are many disputes about details involved, including sometimes even formal debates between representatives of different sides. Typically there is a range of positions, and there might be several different sides each with positions that vary one from another. A controversy typically occurs over an extended period of time, often years and sometime decades long. But an entire controversy can be called an argument, as in, “the argument over climate change.” Controversies tend to be unregulated, unlike debates but like quarrels, although they need not be particularly angry even when they are emotional. Like quarrels, and unlike debates, the conditions under which controversies occur, including any constraints on them, are shaped by the participants.

Somewhere among quarrels, debates and controversies lie the theoretical arguments that theorists in academic disciplines engage in, in academic journals and scholarly monographs. In such arguments theorists take positions, sometimes siding with others and sometimes standing alone, and they argue back and forth about which theoretical position is the correct one. In a related type of argument, just two people argue back and forth about what is the correct position on some issue (including meta-level arguments about what is the correct way to frame the issue in the first place).

The stakes don’t have to be theories and the participants don’t have to be academics. Friends argue about which team will win the championship, where the best fishing spot is located, or what titles to select for the book club. Family members argue about how to spend their income, what school to send the children to, or whether a child is old enough to go on a date without a chaperone. Co-workers argue about the best way to do a job, whether to change service providers, whether to introduce a new product line, and so on. These arguments are usually amicable, whether or not they settle the question in dispute.

All of these kinds of “argument” in this sense of the term—quarrels, friendly disputes, arguments at work, professional arguments about theoretical positions, formal or informal debates, and various kinds of controversy—share several features.

  • They involve communications between or among two or more people. Something initiates the communication, and either something ends it or there are ways for participants to join and to exit the conversation. They entail turn-taking (less or more regimented), each side addressing the other side and in turn construing and assessing what the other has to say in reply and formulating and communicating a response to the replies of the other side. And, obviously, they involve the expression, usually verbal, of theses and of reasons for them or against alternatives and criticisms.
  • They have a telos or aim, although there seems to be no single end in mind for all of them or even for each of them. In a quarrel the goal might be to have one’s point of view prevail, to get one’s way, but it might instead (or in addition) be to humiliate the other person or to save one’s own self-respect. Some quarrels—think of the ongoing bickering between some long-married spouses—seem to be a way for two people to communicate, merely to acknowledge one another. In a debate, each side seeks to “win,” which can mean different things in different contexts ( cf. a collegiate debate vs. a debate between candidates in an election vs. a parliamentary debate). Some arguments seemed designed to convince the other to give up his position or accept the interlocutor’s position, or to get the other to act in some way or to adopt some policy. Some have the more modest goal of getting a new issue recognized for future deliberation and debate. Still others are clearly aimed not at changing anyone’s mind but at reinforcing or entrenching a point of view already held (as is usually the case with religious sermons or with political speeches to the party faithful). Some are intended to establish or to demonstrate the truth or reasonableness of some position or recommendation and (perhaps) also to get others to “see” that the truth has been established. Some seem designed to maintain disagreement, as when representatives of competing political parties argue with one another.
  • All these various kinds of argument are more or less extended, both in the sense that they occur over time, sometimes long stretches of time, and also in the sense that they typically involved many steps: extensive and complex support for a point of view and critique of its alternatives.
  • In nearly every case, the participants give reasons for the claims they make and they expect the other participants in the argument to give reasons for their claims. This is even a feature of quarrels, at least at the outset, although such arguments can deteriorate into name-calling and worse. (Notice that even the “yes you did; no I didn’t;…; did; didn’t” sequence of the Monty Python “Having an argument” skit breaks down and a reason is sought.)

The kinds of argument listed so far are all versions of having an argument (see Daniel J. O’Keefe, 1977, 1982). Some might think that this is not the sense of ‘argument’ that is pertinent to critical thinking instruction, but such arguments are the habitat of the kinds of argument that critical thinkers need to be able to identify, analyze and evaluate.

1.2 An argument a s something a person makes (or constructs, invents, borrows) consisting of purported reasons alleged to suggest, or support or prove a point and that is used for some purpose such as to persuade someone of some claim, to justify someone in maintaining the position claimed, or to test a claim .

When people have arguments—when they engage in one or another of the activities of arguing described above—one of the things they routinely do is present or allege or offer reasons in support of the claims that they advance, defend, challenge, dispute, question, or consider. That is, in having “arguments,” we typically make and use “arguments.” The latter obviously have to be arguments in different sense from the former. They are often called “reason-claim” complexes. If arguments that someone has had constitute a type of communication or communicative activity, arguments that someone has made or used are actual or potential contributions to such activities. Reason-claim complexes are typically made and used when engaged in an argument in the first sense, trying to convince someone of your point of view during a disagreement or dispute with them. Here is a list of some of the many definitions found in textbooks of ‘argument’ in this second sense.

“… here [the word ‘argument’] … is used in the … logical sense of giving reasons for or against some claim.” Understanding Arguments, Robert Fogelin and Walter Sinnott-Armstrong, 6th ed., p. 1. “Thus an argument is a discourse that contains at least two statements, one of which is asserted to be a reason for the other.” Monroe Beardsley, Practical Logic, p. 9. “An argument is a set of claims a person puts forward in an attempt to show that some further claim is rationally acceptable.” Trudy Govier. A Practical Study of Arguments, 5th ed., p. 3. An argument is “a set of clams some of which are presented as reasons for accepting some further claim.” Alec Fisher, Critical Thinking, An Introduction, p. 235. Argument: “A conclusion about an issue that is supported by reasons.” Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. “ Argument: An attempt to support a conclusion by giving reasons for it.” Robert Ennis, Critical Thinking, p. 396. “Argument – A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).” John Chaffee, Thinking Critically, p. 415 “When we use the word argument in this book we mean a message which attempts to establish a statement as true or worthy of belief on the basis of other statements.” James B. Freeman, Thinking Logically, p. 20 “Argument. A sequence of propositions intended to establish the truth of one of the propositions.” Richard Feldman, Reason and Argument, p. 447. “Arguments consist of conclusions and reasons for them, called ‘premises’.” Wayne Grennan, Argument Evaluation, p. 5. Argument: “A set of claims, one of which, the conclusion is supported by [i.e., is supposed to provide a reason for] one or more of the other claims. Reason in the Balance, Sharon Bailin & Mark Battersby, p. 41.

These are not all compatible, and most of them define ‘argument’ using other terms—‘reasons’, ‘claims’, ‘propositions’, ‘statements’, ‘premises’ and ‘conclusions’—that are in no less need of definition than it is. In the next chapter, David Hitchcock offers a careful analysis of this concept of an argument.

Some define argument in this second sense as a kind of communication; others conceive it as a kind of set of propositions that can serve communicative functions, but others as well (such as inquiry). Either way, the communicative character, or function, of arguments has been the subject of much of the research in the past several decades. Most recently what some have called “multi-modal” argument has attracted attention, focusing on the various ways arguments can be communicated, especially visually or in a mix of verbal and visual modes of communication. Some have contended that smells and sounds can play roles in argument communication as well. This area of research interest would seem to have relevance for the analysis of arguments on the web.

1.3 Argumentation

‘Argumentation’ is another slippery term. It is used in several different senses.

Sometimes it is used to mean the communicative activity in which arguments are exchanged: “During their argumentation they took turns advancing their own arguments and criticizing one another’s arguments.” Sometimes ‘argumentation’ denotes the body of arguments used in an argumentative exchange: “The evening’s argumentation was of high quality.” And occasionally you will find it used to refer to the reasons or premises supporting a conclusion, as in: “The argumentation provided weak support for the thesis.” ‘Argumentation theory’ is the term often used to denote theory about the nature of arguments and their uses, including their uses in communications involving exchanges of arguments.

2 The relation between critical thinking and argument

2 .1 arguments are both tools of critical thinking and objects of critical thinking.

In … [one] sense, thought denotes belief resting upon some basis, that is, real or supposed knowledge going beyond what is directly present. … Some beliefs are accepted when their grounds have not themselves been considered …. … such thoughts may mean a supposition accepted without reference to its real grounds. These may be adequate, they may not; but their value with reference to the support they afford the belief has not been considered. Such thoughts grow up unconsciously and without reference to the attainment of correct belief. They are picked up—we know not how. From obscure sources and by unnoticed channels they insinuate themselves into acceptance and become unconsciously a part of our mental furniture. Tradition, instruction, imitation—all of which depend upon authority in some form, or appeal to our advantage, or fall in with strong passions—are responsible for them. Such thoughts are prejudices, that is, prejudgments, not judgments proper that rest upon a survey of evidence. (John Dewey, How We Think , pp. 4-5, emphasis added.)

People—all of us—routinely adopt beliefs and attitudes that are prejudices in Dewey’s sense of being prejudgments, “not judgments proper that rest upon a survey of evidence.” One goal of critical thinking education is to provide our students with the means to be able, when it really matters, to “properly survey” the grounds for beliefs and attitudes.

Arguments supply one such means. The grounds for beliefs and attitudes are often expressed, or expressible, as arguments for them. And the “proper survey” of these arguments is to test them by subjecting them to the critical scrutiny of counter-arguments.

Arguments also come into play when the issue is not what to believe about a contentious issue, but in order just to understand the competing positions. Not only are we not entitled to reject a claim to our belief if we cannot counter the arguments that support it; we are not in possession of an understanding of that claim if we cannot formulate the arguments that support it to the satisfaction of its proponents.

Furthermore, arguments can be used to investigate a candidate for belief by those trying “to make up their own minds” about it. The investigator tries to find and express the most compelling arguments for and against the candidate. Which arguments count as “most compelling” are the ones that survive vigorous attempts, using arguments, to refute or undermine them. These survivors are then compared against one another, the pros weighed against the cons. More arguments come into play in assessing the attributed weights.

In these ways, a facility with arguments serves a critical thinker well. Such a facility includes skill in recognizing, interpreting and evaluating arguments, as well as in formulating them. That includes skill in laying out complex arguments, in recognizing argument strengths and weaknesses, and in making a case for one’s critique. It includes the ability to distinguish the more relevant evidence from the less, and to discriminate between minor, fixable flaws and major, serious problems, in arguments. Thus the critical thinker is at once adept at using arguments in various ways and at the same time sensitive in judging arguments’ merits, applying the appropriate criteria.

Moreover, arguments in the sense of “reasons-claim” complexes surround us in our daily lives. Our “familiars”, as Gilbert (2014) has dubbed them—our family members, the friends we see regularly, shopkeepers and others whose services we patronize daily, our co-workers—engage us constantly in argumentative discussions in which they invoke arguments to try to get us to do things, to agree, to judge, to believe. The public sphere—the worlds of politics, commerce, entertainment, leisure activities, social media (see Jackson’s chapter)—is another domain in which arguments can be found, although (arguably) mere assertion predominates there. In the various roles we play as we go through life—child, parent, spouse or partner, student, worker, patient, subordinate or supervisor, citizen (voter, jurist, community member), observer or participant, etc.—we are invited with arguments to agree or disagree, approve or disapprove, seek or avoid. We see others arguing with one another and are invited to judge the merits of the cases they make. Some of these arguments are cogent and their conclusions merit our assent, but others are not and we should not be influenced by them. Yet others are suggestive and deserve further thought.

We can simply ignore many of these arguments, but others confront us and force us to decide whether or not to accept them. Often it is unclear whether someone has argued or done something else: just vented, perhaps, or explained rather than argued, or merely expressed an opinion without arguing for it, or was confused. So we initially might have to decide whether there is an argument that we need to deal with. When it is an argument, often in order to make up our minds about it we need first to get clear about exactly what the argument consists of. So even before we evaluate this argument we have to identify and analyze it. (These operations are discussed in Chapter 12.)

In the end we have to decide for ourselves whether the argument makes its case or falls short. Does the conclusion really follow from the premises? Is there enough evidence to justify the conclusion? Is it the right kind of evidence? Are there well-known objections or arguments against the conclusion that haven’t been acknowledged and need to be answered satisfactorily? Can they be answered? And are the premises themselves believable or otherwise acceptable? Are there other arguments, as good or better, that support the claim?

Critical thinking can (and should!) come into all of these decisions we need to make in the identification, the analysis and the assessment of arguments.

2 .2  Critical thinking about things other than arguments

Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments. In their analysis of the concept of critical thinking, Fisher and Scriven suggest the following definition:

Critical thinking is skilled and active interpretation and evaluation of o b servations and communications , information and argumentation. (1997, p. 21, emphasis added)

We agree with the gist of this claim, but notice what Fisher and Scriven propose as the objects to which critical thinking applies. Not just argumentation, but as well observations, communications and information. About observations, they note that:

What one sees (hears, etc.) are usually things and happenings, and one often has to interpret what one sees, sometimes calling on critical thinking skills to do so, most obviously in cases where the context involves weak lighting, strong emotions, possible drug effects, or putatively magical or parapsychological phenomena. Only after the application of critical thinking—and sometimes not even then—does one know what one “really saw”. … When the filter of critical thinking has been applied to the observations, and only then, one can start reasoning towards further conclusions using these observations as premises. ( Ibid ., p, 37)

An example is the recent large number of convictions in the U.S.A. that originally relied on eyewitness testimony but that have been overturned on the basis of DNA evidence. [2] ,  [3]

The DNA evidence proved that the accused was not the culprit, so the moral certainty of the eyewitness had to have been mistaken. The observation of the eyewitness was flawed. He or she did not think critically about whether the conditions need ed to make a reliable o b servation were present (e.g., were strong emotions like fear involved? was the lighting good? has he or she ordinarily a good memory for faces? was there time to observe carefully? were there distractions present?). Neither, probably, did the lawyers on either side, or else they immorally suppressed what should have been their doubts. As a consequence, innocent people languished in jail for years and guilty parties went free.

Communications are another object for critical thought. When in reply to Harry’s question, “How are you doing?” Morgan says, in a clipped and dull voice and a strained expression on her face, “I’m fine”, Harry needs to be aware that “How are you doing?” often functions as equivalent to a simple greeting, like “Hi” and so the response “Fine” could similarly be functioning as a polite return of the greeting, like “Hi back to you”, and not as an accurate report of the speaker’s condition. Harry needs to notice and interpret other aspects of Morgan’s communication—her lethargic tone of voice and her anxious facial expression—and to recognize the incompatibility between those signals and the interpretation of her response as an accurate depiction of Morgan’s state of well-being. He needs to employ critical interpretive skills to realize that Morgan has communicated that she is not fine at all, but for some reason isn’t offering to talk about it.

If President Trump did in fact say to his then F.B.I. director James Comey, about the F.B.I. investigation of former National Security Advisor Michaell Flynn “I hope you can let this go”, was it legitimate for Comey to interpret the President’s comment as a directive? And was Comey’s response, which was simply to ignore President Trump’s alleged comment, an appropriate response? What was going on? It takes critical thinking to try to sort out these issues. Taking the President’s alleged comment literally, it just expresses his attitude towards the FBI investigation of Flynn. But communications from the President in a tête-à-tête in the White House with the Director of the FBI are not occasions for just sharing attitudes. This was not an occasion on which they could step out of their political roles and chat person-to-person. The President can legitimately be presumed to be communicating his wishes as to what his FBI Director should do, and such expressions of wishes are, in this context, to be normally understood as directives. On the other hand, for the President to direct that an ongoing investigation by the FBI be stopped, or that it come up with a pre-determined finding, is illegal: it’s obstruction of justice. So Comey seemed faced with at least two possible interpretations of what he took the President to be saying: either an out-of-place expression of his attitude towards the outcome of the Flynn investigation or an illegal directive. Which was the President’s intention? However, there are other possibilities.

Was President Trump a political tyro whose lack of political experience might have left him ignorant of the fact that the FBI Director has to keep investigations free of political interference? Or might Trump have thought that the Presidency conveys the authority to influence the outcome of criminal investigations? Or might President Trump have been testing Mr. Comey to see if he could be manipulated? And Mr. Comey could have responded differently. He could have said, “I wish we could let this go too, Mr. President, but there are questions about General Flynn’s conduct that have to be investigated, and as you know, we cannot interfere with an ongoing FBI investigation”. Such a response would have forced the President to take back what he allegedly said, withdrawing any suggestion that his comment was a directive, or else to make it plain that he was indeed directing Comey to obstruct justice. In the event, apparently Mr. Comey did not take this way out, which would at once have displayed loyalty to the President (by protecting him from explicitly obstructing justice) and also have affirmed the independence of the FBI from interference from the White House. Perhaps he thought that the President clearly had directed him to obstruct justice, and judged that giving him an opportunity explicitly to withdraw that directive amounted to overlooking that illegal act, which would be a violation of his responsibilities as Director of the FBI. If so, however, simply not responding to the President’s comment, the path Comey apparently chose, also amounted to turning a blind eye to what he judged to be President Trump’s illegal directive.

As these two examples illustrate, the interpretation of communications, and the appropriate response to them can require critical thinking: recognizing different functions of communication, and being sensitive to the implications of different contexts of communication; being sensitive to the roles communicators occupy and to the rights, obligations, and limits attached to such roles.

As Fisher and Scriven acknowledge, “defining information is itself a difficult task.” They make a useful start by distinguishing information from raw data (“the numbers or bare descriptions obtained from measurements or observations”, op . cit., p. 41). No critical thinking is required for the latter; just the pains necessary to record raw data accurately, In many cases, though, the interpretation of raw data, the meaning or significance that they are said to have, can require critical thinking.

One might go beyond Fisher and Scriven’s list of other things besides arguments to which critical thinking can be applied. A thoughtful appreciation of novels or movies, plays or poetry, paintings or sculptures requires skilled interpretation, imagining alternatives, thoughtful selection of appropriate criteria of evaluation and then the selection and application of appropriate standards, and more. A good interior designer must consider the effects and interactions of space and light and color and fabrics and furniture design, and coordinate these with clients’ lifestyles, habits and preferences. Advanced practical skills in various sciences come into play. A coach of a sports team must think about each individual team member’s skills and deficiencies, personality and life situation; about plays and strategies, opponents’ skills sets; approaches to games; and much more. Conventional approaches need to be reviewed as to their applicability to the current situation. Alternative possibilities need to be creatively imagined and critically assessed. And all of this is time-sensitive, sometimes calling for split-second decisions. The thinking involved in carrying out the tasks of composing a review of some work of literature or art or of coaching a sports team can be routine and conventional, or it can be imaginative, invoking different perspectives and challenging standard criteria.

The list could go on. The present point is that, while argument is central to critical thinking, critical thinking about and using arguments is not all there is to critical thinking. [4]

Bailin, Sharon & Battersby, Mark. (2010). Reason in the Balance , An I n quiry Approach to Critical Thinking , 1 st ed. Toronto: McGraw-Hill Ryerson.

Beardsley, Monroe C. (1950). Practical L ogic . Englewood Cliffs, NJ: Prentice-Hall.

Chaffee, John. 1985. Thinking Critically . Boston: Houghton Mifflin.

Dewey, John. (1910, 1991). How We Think . Lexington, MAD.C. Heath; Buffalo, NY: Prometheus Books.

Diestler, Sherry. (2005). Becoming a Critical Thinker , 4 th ed. Upper Saddle River, NJ: Pearson Education.

Ennis, Robert H. (1996). Critical Thinking . Upper Saddle River, NJ: Prentice-Hall.

Feldman, Richard. (1993). Reason and Argument , 2 nd ed. Upper Saddle River, NJ: Prentice-Hall.

Fisher, Alex.(2001). Critical Thinking, An Introduction . Cambridge: Cambridge University Press.

Fisher, Alec & Scriven, Michael. (1997). Critical Thinking, Its Definition and Assessment . Point

Reyes, CA: EdgePress; Norwich, UK: Center for Research in Critical Thinking.

Fogelin, Robert & Sinnott-Armstrong, Walter. (2001). Understanding A r guments , An Introduction to Informal Logic , 6 th ed. Belmont, CA: Wadsworth.

Freeman, James B. (1988.) Thinking Logically , Basic Concepts of Reaso n ing . Englewood Cliffs, NJ: Prentice-Hall.

Grennan, Wayne . (1984). Argument Evaluation . Lanham, MD: University Press of America.

Govier, Trudy. (2001). A Practical Study of Argument , 5 th ed. Belmont, CA: Wadsworth.

O’Keefe, Daniel J. (1977). Two concepts of argument. Journal of the Amer i can Forensic Association , 13 , 121-128.

O‘Keefe, Daniel J. (1982). The concepts of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in Argumentation Theory and R e search , pp. 3-23. Carbondale, IL: Southern Illinois University Press.

  • © J. Anthony Blair ↵
  • According to the Innocence Project, “Eyewitness misidentification is the greatest contributing factor to wrongful convictions proven by DNA testing, playing a role in more than 70% of convictions [in the U.S.A.] overturned through DNA testing nationwide.” (https://www.innocenceproject.org/causes/eyewitness-misidentification/, viewed August 2017). ↵
  • I owe the general organization and many of the specific ideas of this chapter to a series of lectures by Jean Goodwin at the Summer Institute on Argumentation sponsored by the Centre for Research in Reasoning, Argumentation and Rhetoric at the University of Windsor. ↵

Studies in Critical Thinking Copyright © by J. Anthony Blair is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

3.1: The Basics

  • Last updated
  • Save as PDF
  • Page ID 223814

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

So far, we’ve discussed the basic ideas behind arguments or inferences. Each argument has premises which are the assumptions or the support of the argument. Each argument also has usually one, but sometimes more conclusions . The conclusion is the main point of the argument. The goal of any argument is to offer reasons for believing the conclusion. The reasons are the premises and the claim that you are supposed to accept if you agree with the argument is the conclusion.

So far so good. But there’s a lot more that we can say about arguments.

Ideally, when we’re trying to understand an argument fully—long before we decide whether or not we agree with the argument or whether or not it’s a good argument—we have a full grasp of the structure of the argument. That is, we need to know which premises go with which other premises, whether each premise is supposed to directly demonstrate the conclusion or is merely indirect support for the conclusion, etc. In short, we need a map or a diagram of the argument before we can decide whether or not it’s a good argument.

Simple arguments are called syllogisms: 2 premises and 1 conclusion and immediate inferences: 1 premise and 1 conclusion.

I like all vegetables

Carrots are a vegetable

So I like Carrots

So, there aren’t any vegetables I don’t like.

But normal arguments (arguments you’d find in a letter to the editor or in a social media post or on the radio or tv) aren’t like that—they have more premises, some of which don’t directly support the conclusion, but instead support other premises. It’s like a big complex argument that’s actually made out of smaller arguments.

So, if you want to understand how a complex argument in the real world hangs together, you need to be able to construct a map or diagram of that argument.

We’ll need to find out two things about each premise:

1. What kind of support does it offer for its conclusion? Does it support its conclusion in conjunction with other premises? Or does it instead form an argument by itself for the conclusion?

2. Does it support the main conclusion directly? Or does it instead support the conclusion indirectly by offering support for another premise, which in turn supports the main conclusion?

How do we go about actually building an Argument Map? Well, we could choose any convention at all, so we have to decide on what sorts of shapes, labels, symbols, etc. we’ll use for the sake of this course.

The first thing to note is that some people teach argument mapping going in an upwards direction—meaning that the conclusion would be on top and the premises for the conclusion would be below it. But we’re going to go a different way so that our argument maps more clearly track the usual format of an argument: the premises on top and the conclusion on bottom.

Here are some basic concepts and the associated conventional symbols and shapes:

Conjoint vs. Independent Support

We need to be able to decide (once we’ve sorted out which are premises for which conclusion) what kind of support a set of premises provide for their conclusion. It’s independent support when each premise seems like it’s an argument for the conclusion on its own. It’s conjoint support when a premise doesn’t seem to support the conclusion without the help of the other premises. A good test for conjoint support is to pretend one of the premises is false . Does this affect the inference(s) from the other premise(s) to the conclusion?

Labradors are gentle, but they aren’t very aggressive,

so they wouldn’t make good guard dogs.

This feels like independent support because each inference makes sense on its own:

Labradors are gentle,

Labradors aren’t very aggressive,

Let’s look at another:

[1] Vegetables are healthy and [2] tomatoes are vegetables, so [3] tomatoes are healthy.

Since 1 is a general principle and 2 is an instance of that general principle (or something like that), it makes sense to think that they’re conjoint. Any time you see this pattern—where one premise is a definition or general claim and another premise is a more particular claim that falls under that definition or general claim—you’ll think that those premises are likely conjoint.

The "General-Specific Pattern

When you see two premises where one premise is a general definition, a generalization, a hypothetical or conditional, or a general principle, and the other premise is a specific claim about an individual under that generalization, those are almost certain to be conjoint premises.

  • A motorbike is any two-wheeled motor-driven vehicle and that moped has two wheels that are driven by a motor, so...
  • If anyone goes to the amusement park, they’re going to be exhausted at the end of the day; and Cheri went to Six Flags today, so...
  • Lying is wrong, but getting out of trouble would require me to lie, so....

If we try negating 2, then the inference doesn’t make any sense:

[1] Vegetables are healthy and [2] tomatoes are not vegetables , so [3] tomatoes are healthy.

If we try negating 1, the inference falls apart again:

[1] Vegetables are unhealthy and [2] tomatoes are vegetables, so [3] tomatoes are healthy.

Let’s try one more slightly more complex conjoint support example:

Example \(\PageIndex{1}\)

[1] Gina told me the Earth is round and [2] Gina wouldn’t lie to me, and furthermore [3] Gina is an astrophysicist, so [4] the Earth is round.

Let’s try the negation test on 1:

[1] Gina told me the Earth is flat and [2] Gina wouldn’t lie to me, and furthermore [3] Gina is an astrophysicist, so [4] the Earth is round.

What??? Let’s try it on 2:

[1] Gina told me the Earth is round and [2] Gina often lies to me , and furthermore [3] Gina is an astrophysicist, so [4] the Earth is round.

What???? Let’s try it on 3:

[1] Gina told me the Earth is round and [2] Gina wouldn’t lie to me, and furthermore [3] Gina is not an astrophysicist , so [4] the Earth is round.

Well... this isn’t as incoherent as the other examples. But why mention that Gina is an astrophysicist at all if it doesn’t at least help 1 and 2 demonstrate the conclusion that the Earth is round? With the negation of 3 as part of the argument, it seems thoroughly awkward that we should be talking about Gina being or not being an astrophysicist at all. If anything, it seems to work against the inference.

What’s the lesson here? The negation test isn’t perfect, but it does almost always reveal when you’ve got a premise that seems to work together with other premises. In the Gina case, we’ve got a premise that is closely related in subject matter and so we’ve got some reason to conjoin it with 1 and 2.

Here’s how we go about mapping conjoint vs. independent support once we’ve decided what sort of support is involved.

Mapping Independent Support

Example \(\pageindex{2}\).

We use multiple arrows to signify multiple independent inferences. So, we have many premises which do not work together to demonstrate the conclusion . Each premise offers its own reason for accepting the conclusion.

1.PNG

Paradigm example:

(1) This test is easy.

(2) Tetsuo got an A on the test and

(3) Xochitl got an A on the test and

(4) Francisco got an A on the test.

If the other premises were not there, the argument would not fall apart. The premises don’t need each other to be true to support the conclusion.

“Given 2, 1 follows, and given 3, 1 follows, and given 4, 1 follow.”

Independent support is really like having multiple inferences. So the map above seems to tell us that there are three separate inferences that just happen to have the same conclusion.

Mapping Conjoint Support

Example \(\pageindex{3}\).

We use brackets to signify a single inference with many conjoint or mutually dependent premises . The premises work together to support the conclusion . Without the other conjoint premises, it would be unclear why one conjoint premise should be taken as a reason for accepting the conclusion.

2.PNG

(1) You are behaving unfairly.

(2) You’re giving more to some than to others and

(3) giving more to some than to others isn’t fair.

If any one of them is false or wasn’t there to begin with, the inference falls apart.

“Given 2, 1 doesn’t follow unless we also have 3 (and 4, 5, 6, ...).”

Deductive arguments are more often than not conjoint support. This is just a rough and ready rule, but the way standard Deductive arguments (without extra irrelevant premises) work is that the premises are all necessary for the inference to demonstrate the conclusion. So it makes sense that they would be conjoint premises.

Here’s a complete example of a problem like you might see on a quiz or exam (though they’ll usually be less complex than these, at least to start out).

3.PNG

Example \(\PageIndex{4}\)

(1) Government mandates for zero-emission vehicles won’t work because (2) only electric cars qualify as zero-emission vehicles, and (3) electric cars won’t sell. (4) They are too expensive, (5) their range of operation is too limited, and (6) recharging facilities are not generally available.

Adding in 3 makes the inference make sense again ( Oh, I see, electric cars won’t solve our problems ). You can do the same by taking 2 away. Wait, we’ll say, what about other zero-emission vehicles ??? Adding 2 back in makes sense of the inference.

4, 5, and 6 are independent because they don’t have much to do with one another. The inference from 4 to 3, 5 to 3, and 6 to 3 all makes sense. “They’re too expensive, so they won’t sell.” (makes sense). “Their range is limited, so they won’t sell” (makes sense). “There aren’t enough recharging facilities, so they won’t sell” (makes sense!).

Example \(\PageIndex{5}\)

We also use downward braces if there are more than one conclusion for any given inference. This is called Multiple Conclusions .

4.png

(1) The president may have her faults, but

(2) she is an outstanding leader and

(3) we should reelect her.

(4) Her foreign policy has brought about respite from violence in various war torn regions as

(5) she sent in troops to protect refugees in Rwanda and (6) she negotiated an armistice between Egypt and Israel. (7) Her economic policy has also been largely successful in that (8) a potential recession has been avoided for now. (9) She is also a great moral leader as (10) hers is a model family and (11) she demonstrates true integrity daily.

Notice how 1 isn’t actually part of the argument: it just introduces the topic but isn’t a premise or conclusion. 2 and 3 are both conclusions (notice the “and”, which often links premises to premises and conclusions to conclusion) because neither is a premise/evidence for the other and both are implied by the rest of the argument (4, 7, and 9).

Why did we go with independent support for all of the top-most premises? Try to reason through it on your own.

Terminology

Let’s introduce some new terminology so we can have a common language with which to talk about arguments:

  • A “ level ” or “ layer ” of an argument map is one horizontal row of a carefully-drawn argument map. Notice how the previous argument map above is drawn so that even though there’s a lot going on in the argument, we can see 3 distinct layers or horizontal rows?
  • A Main Conclusion is the final conclusion of the argument. It doesn’t serve as a premise/support for any other proposition in the complex argument. It’s always in the bottom-most layer
  • A Main Premise is one among the set of premises that directly support the main conclusion. It’s always in the layer that’s the second from the bottom.
  • A sub-premise is a premise in a sub-inference.
  • A sub-conclusion is a conclusion in a sub-inference. (Note that a sub-conclusion is always a premise itself, and that it is usually one of the main premises unless the argument gets really complex).

So here it is, the anatomy of a typical 3-layer argument diagram:

5.PNG

The following excerpt from Knachel’s text covers some of the same ground we just covered, but sometimes it’s helpful to see a different explanation of the same thing:

From: Knachel, Matthew, "Fundamental Methods of Logic" (2017).

Philosophy Faculty Books. 1. http://dc.uwm.edu/phil_facbooks/1

Creative Commons Attribution 4.0 International License

V. Diagramming Arguments

Before we get down to the business of evaluating arguments—of judging them valid or invalid, strong or weak—we still need to do some preliminary work. We need to develop our analytical skills to gain a deeper understanding of how arguments are constructed, how they hang together. So far, we’ve said that the premises are there to support the conclusion. But we’ve done very little in the way of analyzing the structure of arguments: we’ve just separated the premises from the conclusion. We know that the premises are supposed to support the conclusion. What we haven’t explored is the question of just how the premises in a given argument do that job—how they work together to support the conclusion, what kinds of relationships they have with one another. This is a deeper level of analysis than merely distinguishing the premises from the conclusion; it will require a mode of presentation more elaborate than a list of propositions with the bottom one separated from the others by a horizontal line. To display our understanding of the relationships among premises supporting the conclusion, we are going to depict them: we are going to draw diagrams of arguments.

Here’s how the diagrams will work. They will consist of three elements: (1) circles with numbers inside them—each of the propositions in the argument we’re diagramming will be assigned a number, so these circled numbers in the diagram will represent the propositions; (2) arrows pointed at circled numbers—these will represent relationships of support, where one or more propositions provide a reason for believing the one pointed to; and (3) horizontal brackets—propositions connected by these will be interdependent (in a sense to be specified below).

Our diagrams will always feature the circled number corresponding to the conclusion at the bottom. The premises will be above, with brackets and arrows indicating how they collectively support the conclusion and how they’re related to one another. There are a number of different relationships that premises can have to one another. We will learn how to draw diagrams of arguments by considering them in turn.

Independent Premises

Often, different premises will support a conclusion—or another premise—individually, without help from any others. When this is the case, we draw an arrow from the circled number representing that premise to the circled number representing the proposition it supports.

Consider this simple argument:

\(\require{enclose} \enclose{circle}{\kern .06em 1\kern .06em}\) Marijuana is less addictive than alcohol. In addition, \(\enclose{circle}{\kern .06em 2\kern .06em}\) it can be used as a medicine to treat a variety of conditions. Therefore, \(\enclose{circle}{\kern .06em 3\kern .06em}\) marijuana should be legal.

The last proposition is clearly the conclusion (the word ‘therefore’ is a big clue), and the first two propositions are the premises supporting it. They support the conclusion independently. The mark of independence is this: each of the premises would still provide support for the conclusion even if the other weren’t true; each, on its own, gives you a reason for believing the conclusion. In this case, then, we diagram the argument as follows:

Intermediate Premises

Some premises support their conclusions more directly than others. Premises provide more indirect support for a conclusion by providing a reason to believe another premise that supports the conclusion more directly. That is, some premises are intermediate between the conclusion and other premises.

\(\enclose{circle}{\kern .06em 1\kern .06em}\) Automatic weapons should be illegal. \(\enclose{circle}{\kern .06em 2\kern .06em}\) They can be used to kill large numbers of people in a short amount of time. This is because \(\enclose{circle}{\kern .06em 3\kern .06em}\) all you have to do is hold down the trigger and bullets come flying out in rapid succession.

The conclusion of this argument is the first proposition, so the premises are propositions 2 and 3. Notice, though, that there’s a relationship between those two claims. The third sentence starts with the phrase ‘This is because’, indicating that it provides a reason for another claim. The other claim is proposition 2; ‘This’ refers to the claim that automatic weapons can kill large numbers of people quickly. Why should I believe that they can do that? Because all one has to do is hold down the trigger to release lots of bullets really fast. Proposition 2 provides immediate support for the conclusion (automatic weapons can kill lots of people really quickly, so we should make them illegal); proposition 3 supports the conclusion more indirectly, by giving support to proposition 2. Here is how we diagram in this case:

7.PNG

Joint Premises

Sometimes premises need each other: the job of supporting another proposition can’t be done by each on its own; they can only provide support together, jointly. Far from being independent, such premises are interdependent. In this situation, on our diagrams, we join together the interdependent premises with a bracket underneath their circled numbers.

There are a number of different ways in which premises can provide joint support. Sometimes, premises just fit together like a hand in a glove; or, switching metaphors, one premise is like the key that fits into the other to unlock the proposition they jointly support. An example can make this clear:

\(\enclose{circle}{\kern .06em 1\kern .06em}\) The chef has decided that either salmon or chicken will be tonight’s special. \(\enclose{circle}{\kern .06em 2\kern .06em}\) Salmon won’t be the special. Therefore, \(\enclose{circle}{\kern .06em 3\kern .06em}\) the special will be chicken.

Neither premise 1 nor premise 2 can support the conclusion on its own. A useful rule of thumb for checking whether one proposition can support another is this: read the first proposition, then say the word ‘therefore’, then read the second proposition; if it doesn’t make any sense, then you can’t draw an arrow from the one to the other. Let’s try it here: “The chef has decided that either salmon or chicken will be tonight’s special; therefore, the special will be chicken.” That doesn’t make any sense. What happened to salmon? Proposition 1 can’t support the conclusion on its own. Neither can the second: “Salmon won’t be the special; therefore, the special will be chicken.” Again, that makes no sense. Why chicken? What about steak, or lobster? The second proposition can’t support the conclusion on its own, either; it needs help from the first proposition, which tells us that if it’s not salmon, it’s chicken. Propositions 1 and 2 need each other; they support the conclusion jointly. This is how we diagram the argument:

The same diagram would depict the following argument:

\(\enclose{circle}{\kern .06em 1\kern .06em}\) John Le Carre gives us realistic, three-dimensional characters and complex, interesting plots. \(\enclose{circle}{\kern .06em 2\kern .06em}\) Ian Fleming, on the other hand, presents an unrealistically glamorous picture of international espionage, and his plotting isn’t what you’d call immersive. \(\enclose{circle}{\kern .06em 3\kern .06em}\) Le Carre is a better author of spy novels than Fleming.

In this example, the premises work jointly in a different way than in the previous example. Rather than fitting together hand-in-glove, these premises each give us half of what we need to arrive at the conclusion. The conclusion is a comparison between two authors. Each of the premises makes claims about one of the two authors. Neither one, on its own, can support the comparison, because the comparison is a claim about both of them. The premises can only support the conclusion together. We would diagram this argument the same way as the last one.

Another common pattern for joint premises is when general propositions need help to provide support for particular propositions. Consider the following argument:

We shouldn’t elect someone who has proven an incompetent business leader.

Candidate Z has proven an incompetent CEO. So, we shouldn’t elect Candidate Z.

These premises will be mapped with conjoint support since the premises need to work together to show the conclusion. One general principle about who we shouldn’t elect, and one particular claim about Candidate Z.

End Knachel Text

Let’s walk through a few examples of arguments that need mapping:

Example \(\PageIndex{6}\)

She's the best girlfriend ever. She bought me a new backpack for Christmas, she's never late for a date, and she always treats me with care.

First, we need to identify each proposition —that is, each claim that can be true or false independently of the other claims. This is a bit interpretive, so sometimes there aren’t hard and fast rules that produce one particular right answer, but generally we can all come up with the same propositions:

(1) She's the best girlfriend ever. (2) She bought me a new backpack for Christmas, (3) she's never late for a date, and (4) she always treats me with care.

What a nice young person! Next, we need to decide what the conclusion is and which propositions are premises. A nice test that often helps is to read all of the premises and then say “therefore...” and then read what you think is the conclusion. It should make sense as an inference if you do this properly. For instance, this is clearly not so good:

She’s the best girlfriend ever, she bought me a new backpack, and she always treats me with care, therefore she’s never late for a date.

Uhhhhh...what?

This one sounds a lot more sensical:

She bought me a new backpack, she’s never late for a date, and she always treats me with care, therefore she’s the best girlfriend ever.

It seems like the three premises are evidence for the claim that she is the best girlfriend ever. The thing we’re being asked to believe as a result of this reasoning is that she’s the best girlfriend ever. So that is the conclusion of the inference.

Now we’ve already basically ruled out that 2, 3, and 4 have any inferential relationship between them. They all seem to give us reasons for believing the conclusion directly. Furthermore, none of them seems to give us reason for believing any other. Maybe 4 could be the conclusion of 2, but that’s a real stretch. So based on all of this, we can reasonably conclude that 2, 3, and 4 are all on the same level and are all main premises for the conclusion.

Next, we need to decide if these are conjoint or independent premises. What do you think?

How do we decide? Using the negation test. If negating or saying the opposite of one premise doesn’t make the inference fall apart, then the premises are not conjoint —they’re independent. Let’s try it here:

She bought me a new backpack, she’s sometimes late for a date , and she always treats me with care, therefore she’s the best girlfriend ever.

I mean, it is a bit weird, but it’s not nonsense . Sure, she’s sometimes late for a date, but the inference still makes sense.

She hasn’t bought me a new backpack , but she’s never late for a date, and she always treats me with care, therefore she’s the best girlfriend ever.

Again, it’s strange, but not nonsensical. We wonder why the backpack thing is brought up in the first place, but we don’t immediately think “oh, well, she can’t be the best girlfriend ever if she hasn’t bought you a backpack!” Instead, we just think, “she’s clearly an excellent partner, backpack or none.”

The last one is a bit stranger:

She bought me a new backpack, she’s never late for a date, but she doesn’t always treat me with care , therefore she’s the best girlfriend ever.

Interesting...the case is definitely pretty weak for her being the bester girlfriend ever at this point, but the inference hasn’t utterly fallen apart. An opposite conclusion doesn’t now follow, we just have weaker reason for accepting the conclusion than we had before. This test reveals how strong a piece of evidence proposition 4 was for the conclusion in the original argument, but it doesn’t tell us that 4 is conjoint—the argument didn’t fall apart.

With all of this in mind, the premises appear to be independent reasons from one another for accepting the conclusion that she is the best girlfriend ever. So the argument map looks like so:

9.PNG

How about another example? This time I’ve skipped right to numbered propositions:

Example \(\PageIndex{7}\)

(1) Obama was the best President in American history. (2) He protected people with pre-existing medical conditions from certain financial ruin or death by passing the Affordable Care Act, and (3) that feat was among the greatest legislative victories an American President has ever known. (4) He was able to topple the head of Al-Qaida and the mastermind of the 9/11 attacks, and (5) he oversaw the recovery from the largest economic disaster since the Great Depression. (6) Anyone who could bring us back from the brink of global economic meltdown to a stable and healthy economic like we had at the end of his tenure must be a truly great president.

Before we ever get to the question of whether or not this is a good argument, or what’s wrong with it if anything, or whether or not the conclusion is true, we must understand the argument. In particular we must understand the structure of the argument. This argument is complex, so what’s going on here?

What’s the conclusion? It’s probably somewhat obvious here. There’s one claim that seems like the kind of claim someone might have as a thesis statement, or might defend in an Oxford-style debate. There’s one claim that seems to unify the rest of the propositions: everything is meant to justify or defend the claim that Obama was the best President in American history.

With a longer argument like this, sometimes it is best to simply work sentence-by-sentence. 2 and 3 are part of the same sentence. The “and” tells us that there probably is no inferential link between 2 and 3. “and” is usually not interchangeable with “therefore”. When we read the content of 2 and 3, furthermore, 3 makes reference to 2. Often when a premise makes reference to another premise we can conclude that they are conjoint premises. Not always, mind you, and often that means that one is a subpremise for the other. Nevertheless, in this case the reference to “that feat” in 3 ties 3 to 2 conjointly. We can run the negative test to be sure we’re correct here:

(1) Obama was the best President in American history. (2) He protected people with pre-existing medical conditions from certain financial ruin or death by passing the Affordable Care Act, and (3) that feat was an unremarkable legislative accomplishment.

Now I’m unclear why we should think he’s the best president in history if the reason we’re being given is that he passed an important, but unremarkable piece of legislation. Not convincing. If anything, it seems to suggest that he was a fine, but unremarkable president.

(1) Obama was the best President in American history. (2) He didn’t protect people with pre-existing medical conditions from certain financial ruin or death by passing the Affordable Care Act, and (3) that feat would have been among the greatest legislative victories an American President has ever known.

Ummm...no. His not passing landmark legislation doesn’t make him the best president.

This is one way you know you’re dealing with conjoint premises: if one premise explains how the other premise supports the conclusion.

So these two premises are conjoint. What about 4? It’s part of the same sentence as 5, but the topics are so wildly different that it’s hard to see how they could be conjoint premises. Instead, it seems safe to assume they’re independent and that they’re independent from 2 and 3 for the same reason. They do, however, appear to be premises for the main conclusion (1) and so appear to belong on the second level with the other main premises 2 and 3.

The last proposition, though, seems to essentially be about the same topic as 5 and furthermore seems to be the reason 5 supports the conclusion. This is one way you know you’re dealing with conjoint premises: if one premise explains how the other premise supports the conclusion. So 6 and 5 appear to be conjoint. If you ran the negative test, you’d soon learn that the negated inferences make no sense.

As a result, the whole argument map, which is a bit strange looking, looks like this:

10.PNG

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.4: Issues

  • Last updated
  • Save as PDF
  • Page ID 67173

  • Jim Marteney
  • Los Angeles Valley College via ASCCC Open Educational Resources Initiative (OERI)

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

In argumentative communication, an issue is any question or disputed item upon which the final product or conclusion of the argumentative encounter is dependent. The goal of the critical thinker is to discover the appropriate issues inherent in the claim. Critical thinkers must know what the important issues are that must be both asked and answered so that they can take and argue a specific position on a claim.

Consider the example that opened this chapter. Before I can say yes or no to purchasing a new car, I need to ask the questions appropriate to making up my mind. These questions are the issues that I have determined need to be both asked and answered in order for me to make my decision.

General Characteristics of Issues

Issues are phrased as questions. A statement, or a phrase is not an issue. If we are arguing, “ Air pollution in Los Angeles needs to be reduced by 10% over the next 5 years, ” an issue would not be the word, “Traffic.” Instead we need to ask a full sentence question such as, “Would a 5% reduction in traffic lead to a 10% reduction of air pollution?”

Issues need to be relevant to the claim. In order for a question to be considered an issue for the claim, it must be related to the claim under discussion in an important manner. If I am arguing the claim that “Apple Stock will rise another $100 in value over the next 12 months , ” the issue of, what color is the company logo does not seem very relevant. Not all questions are issues. Issues need to be relevant.

Issues can be introduced by either the pro-side or con-side . Both sides have the right to question the claim, and thus both have the right to ask appropriate questions regarding the claim. If you are not sure which side you are on, answers to issues will help determine if you are for or against the claim.

There is no set number of issues a person can discover . The number of issues will vary from claim to claim. Time for discussion or debate and research capabilities will limit the number of issues.

Issues bring organization to the argumentative environment. This is especially the case when the questions are prioritized, so that the answer to a question is dependent on the answer to the question preceding it. During a job interview, the claim is advanced that “Fernando Diaz should be hired.” The questions asked represent the important issues that must be answered by the candidate, so that those in charge of hiring can make a decision on that claim.

Issues should be as specific as one can make them . Vague questions lead to vague answers and are therefore useless. Specific questions lead to specific answers and are much more useful. If you are deciding to purchase a used car, you might ask the question, "Is the car in good condition ?" This is a vague question. What does good condition mean? Better questions might focus on the overall mileage of the car, the condition of the interior and exterior, or the car's gas mileage. The answers will provide you with specific bits of information that will allow you to develop criteria for what a "good condition" used car is, and will be helpful in your overall decision-making process.

Types of Issues

Once the issues have been discovered, they can be classified. Not all issues are equally important. Some issues are more important to the final disposition of the claim under debate. In order to find those issues of ultimate importance, we can classify them into the following four types:

Potential Issues These are all of the possible questions that can be asked of the claim. In theory, the number of potential issues is unlimited. In practice, the number of potential questions that can be discovered is limited by the amount of research and time one has to spend on the claim being argued. If you have the claim, “Abortion should be banned , ” and you limit your reading to only the newsletter put out by “The Right to Life Society,” the number of potential issues will be limited to the material contained in that one document. The greater the number of potential issues discovered, the greater the chance of discovering the right questions in order to make the best quality decision on the claim under debate.

Admitted Issues These are questions raised by one side and agreed to by the other side. The purpose of an admitted issue is to make that issue non-controversial or "moot." In this way both sides hope these issues will turn out to have little or no bearing on the final outcome in terms of claim adherence. Finding the admitted issues is a way of narrowing the list of potential issues.

Real Issues These are the important questions that remain after narrowing the potential issues down. The real issues can have an impact on the outcome of the claim and merit consideration for discussion. Depending on the amount of research done and the number of potential issues, there may be an excessive number of real issues to discuss in a limited period of time. Real issues need to be prioritized in some descending order of importance.

Ultimate Issues These are the key questions that, in and of themselves, are sufficient for the disposition of the claim. These are issues that determine whether you are for or against the claim. When arguing in front of an audience, you must answer the ultimate issue(s) consistent with the beliefs of the audience or they will deny adherence, no matter how many other real issues the side wins. Usually, the ultimate issue comes from one of the real issues. One may discover the ultimate issue early in the discovery process, or it may not be found until very late in the process. To some extent, ultimate issues are audience controlled; that is, what one audience considers the ultimate issue, another audience may consider just a potential, admitted or real issue. However, in any argument, discovering the ultimate issues is the key to making a quality decision.

In a debate on the claim, "The Federal Government should ban abortions" the ultimate issue of the pro-side advocating the claim might be, "Does the fetus have the right to life?” The con-side, advocating the status quo and arguing against the claim, might have as their ultimate issue, "Does a woman have a right to her privacy?” Since neither side can agree on one ultimate issue this debate continues.

Overall, issues are the questions inherent in the claim that are discovered through research, brainstorming, and analysis. These discovered questions must be answered so that a stand on the claim can be taken, and so that the arguer knows what "arguments" to present in defense of that stand. Answered issues become the basis for your contentions, which lead to the reasons why you are for or against the claim.

Screen Shot 2020-09-06 at 3.32.54 PM.png

Brandon Stanton is a photographer and author of Humans of New York where he tells the stories of individuals he meets. This story tells of a boy planning to marry his girlfriend. His ultimate issue was, “Is she Catholic?”

“I broke up with my girlfriend this morning. We’d been together for three years. But I’m Catholic, and she doesn’t know if she believes in God or not. I wanted to propose to her one day. I think she’d be a great mom and a great wife. But I feel like this might be something we can’t overcome. I want to get married in a Catholic church. I want to raise my children to be Catholic. It’s important to me and it's something that we’d have to deal with eventually. So, I didn’t think it would be a good idea to keep putting it off. But it really hurts to lose her. Both of us were bawling our eyes out. She was such a big part of my life. Every time something good happens, she is the first person I want to tell. And I do respect that she refuses to believe in something just because I do. But I don’t know what to do. I’m hoping God will give me an answer .” 1

Effective Issues

As you can probably imagine, some issues are better or more effective than others. Previously we have seen a basic list of the basic characteristics of an issue. Below is a list of more specific requirements for an issue to be effective in judging an argument and making a decision.

Consider the Claim, The United States should increase the use of renewable energy .

Issues need to be questions. This is the definition of issues, but I wanted to remind you here, because we often are tempted to make statements instead of ask questions. Instead of stating, “Global warming is caused by man’s use of fossil fuels . ” Ask , “Is global warming caused by man’s use of fossil fuels?”

You may be used to hearing the word "Issues" to refer to problems. For example, "They seem to be having issues in their marriage. " or "What are the issues with drug abuse?" In the world of argumentation, however, Issues refer to questions.

Avoid “Should” questions. Should is a word we reserve for claims of policy which are more wide-open (broad). Issues need to be more narrowly focused. “Should we reduce carbon emissions?” is actually the claim, the entire focus of the argument. An issue should look at a part of this claim. What questions need to be asked so that a decision on the claim can be made? One issue might be “Are carbon emissions a significant influence on global warming?” The more narrowly focused the issue, the more useful.

Ask only one question per issue. A mistake often made when asking issues is the frequent tendency to make them a two-part question. The answer is then confusing when trying to answer both questions in the same issue. “Is global warming increasing and is China the biggest contributor?” Instead ask two separate issues, “Is global warming increasing?” and “Is China the biggest contributor to global warming? ”

Keep issues neutral. Don’t use biased statements or words to give your issues a slant for or against the claim. Instead of asking, “Is the idiotic idea of left wing liberal scientists that argue we are experiencing global warming inaccurate?” Instead, “Is the theory of scientists that we are experiencing global warming inaccurate?” We want to use Issues to help us make a decision, not support a bias we already hold.

Avoid starting an issue with “Because.” When you introduce a question with background information you create a leading question guiding towards a specific answer. “Because scientists make mistakes, can we trust the conclusions of the scientists? ” You want to eliminate as much bias as you can. And you don’t want the argument to focus on the question, “Do scientists make mistakes?” Instead, just ask the question, “Can the conclusions of scientists be validated?”

Avoid “How” and “Why” questions. These are useful for background information, but may not always be that useful for the final decisions. "Why does carbon emissions lead to global warming?" is a good background question, but not a useful issue. A more useful issue would be, "Is it possible to reduce carbon emissions by 10% over the next 10 years?”

Use issues with “Yes” and “No” answers. Questions that ask for opinions or explanations can offer information that can be useful, but these answers are probably more useful as background information and not actual decision-making questions. It is more effective to get yes and no answers. Instead of asking, “What do you think will be the future of global warming?” This question is good for overall information, but a specific issue for the claim would be, “Do we now have renewable energy sources that can replace current fossil fuel production? ”

Keep issues relevant to the claim. There are times when issues that are chosen won’t help you make a decision on the claim. They may be interesting questions, but their answer does not help you make a decision on the claim being argued. “Will home solar panels become more attractive?” This is an interesting question, but the answer may not really help you make a position on the claim, We should purchase solar panels .

Keep issues specific. This has been mentioned before, but it is so important I wanted to repeat it. Issues should be as specific as one can make them. Vague questions lead to vague answers and are useless. Specific questions lead to specific answers and are therefore useful. Avoid questions such as, “Is it a good idea to reduce fossil fuel emissions?” What do you mean by a “good idea?” Or “Will ocean temperatures increase in the future? ” “Increase” by how much? Both of these are vague issues and virtually worthless when deciding on a claim.

Remember, if you are determining your position on a claim you first ask questions, and then decide. Try not to lean one way or the other on the claim. You are using issues to learn information that will help you make a decision on a claim. Challenge your assumptions.

If you already have a position on the claim or have been assigned a side that you will be arguing, you look for issues whose answers can support that position.

What are the roles of beliefs and claims in critical thinking

Profile image of Don Davis

Related Papers

Charlene Tan

This chapter introduces key concepts in critical thinking using films and music videos. It focuses on the critical thinking skills needed for the identification, analysis and evaluation of arguments. Based on 12 key questions, readers are introduced to core features of an argument such as “premise”, “conclusion” and “assumption”. The main types of arguments and the criteria for evaluating these arguments are also discussed. Throughout the chapter, films such as A Beautiful Mind, Bowling for Columbine and CSI: Miami, and music videos of John Lennon’s “Imagine”, Britney Spears’ “Toxic”, Michael Jackson’s “Billie Jean” and others are used to illustrate the concepts.

give the definition to the basics of critical thinking claims issues and arguments

Octavian Repolschi

The paper will present the relation between students' beliefs and their behaviours observed in the process of learning critical thinking skills. In the first place some consideration concerning the fundamental epistemological concepts used in the research and about the particular critical thinking skills are to be sketched. Then the testing-learning procedure will be shortly summarized. Thirdly the evaluation of beliefs, their relations with knowledge and the associated behaviors are presented. The results of the periodic testing procedures that were taking place according to the established methodology are to be discussed. Finally, some general considerations concerning the relations between beliefs, behaviors and knowledge that have emerged in the process of learning are going to be presented.

Tracy Bowell

There are some beliefs that are difficult to think critically about, even for those who have critical thinking skills and are committed to applying them to their own beliefs. These resistant beliefs are not all of a kind, and so a range of different strategies may be needed to get ourselves and others (in particular our students) to think critically about them. In this paper we suggest some such strategies.

Critical thinking deserves both imaginative teaching and serious theoretical attention. Studies in Critical Thinking assembles an all-star cast to serve both.EDITOR: J. Anthony Blair (Windsor) INTRO: On What Critical Thinking Is (Alec Fisher, East Anglia) PART II On Teaching CT (Blair & Scriven) 5 Exercises: Validity (Derek Allen, Toronto), Teaching Argument Construction (Kingsbury, Waikato), C.T About Students’ Own Beliefs (Tracy Bowell, Waikato & Justine Kingsbury), Settling Conflict by Compromise (Jan Albert van Laar, Groningen), Using Arguments to Inquire (Sharon Bailin, Simon Fraser & Mark Battersby, Capilano) PART III 7 Chapters on Argument: Arguments and CT (J. Anthony Blair), The Concept of an Argument (David Hitchcock, McMaster), Using Computer Aided Argument Mapping to Teach CT (Martin Davies, Ashley Barnett, Tim van Gelder, Melbourne), Argument Schemes and Argument Mining (Douglas Walton, Windsor), Constructing Effective Arguments (Beth Innocenti, Kansas), Judging Argum...

Inquiry: Critical Thinking Across the Disciplines

Amanda Hiner

Critical thinking, metacognition, and epistemological beliefs

Educational Theory

Sophie Haroutunian-Gordon

Mark Sainsbury

I Gusti Ayu Gde sosiowati

Richards (2006) states that the purpose of learning language is to master the communicative competence, meaning that by the end of the leaming process, the students should be able to produce proper language in any genre and in any situation. However, that competence alone, without accompanied by the ability to perform critical thinking will end in the conversation talking about explicit information only. It can not be denied that understanding the implicit infbrmation r&#39;vill be challenging and making the conversation interesting. Halpern (cited on l5 March 2015) states that critical thinking refers to the use of cognitive skills or strategies that increase the probability of a desirable outcome. It is the kind of thinking which is involved in solving problems- formulating inferences, calculating likelihoods, and making decisions.The purpose of this article is to show that literary work can be used to develop critical thinking and at the same time is able to improve the students&...

Aidyn Aldaberdikyzy

RELATED PAPERS

Welington Nalon Itaborahy

Caterina Garrido

Lilian Nunes

Trends in Psychiatry and Psychotherapy

Geoff Goodman

Célio Fernandes

NCL毕业证书 纽卡斯尔大学毕业证

Philip Moss

Mohammad Arshad

Denis Guilloteau

jadranka garmaz

Http Www Theses Fr

Emmanuel Paul

James Douet

Journal of Virology

Peter Mertens

Yiannis Korkovelos

Journal of Animal Science

shayesteh salehi

Sustainability

Conservation Science and Practice

Paul Fackler

Investigative Opthalmology &amp; Visual Science

Christopher Cox

Gastroenterology

Pema Sherpa

Journal of Agricultural Sciences – Sri Lanka

Jagath Edirisinghe

British Journal of Medicine and Medical Research

Prince Appiah

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. Critical Thinking Definition, Skills, and Examples

    give the definition to the basics of critical thinking claims issues and arguments

  2. 6 Main Types of Critical Thinking Skills (With Examples)

    give the definition to the basics of critical thinking claims issues and arguments

  3. PPT

    give the definition to the basics of critical thinking claims issues and arguments

  4. PPT

    give the definition to the basics of critical thinking claims issues and arguments

  5. 25 Critical Thinking Examples (2024)

    give the definition to the basics of critical thinking claims issues and arguments

  6. What is critical thinking?

    give the definition to the basics of critical thinking claims issues and arguments

VIDEO

  1. Critical rationalism Meaning

  2. Are You UNKOWINGLY Making These Logical Mistakes?

  3. Critical Thinking Class: Valid Arguments

  4. Episode 2.2: Unstated Assumptions

  5. 15 Common Logical Fallacies

  6. How to be An Objective Person

COMMENTS

  1. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  2. Critical thinking

    Critical thinking is characterized by a broad set of related skills usually including the abilities to. break down a problem into its constituent parts to reveal its underlying logic and assumptions. recognize and account for one's own biases in judgment and experience.

  3. 2: Claims, Issues, and Arguments

    2.13: Review of Major Points. 2.14: Glossary. 2.15: Exercises. 2: Claims, Issues, and Arguments. 1.7: Exercises. 2.1: What is a Statement? Every argument contains at least one intended conclusion plus one or more supporting reasons, called premises. However, in some passages it is not easy to tell whether an argument occurs at all, nor ….

  4. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  5. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  6. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  7. Introduction to Critical Thinking

    Critical thinking is the ability to think clearly and rationally about what to do or what to believe. It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following: Understand the logical connections between ideas. Identify, construct, and evaluate arguments.

  8. LOGOS: Critical Thinking, Arguments, and Fallacies

    To be open and recursive entails a sense of thinking about your beliefs in a critical and reflective way, so that you have a chance to either strengthen your belief system or revise it if needed. I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop.

  9. PDF CRITICAL THINKING: THE VERY BASICS

    Ideas work together according to four basic patterns of cooperation. Basic Patterns: i. Premise / Ultimate Conclusion. Idea. %. Premise - an idea that the argument assumes to be true without support. Inference - the connection that holds between the idea(s) at the top of the arrow and the idea at the bottom of the % arrow when the truth of the ...

  10. Chapter 2 Arguments

    Chapter 2 Arguments. Chapter 2. Arguments. The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python's Flying Circus: 3. Man: (Knock) Mr. Vibrating: Come in.

  11. What is Critical Thinking?

    Critical thinking is the identification and evaluation of evidence to guide decision making. A critical thinker uses broad in-depth analysis of evidence to make decisions and communicate his/her beliefs clearly and accurately. Other Definitions of Critical Thinking:Robert H. Ennis, Author of The Cornell Critical Thinking Tests "Critical thinking is reasonable, reflective thinking that is

  12. 1.1: Basic Concepts

    1.1: Basic Concepts. In this section, we briefly survey several concepts that will surface repeatedly throughout the textbook. This will give you some idea of what critical reasoning is and what this textbook will involve. The aim here is just to provide some basic orientation, so don't worry about details now.

  13. Critical Thinking

    Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question ...

  14. 1: Introduction to Critical Thinking, Reasoning, and Logic

    It may seem strange to begin a logic textbook with this question. 'Thinking' is perhaps the most intimate and personal thing that people do. Yet the more you 'think' about thinking, the more mysterious it can appear. It is the sort of thing that one intuitively or naturally understands, and yet cannot describe to others without great ...

  15. Arguments and Critical Thinking

    Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. " Argument: An attempt to support a conclusion by giving reasons for it.". Robert Ennis, Critical Thinking, p. 396. "Argument - A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).".

  16. Working with arguments (CHAPTER 3)

    In critical reasoning, when we talk about an argument, we mean the word in its philosophical sense. Because arguments have a central place in critical reasoning, it is important for you to understand what is meant by the term 'argument'. An argument is an attempt to convince someone that a claim (the conclusion) is true or acceptable.

  17. Argument: Claims, Reasons, Evidence

    Argument: Claims, Reasons, Evidence. Critical thinking means being able to make good arguments. Arguments are claims backed by reasons that are supported by evidence. Argumentation is a social process of two or more people making arguments, responding to one another--not simply restating the same claims and reasons--and modifying or defending ...

  18. PDF FACTSHEET 1 Critical Thinking

    analysing arguments judging the relevance and significance of information evaluating claims, inferences, arguments and explanations constructing clear and coherent arguments forming well-reasoned judgements and decisions. Being rational also requires an open-minded yet critical approach to one's own thinking as well as that of others. This ...

  19. 3.1: The Basics

    In this example, the premises work jointly in a different way than in the previous example. Rather than fitting together hand-in-glove, these premises each give us half of what we need to arrive at the conclusion. The conclusion is a comparison between two authors. Each of the premises makes claims about one of the two authors.

  20. Defining Critical Thinking

    It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue; assumptions; concepts; empirical grounding; reasoning leading to conclusions; implications and consequences; objections from alternative viewpoints; and frame of reference.

  21. 5.4: Issues

    Issues are vital to the critical thinking process. An issue is something central to the outcome of the argumentative encounter, and issues serve as the foundation of particular arguments. The purpose of issue discovery is to find the "best" questions available in resolving the claim.

  22. Critical Thinking: Evaluating Claims and Arguments in Everyday Life

    accept a claim advertisement affirming the consequent ambiguous American antecedent argument pattern attitudes believe cancer causal chain cause Chapter comparison conclusion conflict consider control group credible critical thinking Daniel deductive argument definition Denying the antecedent determine discussed drinking E-claim effect evaluate ...

  23. What are the roles of beliefs and claims in critical thinking

    Charlene Tan. This chapter introduces key concepts in critical thinking using films and music videos. It focuses on the critical thinking skills needed for the identification, analysis and evaluation of arguments. Based on 12 key questions, readers are introduced to core features of an argument such as "premise", "conclusion" and ...