A comprehensive survey of data mining

  • Original Research
  • Published: 06 February 2020
  • Volume 12 , pages 1243–1257, ( 2020 )

Cite this article

thesis paper data mining

  • Manoj Kumar Gupta   ORCID: orcid.org/0000-0002-4481-8432 1 &
  • Pravin Chandra 1  

4524 Accesses

57 Citations

Explore all metrics

Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To take a holistic view of the research trends in the area of data mining, a comprehensive survey is presented in this paper. This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

thesis paper data mining

Trends and Future Perspective Challenges in Big Data

thesis paper data mining

A survey on ensemble learning

thesis paper data mining

Big Data Analytics: Applications, Prospects and Challenges

Fayadd U, Piatesky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AAAI Press/The MIT Press, Massachusetts Institute of Technology. ISBN 0–262 56097–6 Fayap

Fayadd U, Piatesky-Shapiro G, Smyth P (1996) Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, pp 82–88

Heikki M (1996) Data mining: machine learning, statistics, and databases. In: SSDBM ’96: proceedings of the eighth international conference on scientific and statistical database management, June 1996, pp 2–9

Arora RK, Gupta MK (2017) e-Governance using data warehousing and data mining. Int J Comput Appl 169(8):28–31

Google Scholar  

Morik K, Bhaduri K, Kargupta H (2011) Introduction to data mining for sustainability. Data Min Knowl Discov 24(2):311–324

Han J, Kamber M, Pei J (2012) Data mining concepts and techniques, 3rd edn. Elsevier, Netherlands

MATH   Google Scholar  

Friedman JH (1997) Data mining and statistics: What is the connection? in: Keynote Speech of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, TX, 1997

Turban E, Aronson JE, Liang TP, Sharda R (2007) Decision support and business intelligence systems. 8 th edn, Pearson Education, UK

Gheware SD, Kejkar AS, Tondare SM (2014) Data mining: tasks, tools, techniques and applications. Int J Adv Res Comput Commun Eng 3(10):8095–8098

Kiranmai B, Damodaram A (2014) A review on evaluation measures for data mining tasks. Int J Eng Comput Sci 3(7):7217–7220

Sharma M (2014) Data mining: a literature survey. Int J Emerg Res Manag Technol 3(2):1–4

Venkatadri M, Reddy LC (2011) A review on data mining from past to the future. Int J Comput Appl 15(7):19–22

Chen M, Han J, Yu PS (1996) Data mining: an overview from a database perspective. IEEE Trans Knowl Data Eng 8(6):866–883

Gupta MK, Chandra P (2019) A comparative study of clustering algorithms. In: Proceedings of the 13th INDIACom-2019; IEEE Conference ID: 461816; 6th International Conference on “Computing for Sustainable Global Development”

Ponniah P (2001) Data warehousing fundamentals. Wiley, USA

Chandra P, Gupta MK (2018) Comprehensive survey on data warehousing research. Int J Inform Technol 10(2):217–224

Weiss SH, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers, San Francisco

Fu Y (1997) Data mining: tasks, techniques, and applications. IEEE Potentials 16(4):18–20

Abuaiadah D (2015) Using bisect k-means clustering technique in the analysis of arabic documents. ACM Trans Asian Low-Resour Lang Inf Process 15(3):1–17

Algergawy A, Mesiti M, Nayak R, Saake G (2011) XML data clustering: an overview. ACM Comput Surv 43(4):1–25

Angiulli F, Fassetti F (2013) Exploiting domain knowledge to detect outliers. Data Min Knowl Discov 28(2):519–568

MathSciNet   MATH   Google Scholar  

Angiulli F, Fassetti F (2016) Toward generalizing the unification with statistical outliers: the gradient outlier factor measure. ACM Trans Knowl Discov Data 10(3):1–26

Bhatnagar V, Ahuja S, Kaur S (2015) Discriminant analysis-based cluster ensemble. Int J Data Min Modell Manag 7(2):83–107

Bouguessa M (2013) Clustering categorical data in projected spaces. Data Min Knowl Discov 29(1):3–38

MathSciNet   Google Scholar  

Campello RJGB, Moulavi D, Zimek A, Sander J (2015) Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans Knowl Discov Data 10(1):1–51

Carpineto C, Osinski S, Romano G, Weiss D (2009) A survey of web clustering engines. ACM Comput. Surv. 41(3):1–38

Ceglar A, Roddick JF (2006) Association mining. ACM Comput Surv 38(2):1–42

Chen YL, Weng CH (2009) Mining fuzzy association rules from questionnaire data. Knowl Based Syst 22(1):46–56

Fan Chin-Yuan, Fan Pei-Shu, Chan Te-Yi, Chang Shu-Hao (2012) Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst Appl 39:8844–8851

Das R, Kalita J, Bhattacharya (2011) A pattern matching approach for clustering gene expression data. Int J Data Min Model Manag 3(2):130–149

Dincer E (2006) The k-means algorithm in data mining and an application in medicine. Kocaeli Univesity, Kocaeli

Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):1–32

Gupta MK, Chandra P (2019) P-k-means: k-means using partition based cluster initialization method. In: Proceedings of the international conference on advancements in computing and management (ICACM 2019), Elsevier SSRN, pp 567–573

Gupta MK, Chandra P (2019) An empirical evaluation of k-means clustering algorithm using different distance/similarity metrics. In: Proceedings of the international conference on emerging trends in information technology (ICETIT-2019), emerging trends in information technology, LNEE 605 pp 884–892 DOI: https://doi.org/10.1007/978-3-030-30577-2_79

Hea Z, Xua X, Huangb JZ, Denga S (2004) Mining class outliers: concepts, algorithms and applications in CRM. Expert Syst Appl 27(4):681e97

Hung LN, Thu TNT, Nguyen GC (2015) An efficient algorithm in mining frequent itemsets with weights over data stream using tree data structure. IJ Intell Syst Appl 12:23–31

Hung LN, Thu TNT (2016) Mining frequent itemsets with weights over data stream using inverted matrix. IJ Inf Technol Comput Sci 10:63–71

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput. Surv 31(3):1–60

Jin H, Wang S, Zhou Q, Li Y (2014) An improved method for density-based clustering. Int J Data Min Model Manag 6(4):347–368

Khandare A, Alvi AS (2017) Performance analysis of improved clustering algorithm on real and synthetic data. IJ Comput Netw Inf Secur 10:57–65

Koh YS, Ravana SD (2016) Unsupervised rare pattern mining: a survey. ACM Trans Knowl Discov Data 10(4):1–29

Kosina P, Gama J (2015) Very fast decision rules for classification in data streams. Data Min Knowl Discov 29(1):168–202

Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

Kumar D, Bezdek JC, Rajasegarar S, Palaniswami M, Leckie C, Chan J, Gubbi J (2016) Adaptive cluster tendency visualization and anomaly detection for streaming data. ACM Trans Knowl Discov Data 11(2):1–24

Lee G, Yun U (2017) A new efficient approach for mining uncertain frequent patterns using minimum data structure without false positives. Future Gener Comput Syst 68:89–110

Li G, Zaki MJ (2015) Sampling frequent and minimal boolean patterns: theory and application in classification. Data Min Knowl Discov 30(1):181–225. https://doi.org/10.1007/s10618-015-0409-y

Article   MathSciNet   MATH   Google Scholar  

Liao TW, Triantaphyllou E (2007) Recent advances in data mining of enterprise data: algorithms and applications. World Scientific Publishing, Singapore, pp 111–145

Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput Surv 43:1

Mampaey M, Vreeken J (2011) Summarizing categorical data by clustering attributes. Data Min Knowl Discov 26(1):130–173

Menardi G, Torelli N (2012) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28(1):4–28. https://doi.org/10.1007/s10618-012-0295-5

Mukhopadhyay A, Maulik U, Bandyopadhyay S (2015) A survey of multiobjective evolutionary clustering. ACM Comput Surv 47(4):1–46

Pei Y, Fern XZ, Tjahja TV, Rosales R (2016) ‘Comparing clustering with pairwise and relative constraints: a unified framework. ACM Trans Knowl Discov Data 11:2

Rafalak M, Deja M, Wierzbicki A, Nielek R, Kakol M (2016) Web content classification using distributions of subjective quality evaluations. ACM Trans Web 10:4

Reddy D, Jana PK (2014) A new clustering algorithm based on Voronoi diagram. Int J Data Min Model Manag 6(1):49–64

Rustogi S, Sharma M, Morwal S (2017) Improved Parallel Apriori Algorithm for Multi-cores. IJ Inf Technol Comput Sci 4:18–23

Shah-Hosseini H (2013) Improving K-means clustering algorithm with the intelligent water drops (IWD) algorithm. Int J Data Min Model Manag 5(4):301–317

Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho ACPLF, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv 46(1):1–31

Silva A, Antunes C (2014) Multi-relational pattern mining over data streams. Data Min Knowl Discov 29(6):1783–1814. https://doi.org/10.1007/s10618-014-0394-6

Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Data Min Knowl Discov 26(2):332–397

Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. Comput Hum Behav 68:244–253

Craw Susan, Wiratunga Nirmalie, Rowe Ray C (2006) Learning adaptation knowledge to improve case-based reasoning. Artif Intell 170:1175–1192

Tan KC, Teoh EJ, Yua Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst Appl 36(4):8616–8630

Tew C, Giraud-Carrier C, Tanner K, Burton S (2013) Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Min Knowl Discov 28(4):1004–1045

Wang L, Dong M (2015) Exemplar-based low-rank matrix decomposition for data clustering. Data Min Knowl Discov 29:324–357

Wang F, Sun J (2014) Survey on distance metric learning and dimensionality reduction in data mining. Data Min Knowl Discov 29:534–564

Wang B, Rahal I, Dong A (2011) Parallel hierarchical clustering using weighted confidence affinity. Int J Data Min Model Manag 3(2):110–129

Zacharis NZ (2018) Classification and regression trees (CART) for predictive modeling in blended learning. IJ Intell Syst Appl 3:1–9

Zhang W, Li R, Feng D, Chernikov A, Chrisochoides N, Osgood C, Ji S (2015) Evolutionary soft co-clustering: formulations, algorithms, and applications. Data Min Knowl Discov 29:765–791

Han J, Fu Y (1996) Exploration of the power of attribute-oriented induction in data mining. Adv Knowl Discov Data Min. AAAI/MIT Press, pp 399-421

Gupta A, Mumick IS (1995) Maintenance of materialized views: problems, techniques, and applications. IEEE Data Eng Bull 18(2):3

Sawant V, Shah K (2013) A review of distributed data mining using agents. Int J Adv Technol Eng Res 3(5):27–33

Gupta MK, Chandra P (2019) An efficient approach for selection of initial cluster centroids for k-means clustering algorithm. In: Proceedings international conference on recent developments in science engineering and technology (REDSET-2019), November 15–16 2019

Gupta MK, Chandra P (2019) MP-K-means: modified partition based cluster initialization method for k-means algorithm. Int J Recent Technol Eng 8(4):1140–1148

Gupta MK, Chandra P (2019) HYBCIM: hypercube based cluster initialization method for k-means. IJ Innov Technol Explor Eng 8(10):3584–3587. https://doi.org/10.35940/ijitee.j9774.0881019

Article   Google Scholar  

Enke David, Thawornwong Suraphan (2005) The use of data mining and neural networks for forecasting stock market returns. Expert Syst Appl 29:927–940

Mezyk Edward, Unold Olgierd (2011) Machine learning approach to model sport training. Comput Hum Behav 27:1499–1506

Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv 45(1):1–34

Hüllermeier Eyke (2005) Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst 156:387–406

Hullermeier Eyke (2011) Fuzzy sets in machine learning and data mining. Appl Soft Comput 11:1493–1505

Gengshen Du, Ruhe Guenther (2014) Two machine-learning techniques for mining solutions of the ReleasePlanner™ decision support system. Inf Sci 259:474–489

Smith Kate A, Gupta Jatinder ND (2000) Neural networks in business: techniques and applications for the operations researcher. Comput Oper Res 27:1023–1044

Huang Mu-Jung, Tsou Yee-Lin, Lee Show-Chin (2006) Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowl Based Syst 19:396–403

Padhraic S (2000) Data mining: analysis on grand scale. Stat Method Med Res 9(4):309–327. https://doi.org/10.1191/096228000701555181

Article   MATH   Google Scholar  

Saeed S, Ali M (2012) Privacy-preserving back-propagation and extreme learning machine algorithms. Data Knowl Eng 79–80:40–61

Singh Y, Bhatia PK, Sangwan OP (2007) A review of studies on machine learning techniques. Int J Comput Sci Secur 1(1):70–84

Yahia ME, El-taher ME (2010) A new approach for evaluation of data mining techniques. Int J Comput Sci Issues 7(5):181–186

Jackson J (2002) Data mining: a conceptual overview. Commun Assoc Inf Syst 8:267–296

Heckerman D (1998) A tutorial on learning with Bayesian networks. Learning in graphical models. Springer, Netherlands, pp 301–354

Politano PM, Walton RO (2017) Statistics & research methodol. Lulu. com

Wetherill GB (1987) Regression analysis with application. Chapman & Hall Ltd, UK

Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks, vol 19. Academic Press, USA

Mihoci A (2017) Modelling limit order book volume covariance structures. In: Hokimoto T (ed) Advances in statistical methodologies and their application to real problems. IntechOpen, Croatia. https://doi.org/10.5772/66152

Chapter   Google Scholar  

Thompson B (2004) Exploratory and confirmatory factor analysis: understanding concepts and applications. American Psychological Association, Washington, DC (ISBN:1-59147-093-5)

Kuzey C, Uyar A, Delen (2014) The impact of multinationality on firm value: a comparative analysis of machine learning techniques. Decis Support Syst 59:127–142

Chan Philip K, Salvatore JS (1997) On the accuracy of meta-learning for scalable data mining. J Intell Inf Syst 8:5–28

Tsai Chih-Fong, Hsu Yu-Feng, Lin Chia-Ying, Lin Wei-Yang (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36:11994–12000

Liao SH, Chu PH, Hsiao PY (2012) Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst Appl 39:11303–11311

Kanevski M, Parkin R, Pozdnukhov A, Timonin V, Maignan M, Demyanov V, Canu S (2004) Environmental data mining and modelling based on machine learning algorithms and geostatistics. Environ Model Softw 19:845–855

Jain N, Srivastava V (2013) Data mining techniques: a survey paper. Int J Res Eng Technol 2(11):116–119

Baker RSJ (2010) Data mining for education. In: McGaw B, Peterson P, Baker E (eds) International encyclopedia of education, 3rd edn. Elsevier, Oxford, UK

Lew A, Mauch H (2006) Introduction to data mining and its applications. Springer, Berlin

Mukherjee S, Shaw R, Haldar N, Changdar S (2015) A survey of data mining applications and techniques. Int J Comput Sci Inf Technol 6(5):4663–4666

Data mining examples: most common applications of data mining (2019). https://www.softwaretestinghelp.com/data-mining-examples/ . Accessed 27 Dec 2019

Devi SVSG (2013) Applications and trends in data mining. Orient J Comput Sci Technol 6(4):413–419

Data mining—applications & trends. https://www.tutorialspoint.com/data_mining/dm_applications_trends.htm

Keleş MK (2017) An overview: the impact of data mining applications on various sectors. Tech J 11(3):128–132

Top 14 useful applications for data mining. https://bigdata-madesimple.com/14-useful-applications-of-data-mining/ . Accessed 20 Aug 2014

Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Making 5(4):597–604

Padhy N, Mishra P, Panigrahi R (2012) A survey of data mining applications and future scope. Int J Comput Sci Eng Inf Technol 2(3):43–58

Gibert K, Sanchez-Marre M, Codina V (2010) Choosing the right data mining technique: classification of methods and intelligent recommendation. In: International Congress on Environment Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada

Download references

Author information

Authors and affiliations.

University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, Delhi, 110078, India

Manoj Kumar Gupta & Pravin Chandra

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Manoj Kumar Gupta .

Rights and permissions

Reprints and permissions

About this article

Gupta, M.K., Chandra, P. A comprehensive survey of data mining. Int. j. inf. tecnol. 12 , 1243–1257 (2020). https://doi.org/10.1007/s41870-020-00427-7

Download citation

Received : 29 June 2019

Accepted : 20 January 2020

Published : 06 February 2020

Issue Date : December 2020

DOI : https://doi.org/10.1007/s41870-020-00427-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Data mining techniques
  • Data mining tasks
  • Data mining applications
  • Classification
  • Find a journal
  • Publish with us
  • Track your research

Eindhoven University of Technology research portal Logo

  • Help & FAQ

Data Mining

  • Data Science
  • Data and Artificial Intelligence

Student theses

  • 1 - 50 out of 258 results
  • Title (descending)

Search results

3d face reconstruction using deep learning.

Supervisor: Medeiros de Carvalho, R. (Supervisor 1), Gallucci, A. (Supervisor 2) & Vanschoren, J. (Supervisor 2)

Student thesis : Master

Achieving Long Term Fairness through Curiosity Driven Reinforcement Learning: How intrinsic motivation influences fairness in algorithmic decision making

Supervisor: Pechenizkiy, M. (Supervisor 1), Gajane, P. (Supervisor 2) & Kapodistria, S. (Supervisor 2)

Activity Recognition Using Deep Learning in Videos under Clinical Setting

Supervisor: Duivesteijn, W. (Supervisor 1), Papapetrou, O. (Supervisor 2), Zhang, L. (External person) (External coach) & Vasu, J. D. (External coach)

A Data Cleaning Assistant

Supervisor: Vanschoren, J. (Supervisor 1)

Student thesis : Bachelor

A Data Cleaning Assistant for Machine Learning

A deep learning approach for clustering a multi-class dataset.

Supervisor: Pei, Y. (Supervisor 1), Marczak, M. (External person) (External coach) & Groen, J. (External person) (External coach)

Aerial Imagery Pixel-level Segmentation

A framework for understanding business process remaining time predictions.

Supervisor: Pechenizkiy, M. (Supervisor 1) & Scheepens, R. J. (Supervisor 2)

A Hybrid Model for Pedestrian Motion Prediction

Supervisor: Pechenizkiy, M. (Supervisor 1), Muñoz Sánchez, M. (Supervisor 2), Silvas, E. (External coach) & Smit, R. M. B. (External coach)

Algorithms for center-based trajectory clustering

Supervisor: Buchin, K. (Supervisor 1) & Driemel, A. (Supervisor 2)

Allocation Decision-Making in Service Supply Chain with Deep Reinforcement Learning

Supervisor: Zhang, Y. (Supervisor 1), van Jaarsveld, W. L. (Supervisor 2), Menkovski, V. (Supervisor 2) & Lamghari-Idrissi, D. (Supervisor 2)

Analyzing Policy Gradient approaches towards Rapid Policy Transfer

An empirical study on dynamic curriculum learning in information retrieval.

Supervisor: Fang, M. (Supervisor 1)

An Explainable Approach to Multi-contextual Fake News Detection

Supervisor: Pechenizkiy, M. (Supervisor 1), Pei, Y. (Supervisor 2) & Das, B. (External person) (External coach)

An exploration and evaluation of concept based interpretability methods as a measure of representation quality in neural networks

Supervisor: Menkovski, V. (Supervisor 1) & Stolikj, M. (External coach)

Anomaly detection in image data sets using disentangled representations

Supervisor: Menkovski, V. (Supervisor 1) & Tonnaer, L. M. A. (Supervisor 2)

Anomaly Detection in Polysomnography signals using AI

Supervisor: Pechenizkiy, M. (Supervisor 1), Schwanz Dias, S. (Supervisor 2) & Belur Nagaraj, S. (External person) (External coach)

Anomaly detection in text data using deep generative models

Supervisor: Menkovski, V. (Supervisor 1) & van Ipenburg, W. (External person) (External coach)

Anomaly Detection on Dynamic Graph

Supervisor: Pei, Y. (Supervisor 1), Fang, M. (Supervisor 2) & Monemizadeh, M. (Supervisor 2)

Anomaly Detection on Finite Multivariate Time Series from Semi-Automated Screwing Applications

Supervisor: Pechenizkiy, M. (Supervisor 1) & Schwanz Dias, S. (Supervisor 2)

Anomaly Detection on Multivariate Time Series Using GANs

Supervisor: Pei, Y. (Supervisor 1) & Kruizinga, P. (External person) (External coach)

Anomaly detection on vibration data

Supervisor: Hess, S. (Supervisor 1), Pechenizkiy, M. (Supervisor 2), Yakovets, N. (Supervisor 2) & Uusitalo, J. (External person) (External coach)

Application of P&ID symbol detection and classification for generation of material take-off documents (MTOs)

Supervisor: Pechenizkiy, M. (Supervisor 1), Banotra, R. (External person) (External coach) & Ya-alimadad, M. (External person) (External coach)

Applications of deep generative models to Tokamak Nuclear Fusion

Supervisor: Koelman, J. M. V. A. (Supervisor 1), Menkovski, V. (Supervisor 2), Citrin, J. (Supervisor 2) & van de Plassche, K. L. (External coach)

A Similarity Based Meta-Learning Approach to Building Pipeline Portfolios for Automated Machine Learning

Aspect-based few-shot learning.

Supervisor: Menkovski, V. (Supervisor 1)

Assessing Bias and Fairness in Machine Learning through a Causal Lens

Supervisor: Pechenizkiy, M. (Supervisor 1)

Assessing fairness in anomaly detection: A framework for developing a context-aware fairness tool to assess rule-based models

Supervisor: Pechenizkiy, M. (Supervisor 1), Weerts, H. J. P. (Supervisor 2), van Ipenburg, W. (External person) (External coach) & Veldsink, J. W. (External person) (External coach)

A Study of an Open-Ended Strategy for Learning Complex Locomotion Skills

A systematic determination of metrics for classification tasks in openml, a universally applicable emm framework.

Supervisor: Duivesteijn, W. (Supervisor 1), van Dongen, B. F. (Supervisor 2) & Yakovets, N. (Supervisor 2)

Automated machine learning with gradient boosting and meta-learning

Automated object recognition of solar panels in aerial photographs: a case study in the liander service area.

Supervisor: Pechenizkiy, M. (Supervisor 1), Medeiros de Carvalho, R. (Supervisor 2) & Weelinck, T. (External person) (External coach)

Automatic data cleaning

Automatic scoring of short open-ended questions.

Supervisor: Pechenizkiy, M. (Supervisor 1) & van Gils, S. (External coach)

Automatic Synthesis of Machine Learning Pipelines consisting of Pre-Trained Models for Multimodal Data

Automating string encoding in automl, autoregressive neural networks to model electroencephalograpy signals.

Supervisor: Vanschoren, J. (Supervisor 1), Pfundtner, S. (External person) (External coach) & Radha, M. (External coach)

Balancing Efficiency and Fairness on Ride-Hailing Platforms via Reinforcement Learning

Supervisor: Tavakol, M. (Supervisor 1), Pechenizkiy, M. (Supervisor 2) & Boon, M. A. A. (Supervisor 2)

Benchmarking Audio DeepFake Detection

Better clustering evaluation for the openml evaluation engine.

Supervisor: Vanschoren, J. (Supervisor 1), Gijsbers, P. (Supervisor 2) & Singh, P. (Supervisor 2)

Bi-level pipeline optimization for scalable AutoML

Supervisor: Nobile, M. (Supervisor 1), Vanschoren, J. (Supervisor 1), Medeiros de Carvalho, R. (Supervisor 2) & Bliek, L. (Supervisor 2)

Block-sparse evolutionary training using weight momentum evolution: training methods for hardware efficient sparse neural networks

Supervisor: Mocanu, D. (Supervisor 1), Zhang, Y. (Supervisor 2) & Lowet, D. J. C. (External coach)

Boolean Matrix Factorization and Completion

Supervisor: Peharz, R. (Supervisor 1) & Hess, S. (Supervisor 2)

Bootstrap Hypothesis Tests for Evaluating Subgroup Descriptions in Exceptional Model Mining

Supervisor: Duivesteijn, W. (Supervisor 1) & Schouten, R. M. (Supervisor 2)

Bottom-Up Search: A Distance-Based Search Strategy for Supervised Local Pattern Mining on Multi-Dimensional Target Spaces

Supervisor: Duivesteijn, W. (Supervisor 1), Serebrenik, A. (Supervisor 2) & Kromwijk, T. J. (Supervisor 2)

Bridging the Domain-Gap in Computer Vision Tasks

Supervisor: Mocanu, D. C. (Supervisor 1) & Lowet, D. J. C. (External coach)

CCESO: Auditing AI Fairness By Comparing Counterfactual Explanations of Similar Objects

Supervisor: Pechenizkiy, M. (Supervisor 1) & Hoogland, K. (External person) (External coach)

Clean-Label Poison Attacks on Machine Learning

Supervisor: Michiels, W. P. A. J. (Supervisor 1), Schalij, F. D. (External coach) & Hess, S. (Supervisor 2)

50 selected papers in Data Mining and Machine Learning

Here is the list of 50 selected papers in Data Mining and Machine Learning . You can download them for your detailed reading and research. Enjoy!

Data Mining and Statistics: What’s the Connection?

Data Mining: Statistics and More? , D. Hand, American Statistician, 52(2):112-118.

Data Mining , G. Weiss and B. Davison, in Handbook of Technology Management, John Wiley and Sons, expected 2010.

From Data Mining to Knowledge Discovery in Databases , U. Fayyad, G. Piatesky-Shapiro & P. Smyth, AI Magazine, 17(3):37-54, Fall 1996.

Mining Business Databases , Communications of the ACM, 39(11): 42-48.

10 Challenging Problems in Data Mining Research , Q. Yiang and X. Wu, International Journal of Information Technology & Decision Making, Vol. 5, No. 4, 2006, 597-604.

The Long Tail , by Anderson, C., Wired magazine.

AOL’s Disturbing Glimpse Into Users’ Lives , by McCullagh, D., News.com, August 9, 2006

General Data Mining Methods and Algorithms

Top 10 Algorithms in Data Mining , X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. motoda, G.J. MClachlan, A. Ng, B. Liu, P.S. Yu, Z. Zhou, M. Steinbach, D. J. Hand, D. Steinberg, Knowl Inf Syst (2008) 141-37.

Induction of Decision Trees , R. Quinlan, Machine Learning, 1(1):81-106, 1986.

Web and Link Mining

The Pagerank Citation Ranking: Bringing Order to the Web , L. Page, S. Brin, R. Motwani, T. Winograd, Technical Report, Stanford University, 1999.

The Structure and Function of Complex Networks , M. E. J. Newman, SIAM Review, 2003, 45, 167-256.

Link Mining: A New Data Mining Challenge , L. Getoor, SIGKDD Explorations, 2003, 5(1), 84-89.

Link Mining: A Survey , L. Getoor, SIGKDD Explorations, 2005, 7(2), 3-12.

Semi-supervised Learning

Semi-Supervised Learning Literature Survey , X. Zhu, Computer Sciences TR 1530, University of Wisconsin — Madison.

Introduction to Semi-Supervised Learning, in Semi-Supervised Learning (Chapter 1) O. Chapelle, B. Scholkopf, A. Zien (eds.), MIT Press, 2006. (Fordham’s library has online access to the entire text)

Learning with Labeled and Unlabeled Data , M. Seeger, University of Edinburgh (unpublished), 2002.

Person Identification in Webcam Images: An Application of Semi-Supervised Learning , M. Balcan, A. Blum, P. Choi, J. lafferty, B. Pantano, M. Rwebangira, X. Zhu, Proceedings of the 22nd ICML Workshop on Learning with Partially Classified Training Data , 2005.

Learning from Labeled and Unlabeled Data: An Empirical Study across Techniques and Domains , N. Chawla, G. Karakoulas, Journal of Artificial Intelligence Research , 23:331-366, 2005.

Text Classification from Labeled and Unlabeled Documents using EM , K. Nigam, A. McCallum, S. Thrun, T. Mitchell, Machine Learning , 39, 103-134, 2000.

Self-taught Learning: Transfer Learning from Unlabeled Data , R. Raina, A. Battle, H. Lee, B. Packer, A. Ng, in Proceedings of the 24th International Conference on Machine Learning , 2007.

An iterative algorithm for extending learners to a semisupervised setting , M. Culp, G. Michailidis, 2007 Joint Statistical Meetings (JSM), 2007

Partially-Supervised Learning / Learning with Uncertain Class Labels

Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers , V. Sheng, F. Provost, P. Ipeirotis, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2008.

Logistic Regression for Partial Labels , in 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems , Volume III, pp. 1935-1941, 2002.

Classification with Partial labels , N. Nguyen, R. Caruana, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2008.

Imprecise and Uncertain Labelling: A Solution based on Mixture Model and Belief Functions, E. Come, 2008 (powerpoint slides).

Induction of Decision Trees from Partially Classified Data Using Belief Functions , M. Bjanger, Norweigen University of Science and Technology, 2000.

Knowledge Discovery in Large Image Databases: Dealing with Uncertainties in Ground Truth , P. Smyth, M. Burl, U. Fayyad, P. Perona, KDD Workshop 1994, AAAI Technical Report WS-94-03, pp. 109-120, 1994.

Recommender Systems

Trust No One: Evaluating Trust-based Filtering for Recommenders , J. O’Donovan and B. Smyth, In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005, 1663-1665.

Trust in Recommender Systems, J. O’Donovan and B. Symyth, In Proceedings of the 10th International Conference on Intelligent User Interfaces (IUI-05), 2005, 167-174.

General resources available on this topic :

ICML 2003 Workshop: Learning from Imbalanced Data Sets II

AAAI ‘2000 Workshop on Learning from Imbalanced Data Sets

A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data , G. Batista, R. Prati, and M. Monard, SIGKDD Explorations , 6(1):20-29, 2004.

Class Imbalance versus Small Disjuncts , T. Jo and N. Japkowicz, SIGKDD Explorations , 6(1): 40-49, 2004.

Extreme Re-balancing for SVMs: a Case Study , B. Raskutti and A. Kowalczyk, SIGKDD Explorations , 6(1):60-69, 2004.

A Multiple Resampling Method for Learning from Imbalanced Data Sets , A. Estabrooks, T. Jo, and N. Japkowicz, in Computational Intelligence , 20(1), 2004.

SMOTE: Synthetic Minority Over-sampling Technique , N. Chawla, K. Boyer, L. Hall, and W. Kegelmeyer, Journal of Articifial Intelligence Research , 16:321-357.

Generative Oversampling for Mining Imbalanced Datasets, A. Liu, J. Ghosh, and C. Martin, Third International Conference on Data Mining (DMIN-07), 66-72.

Learning from Little: Comparison of Classifiers Given Little of Classifiers given Little Training , G. Forman and I. Cohen, in 8th European Conference on Principles and Practice of Knowledge Discovery in Databases , 161-172, 2004.

Issues in Mining Imbalanced Data Sets – A Review Paper , S. Visa and A. Ralescu, in Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference , pp. 67-73, 2005.

Wrapper-based Computation and Evaluation of Sampling Methods for Imbalanced Datasets , N. Chawla, L. Hall, and A. Joshi, in Proceedings of the 1st International Workshop on Utility-based Data Mining , 24-33, 2005.

C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats Over-Sampling , C. Drummond and R. Holte, in ICML Workshop onLearning from Imbalanced Datasets II , 2003.

C4.5 and Imbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure , N. Chawla, in ICML Workshop on Learning from Imbalanced Datasets II , 2003.

Class Imbalances: Are we Focusing on the Right Issue?, N. Japkowicz, in ICML Workshop on Learning from Imbalanced Datasets II , 2003.

Learning when Data Sets are Imbalanced and When Costs are Unequal and Unknown , M. Maloof, in ICML Workshop on Learning from Imbalanced Datasets II , 2003.

Uncertainty Sampling Methods for One-class Classifiers , P. Juszcak and R. Duin, in ICML Workshop on Learning from Imbalanced Datasets II , 2003.

Active Learning

Improving Generalization with Active Learning , D Cohn, L. Atlas, and R. Ladner, Machine Learning 15(2), 201-221, May 1994.

On Active Learning for Data Acquisition , Z. Zheng and B. Padmanabhan, In Proc. of IEEE Intl. Conf. on Data Mining, 2002.

Active Sampling for Class Probability Estimation and Ranking , M. Saar-Tsechansky and F. Provost, Machine Learning 54:2 2004, 153-178.

The Learning-Curve Sampling Method Applied to Model-Based Clustering , C. Meek, B. Thiesson, and D. Heckerman, Journal of Machine Learning Research 2:397-418, 2002.

Active Sampling for Feature Selection , S. Veeramachaneni and P. Avesani, Third IEEE Conference on Data Mining, 2003.

Heterogeneous Uncertainty Sampling for Supervised Learning , D. Lewis and J. Catlett, In Proceedings of the 11th International Conference on Machine Learning, 148-156, 1994.

Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , G. Weiss and F. Provost, Journal of Artificial Intelligence Research, 19:315-354, 2003.

Active Learning using Adaptive Resampling , KDD 2000, 91-98.

Cost-Sensitive Learning

Types of Cost in Inductive Concept Learning , P. Turney, In Proceedings Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on Machine Learning.

Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection , P. Chan and S. Stolfo, KDD 1998.

Recent Blogs

Artificial intelligence and machine learning: What’s the difference

Artificial intelligence and machine learning: What’s the difference

Artificial Intelligence , Machine Learning

10 online courses for understanding machine learning

10 online courses for understanding machine learning

Machine Learning , Tutorials

How is ML Being Used to Handle Security Vulnerabilities?

Machine Learning

10 groups of machine learning algorithms

10 groups of machine learning algorithms

How a nearly forgotten physicist shaped internet access today 

How a nearly forgotten physicist shaped internet access today 

Massachuse...

FinTech 2019: 5 uses cases of machine learning in finance

FinTech 2019: 5 uses cases of machine learning in finance

Banking / Finance , Machine Learning

The biggest impact of machine learning for digital marketing professionals

The biggest impact of machine learning for digital marketing professionals

Machine Learning , Marketing

Looking ahead: the innovative future of iOS in 2019

How machine learning is changing identity theft detection

How machine learning is changing identity theft detection

Machine Learning , Privacy / Security

Wearable technology to boost the process of digitalization of the modern world

Wearable technology to boost the process of digitalization of the modern world

Top 8 machine learning startups you should know about

Top 8 machine learning startups you should know about

The term...

How retargeting algorithms help in web personalization

How retargeting algorithms help in web personalization

others , Machine Learning

3 automation tools to help you in your next app build

3 automation tools to help you in your next app build

Machine learning and information security: impact and trends

Machine learning and information security: impact and trends

Machine Learning , Privacy / Security , Sectors , Tech and Tools

How to improve your productivity with AI and Machine Learning?

How to improve your productivity with AI and Machine Learning?

Artificial Intelligence , Human Resource , Machine Learning

Artificial...

Ask Data – A new and intuitive way to analyze data with natural language

10 free machine learning ebooks all scientists & ai engineers should read, yisi, a machine translation teacher who cracks down on errors in meaning, machine learning & license plate recognition: an ideal partnership, top 17 data science and machine learning vendors shortlisted by gartner, accuracy and bias in machine learning models – overview, interview with dejan s. milojicic on top technology trends and predictions for 2019.

Artificial Intelligence , Interviews , Machine Learning

Recently,...

Why every small business should use machine learning?

Why every small business should use machine learning?

Microsoft’s ML.NET: A blend of machine learning and .NET

Microsoft’s ML.NET: A blend of machine learning and .NET

Machine learning: best examples and ideas for mobile apps, researchers harness machine learning to predict chemical reactions, subscribe to the crayon blog.

Get the latest posts in your inbox!

  • Open access
  • Published: 03 March 2022

Educational data mining: prediction of students' academic performance using machine learning algorithms

  • Mustafa Yağcı   ORCID: orcid.org/0000-0003-2911-3909 1  

Smart Learning Environments volume  9 , Article number:  11 ( 2022 ) Cite this article

53k Accesses

111 Citations

38 Altmetric

Metrics details

Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods.

Introduction

The application of data mining methods in the field of education has attracted great attention in recent years. Data Mining (DM) is the discovery of data. It is the field of discovering new and potentially useful information or meaningful results from big data (Witten et al., 2011 ). It also aims to obtain new trends and new patterns from large datasets by using different classification algorithms (Baker & Inventado, 2014 ).

Educational data mining (EDM) is the use of traditional DM methods to solve problems related to education (Baker & Yacef, 2009 ; cited in Fernandes et al., 2019 ). EDM is the use of DM methods on educational data such as student information, educational records, exam results, student participation in class, and the frequency of students' asking questions. In recent years, EDM has become an effective tool used to identify hidden patterns in educational data, predict academic achievement, and improve the learning/teaching environment.

Learning analytics has gained a new dimension through the use of EDM (Waheed et al., 2020 ). Learning analytics covers the various aspects of collecting student information together, better understanding the learning environment by examining and analysing it, and revealing the best student/teacher performance (Long & Siemens, 2011 ). Learning analytics is the compilation, measurement and reporting of data about students and their contexts in order to understand and optimize learning and the environments in which it takes place. It also deals with the institutions developing new strategies.

Another dimension of learning analytics is predicting student academic performance, uncovering patterns of system access and navigational actions, and determining students who are potentially at risk of failing (Waheed et al., 2020 ). Learning management systems (LMS), student information systems (SIS), intelligent teaching systems (ITS), MOOCs, and other web-based education systems leave digital data that can be examined to evaluate students' possible behavior. Using EDM method, these data can be employed to analyse the activities of successful students and those who are at risk of failure, to develop corrective strategies based on student academic performance, and therefore to assist educators in the development of pedagogical methods (Casquero et al., 2016 ; Fidalgo-Blanco et al., 2015 ).

The data collected on educational processes offer new opportunities to improve the learning experience and to optimize users' interaction with technological platforms (Shorfuzzaman et al., 2019 ). The processing of educational data yields improvements in many areas such as predicting student behaviour, analytical learning, and new approaches to education policies (Capuano & Toti, 2019 ; Viberg et al., 2018 ). This comprehensive collection of data will not only allow education authorities to make data-based policies, but also form the basis of software to be developed with artificial intelligence on the learning process.

EDM enables educators to predict situations such as dropping out of school or less interest in the course, analyse internal factors affecting their performance, and make statistical techniques to predict students' academic performance. A variety of DM methods are employed to predict student performance, identify slow learners, and dropouts (Hardman et al., 2013 ; Kaur et al., 2015 ). Early prediction is a new phenomenon that includes assessment methods to support students by proposing appropriate corrective strategies and policies in this field (Waheed et al., 2020 ).

Especially during the pandemic period, learning management systems, quickly put into practice, have become an indispensable part of higher education. While students use these systems, the log records produced have become ever more accessible. (Macfadyen & Dawson, 2010 ; Kotsiantis et al., 2013 ; Saqr et al., 2017 ). Universities now should improve the capacity of using these data to predict academic success and ensure student progress (Bernacki et al., 2020 ).

As a result, EDM provides the educators with new information by discovering hidden patterns in educational data. Using this model, some aspects of the education system can be evaluated and improved to ensure the quality of education.

In various studies on EDM, e-learning systems have been successfully analysed (Lara et al., 2014 ). Some studies have also classified educational data (Chakraborty et al., 2016 ), while some have tried to predict student performance (Fernandes et al., 2019 ).

Asif et al. ( 2017 ) focused on two aspects of the performance of undergraduate students using DM methods. The first aspect is to predict the academic achievements of students at the end of a four-year study program. The second one is to examine the development of students and combine them with predictive results. He divided the students into two parts as low achievement and high achievement groups. He have found that it is important for the educators to focus on a small number of courses indicating particularly good or poor performance in order to offer timely warnings, support underperforming students and offer advice and opportunities to high-performing students. Cruz-Jesus et al. ( 2020 ) predicted student academic performance with 16 demographics such as age, gender, class attendance, internet access, computer possession, and the number of courses taken. Random forest, logistic regression, k-nearest neighbours and support vector machines, which are among the machine learning methods, were able to predict students’ performance with accuracy ranging from 50 to 81%.

Fernandes et al. ( 2019 ) developed a model with the demographic characteristics of the students and the achievement grades obtained from the in-term activities. In that study, students' academic achievement was predicted with classification models based on Gradient Boosting Machine (GBM). The results showed that the best qualities for estimating achievement scores were the previous year's achievement scores and unattendance. The authors found that demographic characteristics such as neighbourhood, school and age information were also potential indicators of success or failure. In addition, he argued that this model could guide the development of new policies to prevent failure. Similarly, by using the student data requested during registration and environmental factors, Hoffait and Schyns ( 2017 ) determined the students with the potential to fail. He found that students with potential difficulties could be classified more precisely by using DM methods. Moreover, their approach makes it possible to rank the students by levels of risk. Rebai et al. ( 2020 ) proposed a machine learning-based model to identify the key factors affecting academic performance of schools and to determine the relationship between these factors. He concluded that the regression trees showed that the most important factors associated with higher performance were school size, competition, class size, parental pressure, and gender proportions. In addition, according to the random forest algorithm results, the school size and the percentage of girls had a powerful impact on the predictive accuracy of the model.

Ahmad and Shahzadi, ( 2018 ) proposed a machine learning-based model to find an answer to the question whether students were at risk regarding their academic performance. Using the students' learning skills, study habits, and academic interaction features, they made a prediction with a classification accuracy of 85%. The researchers concluded that the model they proposed could be used to determine academically unsuccessful student. Musso et al., ( 2020 ) proposed a machine learning model based on learning strategies, perception of social support, motivation, socio-demographics, health condition, and academic performance characteristics. With this model, he predicted the academic performance and dropouts. He concluded that the predictive variable with the highest effect on predicting GPA was learning strategies while the variable with the greatest effect on determining dropouts was background information.

Waheed et al., ( 2020 ) designed a model with artificial neural networks on students' records related to their navigation through the LMS. The results showed that demographics and student clickstream activities had a significant impact on student performance. Students who navigated through courses performed higher. Students' participation in the learning environment had nothing to do with their performance. However, he concluded that the deep learning model could be an important tool in the early prediction of student performance. Xu et al. ( 2019 ) determined the relationship between the internet usage behaviors of university students and their academic performance and he predicted students’ performance with machine learning methods. The model he proposed predicted students' academic performance at a high level of accuracy. The results suggested that Internet connection frequency features were positively correlated with academic performance, whereas Internet traffic volume features were negatively correlated with academic performance. In addition, he concluded that internet usage features had an important role on students' academic performance. Bernacki et al. ( 2020 ) tried to find out whether the log records in the learning management system alone would be sufficient to predict achievement. He concluded that the behaviour-based prediction model successfully predicted 75% of those who would need to repeat a course. He also stated that, with this model, students who might be unsuccessful in the subsequent semesters could be identified and supported. Burgos et al. ( 2018 ) predicted the achievement grades that the students might get in the subsequent semesters and designed a tool for students who were likely to fail. He found that the number of unsuccessful students decreased by 14% compared to previous years. A comparative analysis of studies predicting the academic achievement grades using machine learning methods is given in Table 1 .

A review of previous research that aimed to predict academic achievement indicates that researchers have applied a range of machine learning algorithms, including multiple, probit and logistic regression, neural networks, and C4.5 and J48 decision trees. However, random forests (Zabriskie et al., 2019 ), genetic programming (Xing et al., 2015 ), and Naive Bayes algorithms (Ornelas & Ordonez, 2017 ) were used in recent studies. The prediction accuracy of these models reaches very high levels.

Prediction accuracy of student academic performance requires an deep understanding of the factors and features that impact student results and the achievement of student (Alshanqiti & Namoun, 2020 ). For this purpose, Hellas et al. ( 2018 ) reviewed 357 articles on student performance detailing the impact of 29 features. These features were mainly related to psychomotor skills such as course and pre-course performance, student participation, student demographics such as gender, high school performance, and self-regulation. However, the dropout rates were mainly influenced by student motivation, habits, social and financial issues, lack of progress, and career transitions.

The literature review suggests that, it is a necessity to improve the quality of education by predicting the academic performance of the students and supporting those who are in the risk group. In the literature, the prediction of academic performance was made with many and various variables, various digital traces left by students on the internet (browsing, lesson time, percentage of participation) (Fernandes et al., 2019 ; Rubin et al., 2010 ; Waheed et al., 2020 ; Xu et al., 2019 ) and students demographic characteristics (gender, age, economic status, number of courses attended, internet access, etc.) (Bernacki et al., 2020 ; Rizvi et al., 2019 ; García-González & Skrita, 2019 ; Rebai et al., 2020 ; Cruz-Jesus et al., 2020 ; Aydemir, 2017 ), learning skills, study approaches, study habits (Ahmad & Shahzadi, 2018 ), learning strategies, social support perception, motivation, socio-demography, health form, academic performance characteristics (Costa-Mendes et al., 2020 ; Gök, 2017 ; Kılınç, 2015 ; Musso et al., 2020 ), homework, projects, quizzes (Kardaş & Güvenir, 2020 ), etc. In almost all models developed in such studies, prediction accuracy is ranging from 70 to 95%. Hovewer, collecting and processing such a variety of data both takes a lot of time and requires expert knowledge. Similarly, Hoffait and Schyns ( 2017 ) suggested that collecting so many data is difficult and socio-economic data are unnecessary. Moreover, these demographic or socio-economic data may not always give the right idea of preventing failure (Bernacki et al., 2020 ).

The study concerns predicting students’ academic achievement using grades only, no demographic characteristics and no socio-economic data. This study aimed to develop a new model based on machine learning algorithms to predict the final exam grades of undergraduate students taking their midterm exam grades, Faculty and Department of the students.

For this purpose, classification algorithms with the highest performance in predicting students’ academic achievement were determined by using machine learning classification algorithms. The reason for choosing the Turkish Language-I course was that it is a compulsory course that all students enrolled in the university must take. Using this model, students’ final exam grades were predicted. These models will enable the development of pedagogical interventions and new policies to improve students' academic performance. In this way, the number of potentially unsuccessful students can be reduced following the assessments made after each midterm.

This section describes the details of the dataset, pre-processing techniques, and machine learning algorithms employed in this study.

Educational institutions regularly store all data that are available about students in electronic medium. Data are stored in databases for processing. These data can be of many types and volumes, from students’ demographics to their academic achievements. In this study, the data were taken from the Student Information System (SIS), where all student records are stored at a State University in Turkey. In these records, the midterm exam grades, final exam grades, Faculty, and Department of 1854 students who have taken the Turkish Language-I course in the 2019–2020 fall semester were selected as the dataset. Table 2 shows the distribution of students according to the academic unit. Moreover, as a additional file 1 the dataset are presented.

Midterm and final exam grades are ranging from 0 to 100. In this system, the end-of-semester achievement grade is calculated by taking 40% of the midterm exam and 60% of the final exam. Students with achievement grade below 60 are unsuccessful and those above 60 are successful. The midterm exam is usually held in the middle of the academic semester and the final exam is held at the end of the semester. There are approximately 9 weeks (2.5 months) from the midterm exam to the final exam. In other words, there is a two and a half month period for corrective actions for students who are at risk of failing thanks to the final exam predictions made. In other words, the answer to the question of how effective the student's performance in the middle of the semester is on his performance at the end of the semester was investigated.

Data identification and collection

At this phase, it is determined from which source the data will be stored, which features of the data will be used, and whether the collected data is suitable for the purpose. Feature selection involves decreasing the number of variables used to predict a particular outcome. The goal; to facilitate the interpretability of the model, reduce complexity, increase the computational efficiency of algorithms, and avoid overfitting.

Establishing DM model and implementation of algorithm

RF, NN, LR, SVM, NB and kNN were employed to predict students' academic performance. The prediction accuracy was evaluated using tenfold cross validation. The DM process serves two main purposes. The first purpose is to make predictions by analyzing the data in the database (predictive model). The second one is to describe behaviors (descriptive model). In predictive models, a model is created by using data with known results. Then, using this model, the result values are predicted for datasets whose results are unknown. In descriptive models, the patterns in the existing data are defined to make decisions.

When the focus is on analysing the causes of success or failure, statistical methods such as logistic regression and time series can be employed (Ortiz & Dehon, 2008 ; Arias Ortiz & Dehon, 2013 ). However, when the focus is on forecasting, neural networks (Delen, 2010 ; Vandamme et al., 2007 ), support vector machines (Huang & Fang, 2013 ), decision trees (Delen, 2011 ; Nandeshwar et al., 2011 ) and random forests (Delen, 2010 ; Vandamme et al., 2007 ) is more efficient and give more accurate results. Statistical techniques are to create a model that can successfully predict output values based on available input data. On the other hand, machine learning methods automatically create a model that matches the input data with the expected target values when a supervised optimization problem is given.

The performance of the model was measured by confusion matrix indicators. It is understood from the literature that there is no single classifier that works best for prediction results. Therefore, it is necessary to investigate which classifiers are more studied for the analysed data (Asif et al., 2017 ).

Experiments and results

The entire experimental phase was performed with Orange machine learning software. Orange is a powerful and easy-to-use component-based DM programming tool for expert data scientists as well as for data science beginners. In Orange, data analysis is done by stacking widgets into workflows. Each widget includes some data retrieval, data pre-processing, visualization, modelling, or evaluation task. A workflow is a series of actions or actions that will be performed on the platform to perform a specific task. Comprehensive data analysis charts can be created by combining different components in a workflow. Figure  1 shows the workflow diagram designed.

figure 1

The workflow of the designed model

The dataset included midterm exam grades, final exam grades, Faculty, and Department of 1854 students taking the Turkish Language-I course in the 2019–2020 Fall Semester. The entire dataset is provided as Additional file 1 . Table 3 shows part of the dataset.

In the dataset, students' midterm exam grades, final exam grades, faculty, and department information were determined as features. Each measure contains data associated with a student. Midterm exam and final exam grade variables were explained under the heading "dataset". The faculty variable represents Faculties in Kırşehir Ahi Evran University and the department variable represents departments in faculties. In the development of the model, the midterm, the faculty, and the department information were determined as the independent variable and the final was determined as the dependent variable. Table 4 shows the variable model.

After the variable model was determined, the midterm exam grades and final exam grades were categorized according to the equal-width discretization model. Table 5 shows the criteria used in converting midterm exam grades and final exam grades into the categorical format.

In Table 6 , the values in the final column are the actual values. The values in the RF, SVM, LR, KNN, NB, and NN columns are the values predicted by the proposed model. For example, according to Table 5 , std1’s actual final grade was in the range 55 to 77. While the predicted value of the RF, SVM, LR, NB, and NN models were in the range of, the predicted value of the kNN model was greater than 77.

Evaluation of the model performance

The performance of model was evaluated with confusion matrix, classification accuracy (CA), precision, recall, f-score (F1), and area under roc curve (AUC) metrics.

Confusion matrix

The confusion matrix shows the current situation in the dataset and the number of correct/incorrect predictions of the model. Table 7 shows the confusion matrix. The performance of the model is calculated by the number of correctly classified instances and incorrectly classified instances. The rows show the real numbers of the samples in the test set, and the columns represent the estimation of the model.

In Table 6 , true positive (TP) and true negative (TN) show the number of correctly classified instances. False positive (FP) shows the number of instances predicted as 1 (positive) while it should be in the 0 (negative) class. False negative (FN) shows the number of instances predicted as 0 (negative) while it should be in class 1 (positive).

Table 8 shows the confusion matrix for the RF algorithm. In the confusion matrix of 4 × 4 dimensions, the main diagonal shows the percentage of correctly predicted instances, and the matrix elements other than the main diagonal shows the percentage of errors predicted.

Table 8 shows that 84.9% of those with the actual final grade greater than 77.5, 71.2% of those with range 55–77.5, 65.4% of those with range 32.5–55, and 60% of those with less than 32.5 were predicted correctly. Confusion matrixs of other algorithms are shown in Tables 9 , 10 , 11 , 12 , and 13 .

Classification accuracy:  CA is the ratio of the correct predictions (TP + TN) to the total number of instances (TP + TN + FP + FN).

Precision: Precision is the ratio of the number of positive instances that are correctly classified to the total number of instances that are predicted positive. Gets a value in the range [0.1].

Recall: Recall i s the ratio of the correctly classified number of positive instances to the number of all instances whose actual class is positive. The Recall is also called the true positive rate. Gets a value in the range [0.1].

F-Criterion (F1):  There is an opposite relationship between precision and recall. Therefore, the harmonic mean of both criteria is calculated for more accurate and sensitive results. This is called the F-criterion.

Receiver operating characteristics (ROC) curve

The AUC-ROC curve is used to evaluate the performance of a classification problem. AUC-ROC is a widely used metric to evaluate the performance of machine learning algorithms, especially in cases where there are unbalanced datasets, and explains how well the model is at predicting.

AUC: Area under the ROC curve

The larger the area covered, the better the machine learning algorithms at distinguishing given classes. AUC for the ideal value is 1. The AUC, Classification Accuracy (CA), F-Criterion (F1), precision, and recall values of the models are shown in Table 14 .

The AUC value of RF, NN, SVM, LR, NB, and kNN algorithms were 0.860, 0.863, 0.804, 0.826, 0.810, and 0.810 respectively. The classification accuracy of the RF, NN, SVM, LR, NB, and kNN algorithms were also 0.746, 0.746, 0.735, 0.717, 0.713, and 0,699 respectively. According to these findings, for example, the RF algorithm was able to achieve 74.6% accuracy. In other words, there was a very high-level correlation between the data predicted and the actual data. As a result, 74.6% of the samples were been classified correctly.

Discussion and conclusion

This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the Random Forests, nearest neighbour, support vector machines, Logistic Regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. This study focused on two parameters. The first parameter was the prediction of academic performance based on previous achievement grades. The second one was the comparison of performance indicators of machine learning algorithms.

The results show that the proposed model achieved a classification accuracy of 70–75%. According to this result, it can be said that students' midterm exam grades are an important predictor to be used in predicting their final exam grades. RF, NN, SVM, LR, NB, and kNN are algorithms with a very high accuracy rate that can be used to predict students' final exam grades. Furthermore, the predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. The results of this study were compared with the studies that predicted the academic achievement grades of the students with various demographic and socio-economic variables. Hoffait and Schyns ( 2017 ) proposed a model that uses the academic achievement of students in previous years. With this model, they predicted students' performance to be successful in the courses they will take in the new semester. They found that 12.2% of the students had a very high risk of failure, with a 90% confidence rate. Waheed et al. ( 2020 ) predicted the achievement of the students with demographic and geographic characteristics. He found that it has a significant effect on students' academic performance. He predicted the failure or success of the students by 85% accuracy. Xu et al. ( 2019 ) found that internet usage data can distinguish and predict students' academic performance. Costa-Mendes et al. ( 2020 ), Cruz-Jesus et al. ( 2020 ), Costa-Mendes et al. ( 2020 ) predicted the academic achievement of students in the light of income, age, employment, cultural level indicators, place of residence, and socio-economic information. Similarly, Babić ( 2017 ) predicted students’ performance with an accuracy of 65% to 100% with artificial neural networks, classification tree, and support vector machines methods.

Another result of this study was RF, NN and SVM algorithms have the highest classification accuracy, while kNN has the lowest classification accuracy. According to this result, it can be said that RF, NN and SVM algorithms perform with more accurate results in predicting the academic achievement grades of students with machine learning algorithms. The results were compared with the results of the research in which machine learning algorithms were employed to predict academic performance according to various variables. For example, Hoffait and Schyns ( 2017 ) compared the performances of LR, ANN and RF algorithms to identify students at high risk of academic failure on their various demographic characteristics. They ranked the algorithms from those with the highest accuracy to the ones with the lowest accuracy as LR, ANN, and RF. On the other hand, Waheed et al. ( 2020 ) found that the SVM algorithm performed higher than the LR algorithm. According to Xu et al. ( 2019 ), the algorithm with the highest performance is SVM, followed by the NN algorithm, and the decision tree is the algorithm with the lowest performance.

The proposed model predicted the final exam grades of students with 73% accuracy. According to this result, it can be said that academic achievement can be predicted with this model in the future. By predicting students' achievement grades in future, students can be allowed to review their working methods and improve their performance. The importance of the proposed method can be better understood, considering that there is approximately 2.5 months between the midterm exams and the final exams in higher education. Similarly, Bernacki et al. ( 2020 ) work on the early warning model. He proposed a model to predict the academic achievements of students using their behavior data in the learning management system before the first exam. His algorithm correctly identified 75% of students who failed to earn the grade of B or better needed to advance to the next course. Ahmad and Shahzadi ( 2018 ) predicted students at risk for academic performance with 85% accuracy evaluating their study habits, learning skills, and academic interaction features. Cruz-Jesus et al. ( 2020 ) predicted students' end-of-semester grades with 16 independent variables. He concluded that students could be given the opportunity of early intervention.

As a result, students' academic performances were predicted using different predictors, different algorithms and different approaches. The results confirm that machine learning algorithms can be used to predict students’ academic performance. More importantly, the prediction was made only with the parameters of midterm grade, faculty and department. Teaching staff can benefit from the results of this research in the early recognition of students who have below or above average academic motivation. Later, for example, as Babić ( 2017 ) points out, they can match students with below-average academic motivation by students with above-average academic motivation and encourage them to work in groups or project work. In this way, the students' motivation can be improved, and their active participation in learning can be ensured. In addition, such data-driven studies should assist higher education in establishing a learning analytics framework and contribute to decision-making processes.

Future research can be conducted by including other parameters as input variables and adding other machine learning algorithms to the modelling process. In addition, it is necessary to harness the effectiveness of DM methods to investigate students' learning behaviors, address their problems, optimize the educational environment, and enable data-driven decision making.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

  • Educational data mining

Random forests

Neural networks

Support vector machines

Logistic regression

Naïve Bayes

K-nearest neighbour

Decision trees

Artificial neural networks

Extremely randomized trees

Regression trees

Multilayer perceptron neural network

Feed-forward neural network

Adaptive resonance theory mapping

Learning management systems

Student information systems

Intelligent teaching systems

Classification accuracy

Area under roc curve

True positive

True negative

False positive

False negative

Receiver operating characteristics

Ahmad, Z., & Shahzadi, E. (2018). Prediction of students’ academic performance using artificial neural network. Bulletin of Education and Research, 40 (3), 157–164.

Google Scholar  

Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8 , 203827–203844. https://doi.org/10.1109/access.2020.3036572

Article   Google Scholar  

Arias Ortiz, E., & Dehon, C. (2013). Roads to success in the Belgian French Community’s higher education system: predictors of dropout and degree completion at the Université Libre de Bruxelles. Research in Higher Education, 54 (6), 693–723. https://doi.org/10.1007/s11162-013-9290-y

Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers and Education, 113 , 177–194. https://doi.org/10.1016/j.compedu.2017.05.007

Aydemir, B. (2017). Predicting academic success of vocational high school students using data mining methods graduate . [Unpublished master’s thesis]. Pamukkale University Institute of Science.

Babić, I. D. (2017). Machine learning methods in predicting the student academic motivation. Croatian Operational Research Review, 8 (2), 443–461. https://doi.org/10.17535/crorr.2017.0028

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. Learning analytics (pp. 61–75). Springer.

Chapter   Google Scholar  

Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1 (1), 3–17.

Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158 (August), 103999. https://doi.org/10.1016/j.compedu.2020.103999

Burgos, C., Campanario, M. L., De, D., Lara, J. A., Lizcano, D., & Martínez, M. A. (2018). Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout. Computers and Electrical Engineering, 66 (2018), 541–556. https://doi.org/10.1016/j.compeleceng.2017.03.005

Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92 , 459–467. https://doi.org/10.1016/j.chb.2018.03.034

Casquero, O., Ovelar, R., Romo, J., Benito, M., & Alberdi, M. (2016). Students’ personal networks in virtual and personal learning environments: A case study in higher education using learning analytics approach. Interactive Learning Environments, 24 (1), 49–67. https://doi.org/10.1080/10494820.2013.817441

Chakraborty, B., Chakma, K., & Mukherjee, A. (2016). A density-based clustering algorithm and experiments on student dataset with noises using Rough set theory. In Proceedings of 2nd IEEE international conference on engineering and technology, ICETECH 2016 , March (pp. 431–436). https://doi.org/10.1109/ICETECH.2016.7569290

Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2020). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26 , 1527–1547. https://doi.org/10.1007/s10639-020-10316-y

Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon . https://doi.org/10.1016/j.heliyon.2020.e04081

Delen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49 (4), 498–506. https://doi.org/10.1016/j.dss.2010.06.003

Delen, D. (2011). Predicting student attrition with data mining methods. Journal of College Student Retention: Research, Theory and Practice, 13 (1), 17–35. https://doi.org/10.2190/CS.13.1.b

Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Van Erven, G. (2019). Educational data mining : Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of Business Research, 94 (February 2018), 335–343. https://doi.org/10.1016/j.jbusres.2018.02.012

Fidalgo-Blanco, Á., Sein-Echaluce, M. L., García-Peñalvo, F. J., & Conde, M. Á. (2015). Using Learning Analytics to improve teamwork assessment. Computers in Human Behavior, 47 , 149–156. https://doi.org/10.1016/j.chb.2014.11.050

García-González, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: Evidence for Colombia using classification trees. Psychology, Society and Education, 11 (3), 299–311. https://doi.org/10.25115/psye.v11i3.2056

Gök, M. (2017). Predicting academic achievement with machine learning methods. Gazi University Journal of Science Part c: Design and Technology, 5 (3), 139–148.

Hardman, J., Paucar-Caceres, A., & Fielding, A. (2013). Predicting students’ progression in higher education by using the random forest algorithm. Systems Research and Behavioral Science, 30 (2), 194–203. https://doi.org/10.1002/sres.2130

Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V.V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S.N. (2018). Predicting academic performance: a systematic literature review. In Proceedings companion of the 23rd annual ACM conference on innovation and technology in computer science education (pp. 175–199).

Hoffait, A., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101 (2017), 1–11. https://doi.org/10.1016/j.dss.2017.05.003

Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers and Education, 61 (1), 133–145. https://doi.org/10.1016/j.compedu.2012.08.015

Kardaş, K., & Güvenir, A. (2020). Analysis of the effects of Quizzes, homeworks and projects on final exam with different machine learning techniques. EMO Journal of Scientific, 10 (1), 22–29.

Kaur, P., Singh, M., & Josan, G. S. (2015). Classification and prediction based data mining algorithms to predict slow learners in education sector. Procedia Computer Science, 57 , 500–508. https://doi.org/10.1016/j.procs.2015.07.372

Kılınç, Ç. (2015). Examining the effects on university student success by data mining techniques. [Unpublished master’s thesis]. Eskişehir Osmangazi University Institute of Science.

Kotsiantis, S., Tselios, N., Filippidi, A., & Komis, V. (2013). Using learning analytics to identify successful learners in a blended learning course. International Journal of Technology Enhanced Learning, 5 (2), 133–150. https://doi.org/10.1504/IJTEL.2013.059088

Lara, J. A., Lizcano, D., Martínez, M. A., Pazos, J., & Riera, T. (2014). A system for knowledge discovery in e-learning environments within the European Higher Education Area—Application to student data from Open University of Madrid, UDIMA. Computers and Education, 72 , 23–36. https://doi.org/10.1016/j.compedu.2013.10.009

Long, P., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 46 (5), 31–40.

Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers & Education, 54 (2), 588–599. https://doi.org/10.1016/j.compedu.2009.09.008

Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: A machine-learning approach. Higher Education, 80 (5), 875–894. https://doi.org/10.1007/s10734-020-00520-7

Nandeshwar, A., Menzies, T., & Nelson, A. (2011). Learning patterns of university student retention. Expert Systems with Applications, 38 (12), 14984–14996. https://doi.org/10.1016/j.eswa.2011.05.048

Ornelas, F., & Ordonez, C. (2017). Predicting student success: A naïve bayesian application to community college data. Technology, Knowledge and Learning, 22 (3), 299–315. https://doi.org/10.1007/s10758-017-9334-z

Ortiz, E. A., & Dehon, C. (2008). What are the factors of success at University? A case study in Belgium. Cesifo Economic Studies, 54 (2), 121–148. https://doi.org/10.1093/cesifo/ifn012

Rebai, S., Ben Yahia, F., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70 (August 2018), 100724. https://doi.org/10.1016/j.seps.2019.06.009

Rizvi, S., Rienties, B., & Ahmed, S. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137 (August 2018), 32–47. https://doi.org/10.1016/j.compedu.2019.04.001

Rubin, B., Fernandes, R., Avgerinou, M. D., & Moore, J. (2010). The effect of learning management systems on student and faculty outcomes. The Internet and Higher Education, 13 (1–2), 82–83. https://doi.org/10.1016/j.iheduc.2009.10.008

Saqr, M., Fors, U., & Tedre, M. (2017). How learning analytics can early predict under-achieving students in a blended medical education course. Medical Teacher, 39 (7), 757–767. https://doi.org/10.1080/0142159X.2017.1309376

Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92 (February 2017), 578–588. https://doi.org/10.1016/j.chb.2018.07.002

Vandamme, J.-P., Meskens, N., & Superby, J.-F. (2007). Predicting academic performance by data mining methods. Education Economics, 15 (4), 405–419. https://doi.org/10.1080/09645290701409939

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89 (July), 98–110. https://doi.org/10.1016/j.chb.2018.07.027

Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104 (October 2019), 106189. https://doi.org/10.1016/j.chb.2019.106189

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining practical machine learning tools and techniques (3rd ed.). Morgan Kaufmann.

Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47 , 168–181.

Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98 (January), 166–173. https://doi.org/10.1016/j.chb.2019.04.015

Zabriskie, C., Yang, J., DeVore, S., & Stewart, J. (2019). Using machine learning to predict physics course outcomes. Physical Review Physics Education Research, 15 (2), 020120. https://doi.org/10.1103/PhysRevPhysEducRes.15.020120

Download references

Acknowledgements

Not applicable.

Author information

Authors and affiliations.

Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, 40100, Kırşehir, Turkey

Mustafa Yağcı

You can also search for this author in PubMed   Google Scholar

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Yağcı .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Yağcı, M. Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learn. Environ. 9 , 11 (2022). https://doi.org/10.1186/s40561-022-00192-z

Download citation

Received : 15 November 2021

Accepted : 15 February 2022

Published : 03 March 2022

DOI : https://doi.org/10.1186/s40561-022-00192-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Machine learning
  • Predicting achievement
  • Learning analytics
  • Early warning systems

thesis paper data mining

data mining techniques Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Prediction of Skin Diseases Using Machine Learning

Skin disease rates have been increasing over the past few decades. It has led to both fatal and non-fatal disabilities all around the world, especially in those areas where medical resources are not good enough. Early diagnosis of skin diseases increases the chances of cure significantly. Therefore, this work is comparing six machine learning algorithms, namely KNN, random forest, neural network, naïve bayes, logistic regression, and SVM, for the prediction of the skin diseases. The information gain, gain ratio, gini decrease, chi-square, and relieff are used to rank the features. This work comprises the introduction, literature review, and proposed methodology parts. In this research paper, a new method of analyzing skin disease has been proposed in which six different data mining techniques are used to develop an ensemble method that integrates all the six data mining techniques as a single one. The ensemble method used on the dermatology dataset gives improved result with 94% accuracy in comparison to other classifier algorithms and hence is more effective in this area.

A Survey on Building Recommendation Systems Using Data Mining Techniques

Classification is a data mining technique or approach used to estimate the grouped membership of items on a basis of a common feature. This technique is virtuous for future planning and discovering new knowledge about a specific dataset. An in-depth study of previous pieces of literature implementing data mining techniques in the design of recommender systems was performed. This chapter provides a broad study of the way of designing recommender systems using various data mining classification techniques of machine learning and also exploiting their methodological decisions in four aspects, the recommendation approaches, data mining techniques, recommendation types, and performance measures. This study focused on some selected classification methods and can be so supportive for both the researchers and the students in the field of computer science and machine learning in strengthening their knowledge about the machine learning hypothesis and data mining.

A Classification and Clustering Approach Using Data Mining Techniques in Analysing Gastrointestinal Tract

Diagnosis and detection of plant diseases using data mining techniques, location-based crime prediction using multiclass classification data mining techniques, an effective approach to test suite reduction and fault detection using data mining techniques.

Software testing is used to find bugs in the software to provide a quality product to the end users. Test suites are used to detect failures in software but it may be redundant and it takes a lot of time for the execution of software. In this article, an enormous number of test cases are created using combinatorial test design algorithms. Attribute reduction is an important preprocessing task in data mining. Attributes are selected by removing all weak and irrelevant attributes to reduce complexity in data mining. After preprocessing, it is not necessary to test the software with every combination of test cases, since the test cases are large and redundant, the healthier test cases are identified using a data mining techniques algorithm. This is healthier and the final test suite will identify the defects in the software, it will provide better coverage analysis and reduces execution time on the software.

Applying data mining techniques to classify patients with suspected hepatitis C virus infection

Dengue fever prediction modelling using data mining techniques, fake news detection using data mining techniques.

Nowadays, internet has been well known as an information source where the information might be real or fake. Fake news over the web exist since several years. The main challenge is to detect the truthfulness of the news. The motive behind writing and publishing the fake news is to mislead the people. It causes damage to an agency, entity or person. This paper aims to detect fake news using semantic search.

A Leading Indicator Approach with Data Mining Techniques in Analysing Bitcoin Market Value

Export citation format, share document.

82 Data Mining Essay Topic Ideas & Examples

🏆 best data mining topic ideas & essay examples, 💡 good essay topics on data mining, ✅ most interesting data mining topics to write about.

  • Disadvantages of Using Web 2.0 for Data Mining Applications This data can be confusing to the readers and may not be reliable. Lastly, with the use of Web 2.
  • Data Warehouse and Data Mining in Business The circumstances leading to the establishment and development of the concept of data warehousing was attributed to the fact that failure to have a data warehouse led to the need of putting in place large […]
  • The Data Mining Method in Healthcare and Education Thus, I would use data mining in both cases; however, before that, I would discover a way to improve the algorithms used for it.
  • Data Mining Tools and Data Mining Myths The first problem is correlated with keeping the identity of the person evolved in data mining secret. One of the major myths regarding data mining is that it can replace domain knowledge.
  • Hybrid Data Mining Approach in Healthcare One of the healthcare projects that will call for the use of data mining is treatment evaluation. In this case, it is essential to realize that the main aim of health data mining is to […]
  • Terrorism and Data Mining Algorithms However, this is a necessary evil as the nation’s security has to be prioritized since these attacks lead to harm to a larger population compared to the infringements.
  • Data Mining and Its Major Advantages Thus, it is possible to conclude that data mining is a convenient and effective way of processing information, which has many advantages.
  • Transforming Coded and Text Data Before Data Mining However, to complete data mining, it is necessary to transform the data according to the techniques that are to be used in the process.
  • Data Mining and Machine Learning Algorithms The shortest distance of string between two instances defines the distance of measure. However, this is also not very clear as to which transformations are summed, and thus it aims to a probability with the […]
  • Summary of C4.5 Algorithm: Data Mining 5 algorism: Each record from set of data should be associated with one of the offered classes, it means that one of the attributes of the class should be considered as a class mark.
  • Data Mining in Social Networks: Linkedin.com One of the ways to achieve the aim is to understand how users view data mining of their data on LinkedIn.
  • Ethnography and Data Mining in Anthropology The study of cultures is of great importance under normal circumstances to enhance the understanding of the same. Data mining is the success secret of ethnography.
  • Issues With Data Mining It is necessary to note that the usage of data mining helps FBI to have access to the necessary information for terrorism and crime tracking.
  • Large Volume Data Handling: An Efficient Data Mining Solution Data mining is the process of sorting huge amount of data and finding out the relevant data. Data mining is widely used for the maintenance of data which helps a lot to an organization in […]
  • Data Mining and Analytical Developments In this era where there is a lot of information to be handled at ago and actually with little available time, it is necessarily useful and wise to analyze data from different viewpoints and summarize […]
  • Levi’s Company’s Data Mining & Customer Analytics Levi, the renowned name in jeans is feeling the heat of competition from a number of other brands, which have come upon the scene well after Levi’s but today appear to be approaching Levi’s market […]
  • Cryptocurrency Exchange Market Prediction and Analysis Using Data Mining and Artificial Intelligence This paper aims to review the application of A.I.in the context of blockchain finance by examining scholarly articles to determine whether the A.I.algorithm can be used to analyze this financial market.
  • Data Mining in Healthcare: Applications and Big Data Analyze Big data analysis is among the most influential modern trends in informatics and it has applications in virtually every sphere of human life.
  • “Data Mining and Customer Relationship Marketing in the Banking Industry“ by Chye & Gerry First of all, the article generally elaborates on the notion of customer relationship management, which is defined as “the process of predicting customer behavior and selecting actions to influence that behavior to benefit the company”.
  • Data Mining Techniques and Applications The use of data mining to detect disturbances in the ecosystem can help to avert problems that are destructive to the environment and to society.
  • Ethical Data Mining in the UAE Traffic Department The research question identified in the assignment two is considered to be the following, namely whether the implementation of the business intelligence into the working process will beneficially influence the work of the Traffic Department […]
  • Canadian University Dubai and Data Mining The aim of mining data in the education environment is to enhance the quality of education for the mass through proactive and knowledge-based decision-making approaches.
  • Data Mining and Customer Relationship Management As such, CRM not only entails the integration of marketing, sales, customer service, and supply chain capabilities of the firm to attain elevated efficiencies and effectiveness in conveying customer value, but it obliges the organization […]
  • E-Commerce: Mining Data for Better Business Intelligence The method allowed the use of Intel and an example to build the study and the literature on data mining for business intelligence to analyze the findings.
  • Ethical Implications of Data Mining by Government Institutions Critics of personal data mining insist that it infringes on the rights of an individual and result to the loss of sensitive information.
  • Data Mining Role in Companies The increasing adoption of data mining in various sectors illustrates the potential of the technology regarding the analysis of data by entities that seek information crucial to their operations.
  • Data Mining: Concepts and Methods Speed of data mining process is important as it has a role to play in the relevance of the data mined. The accuracy of data is also another factor that can be used to measure […]
  • Data Mining Technologies According to Han & Kamber, data mining is the process of discovering correlations, patterns, trends or relationships by searching through a large amount of data that in most circumstances is stored in repositories, business databases […]
  • Data Mining: A Critical Discussion In recent times, the relatively new discipline of data mining has been a subject of widely published debate in mainstream forums and academic discourses, not only due to the fact that it forms a critical […]
  • Commercial Uses of Data Mining Data mining process entails the use of large relational database to identify the correlation that exists in a given data. The principal role of the applications is to sift the data to identify correlations.
  • A Discussion on the Acceptability of Data Mining Today, more than ever before, individuals, organizations and governments have access to seemingly endless amounts of data that has been stored electronically on the World Wide Web and the Internet, and thus it makes much […]
  • Applying Data Mining Technology for Insurance Rate Making: Automobile Insurance Example
  • Applebee’s, Travelocity and Others: Data Mining for Business Decisions
  • Applying Data Mining Procedures to a Customer Relationship
  • Business Intelligence as Competitive Tool of Data Mining
  • Overview of Accounting Information System Data Mining
  • Applying Data Mining Technique to Disassembly Sequence Planning
  • Approach for Image Data Mining Cultural Studies
  • Apriori Algorithm for the Data Mining of Global Cyberspace Security Issues
  • Database Data Mining: The Silent Invasion of Privacy
  • Data Management: Data Warehousing and Data Mining
  • Constructive Data Mining: Modeling Consumers’ Expenditure in Venezuela
  • Data Mining and Its Impact on Healthcare
  • Innovations and Perspectives in Data Mining and Knowledge Discovery
  • Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection
  • Linking Data Mining and Anomaly Detection Techniques
  • Data Mining and Pattern Recognition Models for Identifying Inherited Diseases
  • Credit Card Fraud Detection Through Data Mining
  • Data Mining Approach for Direct Marketing of Banking Products
  • Constructive Data Mining: Modeling Argentine Broad Money Demand
  • Data Mining-Based Dispatching System for Solving the Pickup and Delivery Problem
  • Commercially Available Data Mining Tools Used in the Economic Environment
  • Data Mining Climate Variability as an Indicator of U.S. Natural Gas
  • Analysis of Data Mining in the Pharmaceutical Industry
  • Data Mining-Driven Analysis and Decomposition in Agent Supply Chain Management Networks
  • Credit Evaluation Model for Banks Using Data Mining
  • Data Mining for Business Intelligence: Multiple Linear Regression
  • Cluster Analysis for Diabetic Retinopathy Prediction Using Data Mining Techniques
  • Data Mining for Fraud Detection Using Invoicing Data
  • Jaeger Uses Data Mining to Reduce Losses From Crime and Waste
  • Data Mining for Industrial Engineering and Management
  • Business Intelligence and Data Mining – Decision Trees
  • Data Mining for Traffic Prediction and Intelligent Traffic Management System
  • Building Data Mining Applications for CRM
  • Data Mining Optimization Algorithms Based on the Swarm Intelligence
  • Big Data Mining: Challenges, Technologies, Tools, and Applications
  • Data Mining Solutions for the Business Environment
  • Overview of Big Data Mining and Business Intelligence Trends
  • Data Mining Techniques for Customer Relationship Management
  • Classification-Based Data Mining Approach for Quality Control in Wine Production
  • Data Mining With Local Model Specification Uncertainty
  • Employing Data Mining Techniques in Testing the Effectiveness of Modernization Theory
  • Enhancing Information Management Through Data Mining Analytics
  • Evaluating Feature Selection Methods for Learning in Data Mining Applications
  • Extracting Formations From Long Financial Time Series Using Data Mining
  • Financial and Banking Markets and Data Mining Techniques
  • Fraudulent Financial Statements and Detection Through Techniques of Data Mining
  • Harmful Impact Internet and Data Mining Have on Society
  • Informatics, Data Mining, Econometrics, and Financial Economics: A Connection
  • Integrating Data Mining Techniques Into Telemedicine Systems
  • Investigating Tobacco Usage Habits Using Data Mining Approach
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, March 2). 82 Data Mining Essay Topic Ideas & Examples. https://ivypanda.com/essays/topic/data-mining-essay-topics/

"82 Data Mining Essay Topic Ideas & Examples." IvyPanda , 2 Mar. 2024, ivypanda.com/essays/topic/data-mining-essay-topics/.

IvyPanda . (2024) '82 Data Mining Essay Topic Ideas & Examples'. 2 March.

IvyPanda . 2024. "82 Data Mining Essay Topic Ideas & Examples." March 2, 2024. https://ivypanda.com/essays/topic/data-mining-essay-topics/.

1. IvyPanda . "82 Data Mining Essay Topic Ideas & Examples." March 2, 2024. https://ivypanda.com/essays/topic/data-mining-essay-topics/.

Bibliography

IvyPanda . "82 Data Mining Essay Topic Ideas & Examples." March 2, 2024. https://ivypanda.com/essays/topic/data-mining-essay-topics/.

  • Electronics Engineering Paper Topics
  • Cyber Security Topics
  • Google Paper Topics
  • Hacking Essay Topics
  • Identity Theft Essay Ideas
  • Internet Research Ideas
  • Microsoft Topics

M.Tech/Ph.D Thesis Help in Chandigarh | Thesis Guidance in Chandigarh

thesis paper data mining

[email protected]

thesis paper data mining

+91-9465330425

Data Mining

thesis paper data mining

IMAGES

  1. (PDF) Educational Data Mining: a Case Study

    thesis paper data mining

  2. Write My Research Paper for Me

    thesis paper data mining

  3. master thesis data mining

    thesis paper data mining

  4. Data Mining Thesis Ideas

    thesis paper data mining

  5. 😍 Data mining research paper. What are some good research topics in

    thesis paper data mining

  6. 😍 Data mining research paper. What are some good research topics in

    thesis paper data mining

VIDEO

  1. Data mining تنقيب بيانات

  2. Challenges and Opportunities for Educational Data Mining ! Research Paper review

  3. Thesis ReviewMl

  4. 01 Lecture 6 Part 01

  5. Unlock Your M.Tech Research Potential: Data Mining Solutions for Cutting-Edge Projects

  6. Data Mining Introduction

COMMENTS

  1. data mining Latest Research Papers

    Epidemic diseases can be extremely dangerous with its hazarding influences. They may have negative effects on economies, businesses, environment, humans, and workforce. In this paper, some of the factors that are interrelated with COVID-19 pandemic have been examined using data mining methodologies and approaches.

  2. Data Mining for the Internet of Things: Literature Review and

    In this paper, we survey the data mining in 3 different views: knowledge view, technique view, and application view. In knowledge view, we review classification, clustering, association analysis, time series analysis, and outlier analysis. ... [Ph.D. thesis] 2011 Iowa State University. Google Scholar. 17. Quinlan J. R. Induction of decision ...

  3. (PDF) Data mining techniques and applications

    The paper also focuses on the data mining strategies and processes in the current healthcare system in Bangladesh. This is a secondary source-based review paper. ... Thesis. Full-text available ...

  4. PDF The application of data mining methods

    This thesis first introduces the basic concepts of data mining, such as the definition of data mining, its basic function, common methods and basic process, and two common data mining methods, classification and clustering. Then a data mining application in network is discussed in detail, followed by a brief introduction on data mining ...

  5. (PDF) Trends in data mining research: A two-decade review using topic

    Address: 20, Myasnitskaya Street, Moscow 101000, Russia. Abstract. This work analyzes the intellectual structure of data mining as a scientific discipline. T o do this, we use. topic analysis ...

  6. A comprehensive survey of data mining

    Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To take a holistic view of the research trends in the area of data mining, a comprehensive survey is ...

  7. Adaptations of data mining methodologies: a systematic literature

    Background. The section introduces main data mining concepts, provides overview of existing data mining methodologies, and their evolution. Data mining is defined as a set of rules, processes, algorithms that are designed to generate actionable insights, extract patterns, and identify relationships from large datasets (Morabito, 2016).Data mining incorporates automated data extraction ...

  8. PDF A comprehensive survey of data mining

    To take a holistic view of the research trends in the area of data mining, a comprehensive survey is presented in this paper. This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper.

  9. Data Mining

    An exploration and evaluation of concept based interpretability methods as a measure of representation quality in neural networks Author: Remmits, Y. L. J. A., 30 Sept 2019 Supervisor: Menkovski, V. (Supervisor 1) & Stolikj, M. (External coach) Student thesis: Master

  10. [PDF] Data Mining: An AI Perspective

    This paper reviews the topics of interest from the IEEE International Conference on Data Mining from an AI perspective, including key AI ideas that have been used in both data mining and machine learning. Data mining, or knowledge discovery in databases (KDD), is an interdisciplinary area that integrates techniques from several fields including machine learning, statistics, and database ...

  11. PDF Data Mining: Concepts, Background and Methods of Integrating

    Briefly speaking, data mining refers to extracting useful information from vast amounts of data. Many other terms are being used to interpret data mining, such as knowledge mining from databases, knowledge extraction, data analysis, and data archaeology. Nowadays, it is commonly agreed that data mining is an essential step in the process of ...

  12. 50 selected papers in Data Mining and Machine Learning

    Active Sampling for Feature Selection, S. Veeramachaneni and P. Avesani, Third IEEE Conference on Data Mining, 2003. Heterogeneous Uncertainty Sampling for Supervised Learning, D. Lewis and J. Catlett, In Proceedings of the 11th International Conference on Machine Learning, 148-156, 1994. Learning When Training Data are Costly: The Effect of ...

  13. A sample study on applying data mining research techniques in

    Educational data mining: A sample of review and study case, World Journal on Educational Technolog, 2, 118-139. Sadic, S. (2008). Data mining including application of cognitive maps and decision tree algorithm, Unpublished Master Thesis, Istanbul: Istanbul Technical University, Institute of Science and Technology. Sezer, U. (2008).

  14. Educational data mining: prediction of students' academic performance

    Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest ...

  15. What Is Data Mining?

    Data mining is the process of extracting meaningful information from vast amounts of data. With data mining methods, organizations can discover hidden patterns, relationships, and trends in data, which they can use to solve business problems, make predictions, and increase their profits or efficiency. The term "data mining" is actually a ...

  16. PDF Data Mining in social media: An Analysis of Techniques and Applications

    The paper will also cover the data mining techniques and privacy implications associated with social media. Its findings will be beneficial to practitioners and researchers in the field of machine learning and data mining. Literature review The goal of this review is to provide a ...

  17. data mining techniques Latest Research Papers

    The information gain, gain ratio, gini decrease, chi-square, and relieff are used to rank the features. This work comprises the introduction, literature review, and proposed methodology parts. In this research paper, a new method of analyzing skin disease has been proposed in which six different data mining techniques are used to develop an ...

  18. Theses of the doctoral ( PhD ) dissertation Data mining and soft

    Semantic Scholar extracted view of "Theses of the doctoral ( PhD ) dissertation Data mining and soft computing algorithms for decision support systems" by A. Király. ... Search 218,252,515 papers from all fields of science. Search. Sign In Create Free Account. Corpus ID: 15013571;

  19. Data mining and management information systems

    Abstract and Figures. This paper studies the patterns found using clustering and Self Organizing Maps (SOM), both techniques of Data Mining (DM), and after searching in databases, it compares them ...

  20. PDF Data mining techniques applied in educational environments:

    This conference1 presents full papers (7-8 pages), short papers (4-6 pages) posters (2 pages) and demos related to the use of educational data mining (2 pages). In the figure below the increase in the number of jobs is evident: Table 1. Accepted works in the International Conference on Educational Data Mining. Papers.

  21. Thesis: Data Mining

    Data mining is the study of how to glean insights and intelligence from data sets which are often not integrated with each other in a common database, further adding a level of abstraction to the analysis, making its interpretation even more difficult (Buddhakulsomsiri, Zakarian, 2009). There is an exceptional level of insights that can be ...

  22. 82 Data Mining Essay Topic Ideas & Examples

    Commercial Uses of Data Mining. Data mining process entails the use of large relational database to identify the correlation that exists in a given data. The principal role of the applications is to sift the data to identify correlations. A Discussion on the Acceptability of Data Mining.

  23. Latest Research and Thesis topics in Data Mining

    Topics to study in data mining. Data mining is a relatively new thing and many are not aware of this technology. This can also be a good topic for M.Tech thesis and for presentations. Following are the topics under data mining to study: Fraud Detection. Crime Rate Prediction.