• Privacy Policy

Research Method

Home » Data Interpretation – Process, Methods and Questions

Data Interpretation – Process, Methods and Questions

Table of Contents

Data Interpretation

Data Interpretation

Definition :

Data interpretation refers to the process of making sense of data by analyzing and drawing conclusions from it. It involves examining data in order to identify patterns, relationships, and trends that can help explain the underlying phenomena being studied. Data interpretation can be used to make informed decisions and solve problems across a wide range of fields, including business, science, and social sciences.

Data Interpretation Process

Here are the steps involved in the data interpretation process:

  • Define the research question : The first step in data interpretation is to clearly define the research question. This will help you to focus your analysis and ensure that you are interpreting the data in a way that is relevant to your research objectives.
  • Collect the data: The next step is to collect the data. This can be done through a variety of methods such as surveys, interviews, observation, or secondary data sources.
  • Clean and organize the data : Once the data has been collected, it is important to clean and organize it. This involves checking for errors, inconsistencies, and missing data. Data cleaning can be a time-consuming process, but it is essential to ensure that the data is accurate and reliable.
  • Analyze the data: The next step is to analyze the data. This can involve using statistical software or other tools to calculate summary statistics, create graphs and charts, and identify patterns in the data.
  • Interpret the results: Once the data has been analyzed, it is important to interpret the results. This involves looking for patterns, trends, and relationships in the data. It also involves drawing conclusions based on the results of the analysis.
  • Communicate the findings : The final step is to communicate the findings. This can involve creating reports, presentations, or visualizations that summarize the key findings of the analysis. It is important to communicate the findings in a way that is clear and concise, and that is tailored to the audience’s needs.

Types of Data Interpretation

There are various types of data interpretation techniques used for analyzing and making sense of data. Here are some of the most common types:

Descriptive Interpretation

This type of interpretation involves summarizing and describing the key features of the data. This can involve calculating measures of central tendency (such as mean, median, and mode), measures of dispersion (such as range, variance, and standard deviation), and creating visualizations such as histograms, box plots, and scatterplots.

Inferential Interpretation

This type of interpretation involves making inferences about a larger population based on a sample of the data. This can involve hypothesis testing, where you test a hypothesis about a population parameter using sample data, or confidence interval estimation, where you estimate a range of values for a population parameter based on sample data.

Predictive Interpretation

This type of interpretation involves using data to make predictions about future outcomes. This can involve building predictive models using statistical techniques such as regression analysis, time-series analysis, or machine learning algorithms.

Exploratory Interpretation

This type of interpretation involves exploring the data to identify patterns and relationships that were not previously known. This can involve data mining techniques such as clustering analysis, principal component analysis, or association rule mining.

Causal Interpretation

This type of interpretation involves identifying causal relationships between variables in the data. This can involve experimental designs, such as randomized controlled trials, or observational studies, such as regression analysis or propensity score matching.

Data Interpretation Methods

There are various methods for data interpretation that can be used to analyze and make sense of data. Here are some of the most common methods:

Statistical Analysis

This method involves using statistical techniques to analyze the data. Statistical analysis can involve descriptive statistics (such as measures of central tendency and dispersion), inferential statistics (such as hypothesis testing and confidence interval estimation), and predictive modeling (such as regression analysis and time-series analysis).

Data Visualization

This method involves using visual representations of the data to identify patterns and trends. Data visualization can involve creating charts, graphs, and other visualizations, such as heat maps or scatterplots.

Text Analysis

This method involves analyzing text data, such as survey responses or social media posts, to identify patterns and themes. Text analysis can involve techniques such as sentiment analysis, topic modeling, and natural language processing.

Machine Learning

This method involves using algorithms to identify patterns in the data and make predictions or classifications. Machine learning can involve techniques such as decision trees, neural networks, and random forests.

Qualitative Analysis

This method involves analyzing non-numeric data, such as interviews or focus group discussions, to identify themes and patterns. Qualitative analysis can involve techniques such as content analysis, grounded theory, and narrative analysis.

Geospatial Analysis

This method involves analyzing spatial data, such as maps or GPS coordinates, to identify patterns and relationships. Geospatial analysis can involve techniques such as spatial autocorrelation, hot spot analysis, and clustering.

Applications of Data Interpretation

Data interpretation has a wide range of applications across different fields, including business, healthcare, education, social sciences, and more. Here are some examples of how data interpretation is used in different applications:

  • Business : Data interpretation is widely used in business to inform decision-making, identify market trends, and optimize operations. For example, businesses may analyze sales data to identify the most popular products or customer demographics, or use predictive modeling to forecast demand and adjust pricing accordingly.
  • Healthcare : Data interpretation is critical in healthcare for identifying disease patterns, evaluating treatment effectiveness, and improving patient outcomes. For example, healthcare providers may use electronic health records to analyze patient data and identify risk factors for certain diseases or conditions.
  • Education : Data interpretation is used in education to assess student performance, identify areas for improvement, and evaluate the effectiveness of instructional methods. For example, schools may analyze test scores to identify students who are struggling and provide targeted interventions to improve their performance.
  • Social sciences : Data interpretation is used in social sciences to understand human behavior, attitudes, and perceptions. For example, researchers may analyze survey data to identify patterns in public opinion or use qualitative analysis to understand the experiences of marginalized communities.
  • Sports : Data interpretation is increasingly used in sports to inform strategy and improve performance. For example, coaches may analyze performance data to identify areas for improvement or use predictive modeling to assess the likelihood of injuries or other risks.

When to use Data Interpretation

Data interpretation is used to make sense of complex data and to draw conclusions from it. It is particularly useful when working with large datasets or when trying to identify patterns or trends in the data. Data interpretation can be used in a variety of settings, including scientific research, business analysis, and public policy.

In scientific research, data interpretation is often used to draw conclusions from experiments or studies. Researchers use statistical analysis and data visualization techniques to interpret their data and to identify patterns or relationships between variables. This can help them to understand the underlying mechanisms of their research and to develop new hypotheses.

In business analysis, data interpretation is used to analyze market trends and consumer behavior. Companies can use data interpretation to identify patterns in customer buying habits, to understand market trends, and to develop marketing strategies that target specific customer segments.

In public policy, data interpretation is used to inform decision-making and to evaluate the effectiveness of policies and programs. Governments and other organizations use data interpretation to track the impact of policies and programs over time, to identify areas where improvements are needed, and to develop evidence-based policy recommendations.

In general, data interpretation is useful whenever large amounts of data need to be analyzed and understood in order to make informed decisions.

Data Interpretation Examples

Here are some real-time examples of data interpretation:

  • Social media analytics : Social media platforms generate vast amounts of data every second, and businesses can use this data to analyze customer behavior, track sentiment, and identify trends. Data interpretation in social media analytics involves analyzing data in real-time to identify patterns and trends that can help businesses make informed decisions about marketing strategies and customer engagement.
  • Healthcare analytics: Healthcare organizations use data interpretation to analyze patient data, track outcomes, and identify areas where improvements are needed. Real-time data interpretation can help healthcare providers make quick decisions about patient care, such as identifying patients who are at risk of developing complications or adverse events.
  • Financial analysis: Real-time data interpretation is essential for financial analysis, where traders and analysts need to make quick decisions based on changing market conditions. Financial analysts use data interpretation to track market trends, identify opportunities for investment, and develop trading strategies.
  • Environmental monitoring : Real-time data interpretation is important for environmental monitoring, where data is collected from various sources such as satellites, sensors, and weather stations. Data interpretation helps to identify patterns and trends that can help predict natural disasters, track changes in the environment, and inform decision-making about environmental policies.
  • Traffic management: Real-time data interpretation is used for traffic management, where traffic sensors collect data on traffic flow, congestion, and accidents. Data interpretation helps to identify areas where traffic congestion is high, and helps traffic management authorities make decisions about road maintenance, traffic signal timing, and other strategies to improve traffic flow.

Data Interpretation Questions

Data Interpretation Questions samples:

  • Medical : What is the correlation between a patient’s age and their risk of developing a certain disease?
  • Environmental Science: What is the trend in the concentration of a certain pollutant in a particular body of water over the past 10 years?
  • Finance : What is the correlation between a company’s stock price and its quarterly revenue?
  • Education : What is the trend in graduation rates for a particular high school over the past 5 years?
  • Marketing : What is the correlation between a company’s advertising budget and its sales revenue?
  • Sports : What is the trend in the number of home runs hit by a particular baseball player over the past 3 seasons?
  • Social Science: What is the correlation between a person’s level of education and their income level?

In order to answer these questions, you would need to analyze and interpret the data using statistical methods, graphs, and other visualization tools.

Purpose of Data Interpretation

The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to inform decision-making.

Data interpretation is important because it allows individuals and organizations to:

  • Understand complex data : Data interpretation helps individuals and organizations to make sense of complex data sets that would otherwise be difficult to understand.
  • Identify patterns and trends : Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships.
  • Make informed decisions: Data interpretation provides individuals and organizations with the information they need to make informed decisions based on the insights gained from the data analysis.
  • Evaluate performance : Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made.
  • Communicate findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.

Characteristics of Data Interpretation

Here are some characteristics of data interpretation:

  • Contextual : Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.
  • Iterative : Data interpretation is an iterative process, meaning that it often involves multiple rounds of analysis and refinement as more data becomes available or as new insights are gained from the analysis.
  • Subjective : Data interpretation is often subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. It is important to acknowledge and address these biases when interpreting data.
  • Analytical : Data interpretation involves the use of analytical tools and techniques to analyze and draw insights from data. These may include statistical analysis, data visualization, and other data analysis methods.
  • Evidence-based : Data interpretation is evidence-based, meaning that it is based on the data and the insights gained from the analysis. It is important to ensure that the data used in the analysis is accurate, relevant, and reliable.
  • Actionable : Data interpretation is actionable, meaning that it provides insights that can be used to inform decision-making and to drive action. The ultimate goal of data interpretation is to use the insights gained from the analysis to improve performance or to achieve specific goals.

Advantages of Data Interpretation

Data interpretation has several advantages, including:

  • Improved decision-making: Data interpretation provides insights that can be used to inform decision-making. By analyzing data and drawing insights from it, individuals and organizations can make informed decisions based on evidence rather than intuition.
  • Identification of patterns and trends: Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships. This information can be used to improve performance or to achieve specific goals.
  • Evaluation of performance: Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made. By analyzing data, organizations can identify strengths and weaknesses and make changes to improve their performance.
  • Communication of findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.
  • Better resource allocation: Data interpretation can help organizations allocate resources more efficiently by identifying areas where resources are needed most. By analyzing data, organizations can identify areas where resources are being underutilized or where additional resources are needed to improve performance.
  • Improved competitiveness : Data interpretation can give organizations a competitive advantage by providing insights that help to improve performance, reduce costs, or identify new opportunities for growth.

Limitations of Data Interpretation

Data interpretation has some limitations, including:

  • Limited by the quality of data: The quality of data used in data interpretation can greatly impact the accuracy of the insights gained from the analysis. Poor quality data can lead to incorrect conclusions and decisions.
  • Subjectivity: Data interpretation can be subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. This can lead to different interpretations of the same data.
  • Limited by analytical tools: The analytical tools and techniques used in data interpretation can also limit the accuracy of the insights gained from the analysis. Different analytical tools may yield different results, and some tools may not be suitable for certain types of data.
  • Time-consuming: Data interpretation can be a time-consuming process, particularly for large and complex data sets. This can make it difficult to quickly make decisions based on the insights gained from the analysis.
  • Incomplete data: Data interpretation can be limited by incomplete data sets, which may not provide a complete picture of the situation being analyzed. Incomplete data can lead to incorrect conclusions and decisions.
  • Limited by context: Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.

Difference between Data Interpretation and Data Analysis

Data interpretation and data analysis are two different but closely related processes in data-driven decision-making.

Data analysis refers to the process of examining and examining data using statistical and computational methods to derive insights and conclusions from it. It involves cleaning, transforming, and modeling the data to uncover patterns, relationships, and trends that can help in understanding the underlying phenomena.

Data interpretation, on the other hand, refers to the process of making sense of the findings from the data analysis by contextualizing them within the larger problem domain. It involves identifying the key takeaways from the data analysis, assessing their relevance and significance to the problem at hand, and communicating the insights in a clear and actionable manner.

In short, data analysis is about uncovering insights from the data, while data interpretation is about making sense of those insights and translating them into actionable recommendations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Approach

Research Approach – Types Methods and Examples

Significance of the Study

Significance of the Study – Examples and Writing...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Dissertation

Dissertation – Format, Example and Template

Data Verification

Data Verification – Process, Types and Examples

Literature Review

Literature Review – Types Writing Guide and...

8 Types of Data Analysis

The different types of data analysis include descriptive, diagnostic, exploratory, inferential, predictive, causal, mechanistic and prescriptive. Here’s what you need to know about each one.

Benedict Neo

Data analysis is an aspect of  data science and data analytics that is all about analyzing data for different kinds of purposes. The data analysis process involves inspecting, cleaning, transforming and modeling data to draw useful insights from it.

What Are the Different Types of Data Analysis?

  • Descriptive analysis
  • Diagnostic analysis
  • Exploratory analysis
  • Inferential analysis
  • Predictive analysis
  • Causal analysis
  • Mechanistic analysis
  • Prescriptive analysis

With its multiple facets, methodologies and techniques, data analysis is used in a variety of fields, including business, science and social science, among others. As businesses thrive under the influence of technological advancements in data analytics, data analysis plays a huge role in  decision-making , providing a better, faster and more efficacious system that minimizes risks and reduces  human biases .

That said, there are different kinds of data analysis catered with different goals. We’ll examine each one below.

Two Camps of Data Analysis

Data analysis can be divided into two camps, according to the book  R for Data Science :

  • Hypothesis Generation — This involves looking deeply at the data and combining your domain knowledge to generate hypotheses about why the data behaves the way it does.
  • Hypothesis Confirmation — This involves using a precise mathematical model to generate falsifiable predictions with statistical sophistication to confirm your prior hypotheses.

Types of Data Analysis

Data analysis can be separated and organized into types, arranged in an increasing order of complexity.

1. Descriptive Analysis

The goal of descriptive analysis is to describe or summarize a set of data. Here’s what you need to know:

  • Descriptive analysis is the very first analysis performed in the data analysis process.
  • It generates simple summaries about samples and measurements.
  • It involves common, descriptive statistics like measures of central tendency, variability, frequency and position.

Descriptive Analysis Example

Take the  Covid-19 statistics page on Google, for example. The line graph is a pure summary of the cases/deaths, a presentation and description of the population of a particular country infected by the virus.

Descriptive analysis is the first step in analysis where you summarize and describe the data you have using descriptive statistics, and the result is a simple presentation of your data.

More on Data Analysis: Data Analyst vs. Data Scientist: Similarities and Differences Explained

2. Diagnostic Analysis 

Diagnostic analysis seeks to answer the question “Why did this happen?” by taking a more in-depth look at data to uncover subtle patterns. Here’s what you need to know:

  • Diagnostic analysis typically comes after descriptive analysis, taking initial findings and investigating why certain patterns in data happen. 
  • Diagnostic analysis may involve analyzing other related data sources, including past data, to reveal more insights into current data trends.  
  • Diagnostic analysis is ideal for further exploring patterns in data to explain anomalies.  

Diagnostic Analysis Example

A footwear store wants to review its website traffic levels over the previous 12 months. Upon compiling and assessing the data, the company’s marketing team finds that June experienced above-average levels of traffic while July and August witnessed slightly lower levels of traffic. 

To find out why this difference occurred, the marketing team takes a deeper look. Team members break down the data to focus on specific categories of footwear. In the month of June, they discovered that pages featuring sandals and other beach-related footwear received a high number of views while these numbers dropped in July and August. 

Marketers may also review other factors like seasonal changes and company sales events to see if other variables could have contributed to this trend.   

3. Exploratory Analysis (EDA)

Exploratory analysis involves examining or exploring data and finding relationships between variables that were previously unknown. Here’s what you need to know:

  • EDA helps you discover relationships between measures in your data, which are not evidence for the existence of the correlation, as denoted by the phrase, “ Correlation doesn’t imply causation .”
  • It’s useful for discovering new connections and forming hypotheses. It drives design planning and data collection.

Exploratory Analysis Example

Climate change is an increasingly important topic as the global temperature has gradually risen over the years. One example of an exploratory data analysis on climate change involves taking the rise in temperature over the years from 1950 to 2020 and the increase of human activities and industrialization to find relationships from the data. For example, you may increase the number of factories, cars on the road and airplane flights to see how that correlates with the rise in temperature.

Exploratory analysis explores data to find relationships between measures without identifying the cause. It’s most useful when formulating hypotheses.

4. Inferential Analysis

Inferential analysis involves using a small sample of data to infer information about a larger population of data.

The goal of statistical modeling itself is all about using a small amount of information to extrapolate and generalize information to a larger group. Here’s what you need to know:

  • Inferential analysis involves using estimated data that is representative of a population and gives a measure of uncertainty or standard deviation to your estimation.
  • The  accuracy of inference depends heavily on your sampling scheme. If the sample isn’t representative of the population, the generalization will be inaccurate. This is known as the  central limit theorem .

Inferential Analysis Example

The idea of drawing an inference about the population at large with a smaller sample size is intuitive. Many statistics you see on the media and the internet are inferential; a prediction of an event based on a small sample. For example, a psychological study on the benefits of sleep might have a total of 500 people involved. When they followed up with the candidates, the candidates reported to have better overall attention spans and well-being with seven-to-nine hours of sleep, while those with less sleep and more sleep than the given range suffered from reduced attention spans and energy. This study drawn from 500 people was just a tiny portion of the 7 billion people in the world, and is thus an inference of the larger population.

Inferential analysis extrapolates and generalizes the information of the larger group with a smaller sample to generate analysis and predictions.

5. Predictive Analysis

Predictive analysis involves using historical or current data to find patterns and make predictions about the future. Here’s what you need to know:

  • The accuracy of the predictions depends on the input variables.
  • Accuracy also depends on the types of models. A linear model might work well in some cases, and in other cases it might not.
  • Using a variable to predict another one doesn’t denote a causal relationship.

Predictive Analysis Example

The 2020 US election is a popular topic and many  prediction models are built to predict the winning candidate. FiveThirtyEight did this to forecast the 2016 and 2020 elections. Prediction analysis for an election would require input variables such as historical polling data, trends and current polling data in order to return a good prediction. Something as large as an election wouldn’t just be using a linear model, but a complex model with certain tunings to best serve its purpose.

Predictive analysis takes data from the past and present to make predictions about the future.

More on Data: Explaining the Empirical for Normal Distribution

6. Causal Analysis

Causal analysis looks at the cause and effect of relationships between variables and is focused on finding the cause of a correlation. Here’s what you need to know:

  • To find the cause, you have to question whether the observed correlations driving your conclusion are valid. Just looking at the surface data won’t help you discover the hidden mechanisms underlying the correlations.
  • Causal analysis is applied in randomized studies focused on identifying causation.
  • Causal analysis is the gold standard in data analysis and scientific studies where the cause of phenomenon is to be extracted and singled out, like separating wheat from chaff.
  • Good data is hard to find and requires expensive research and studies. These studies are analyzed in aggregate (multiple groups), and the observed relationships are just average effects (mean) of the whole population. This means the results might not apply to everyone.

Causal Analysis Example  

Say you want to test out whether a new drug improves human strength and focus. To do that, you perform randomized control trials for the drug to test its effect. You compare the sample of candidates for your new drug against the candidates receiving a mock control drug through a few tests focused on strength and overall focus and attention. This will allow you to observe how the drug affects the outcome.

Causal analysis is about finding out the causal relationship between variables, and examining how a change in one variable affects another.

7. Mechanistic Analysis

Mechanistic analysis is used to understand exact changes in variables that lead to other changes in other variables. Here’s what you need to know:

  • It’s applied in physical or engineering sciences, situations that require high precision and little room for error, only noise in data is measurement error.
  • It’s designed to understand a biological or behavioral process, the pathophysiology of a disease or the mechanism of action of an intervention. 

Mechanistic Analysis Example

Many graduate-level research and complex topics are suitable examples, but to put it in simple terms, let’s say an experiment is done to simulate safe and effective nuclear fusion to power the world. A mechanistic analysis of the study would entail a precise balance of controlling and manipulating variables with highly accurate measures of both variables and the desired outcomes. It’s this intricate and meticulous modus operandi toward these big topics that allows for scientific breakthroughs and advancement of society.

Mechanistic analysis is in some ways a predictive analysis, but modified to tackle studies that require high precision and meticulous methodologies for physical or engineering science .

8. Prescriptive Analysis 

Prescriptive analysis compiles insights from other previous data analyses and determines actions that teams or companies can take to prepare for predicted trends. Here’s what you need to know: 

  • Prescriptive analysis may come right after predictive analysis, but it may involve combining many different data analyses. 
  • Companies need advanced technology and plenty of resources to conduct prescriptive analysis. AI systems that process data and adjust automated tasks are an example of the technology required to perform prescriptive analysis.  

Prescriptive Analysis Example

Prescriptive analysis is pervasive in everyday life, driving the curated content users consume on social media. On platforms like TikTok and Instagram, algorithms can apply prescriptive analysis to review past content a user has engaged with and the kinds of behaviors they exhibited with specific posts. Based on these factors, an algorithm seeks out similar content that is likely to elicit the same response and recommends it on a user’s personal feed. 

When to Use the Different Types of Data Analysis 

  • Descriptive analysis summarizes the data at hand and presents your data in a comprehensible way.
  • Diagnostic analysis takes a more detailed look at data to reveal why certain patterns occur, making it a good method for explaining anomalies. 
  • Exploratory data analysis helps you discover correlations and relationships between variables in your data.
  • Inferential analysis is for generalizing the larger population with a smaller sample size of data.
  • Predictive analysis helps you make predictions about the future with data.
  • Causal analysis emphasizes finding the cause of a correlation between variables.
  • Mechanistic analysis is for measuring the exact changes in variables that lead to other changes in other variables.
  • Prescriptive analysis combines insights from different data analyses to develop a course of action teams and companies can take to capitalize on predicted outcomes. 

A few important tips to remember about data analysis include:

  • Correlation doesn’t imply causation.
  • EDA helps discover new connections and form hypotheses.
  • Accuracy of inference depends on the sampling scheme.
  • A good prediction depends on the right input variables.
  • A simple linear model with enough data usually does the trick.
  • Using a variable to predict another doesn’t denote causal relationships.
  • Good data is hard to find, and to produce it requires expensive research.
  • Results from studies are done in aggregate and are average effects and might not apply to everyone.​

Recent Expert Contributors Articles

How to Check If a Checkbox Is Checked in JavaScript and jQuery

  • How it works

researchprospect post subheader

Chapter 4 – Data Analysis and Discussion (example)

Disclaimer: This is not a sample of our professional work. The paper has been produced by a student. You can view samples of our work here . Opinions, suggestions, recommendations and results in this piece are those of the author and should not be taken as our company views.

Type of Academic Paper – Dissertation Chapter

Academic Subject – Marketing

Word Count – 2964 words

Reliability Analysis

Before conducting any analysis on the data, all the data’s reliability was analyzed based on Cronbach’s Alpha value. The reliability analysis was performed on the complete data of the questionnaire. The reliability of the data was found to be (0.922), as shown in the results of the reliability analysis provided below in table 4.1. However, the complete results output of the reliability analysis is given in the appendix.

Reliability Analysis (N=200)

The Cronbach’s Alpha value between (0.7-1.0) is considered to have excellent reliability. The Cronbach’s Alpha value of the data was found to be (0.922); therefore, this indicated that the questionnaire data had excellent reliability. All of the 29 items of the questionnaire had excellent reliability, and if they are taken for further analysis, they can generate results with 92.2% reliability.

Frequency Distribution Analysis

First of all, the frequency distribution analysis was performed on the demographic variables using SPSS to identify the respondents’ demographic composition. Section 1 of the questionnaire had 5 demographic questions to identify; gender, age group, annual income, marital status, and education level of the research sample. The frequency distribution results shown in table 4.2 below indicated that there were 200 respondents in total, out of which 50% were male, and 50% were female. This shows that the research sample was free from gender-based biases as males and females had equal representation in the sample.

Moreover, the frequency distribution analysis suggested three age groups; ‘20-35’, ‘36-60’ and ‘Above 60’. 39% of the respondents belonged to the ‘20-35’ age group, while 56.5% of the respondents belonged to the ‘36-60’ age group and the remaining 4.5% belonged to the age group of ‘Above 60’.

Furthermore, the annual income level was divided into four categories. The income values were in GBP. It was found that 13% of the respondents had income ‘up to 30000’, 27% had income between ‘31000 to 50000’, 52.5% had income between ‘51000 to 100000’, and 7.5% had income ‘Above 100000’. This suggests that most of the respondents had an annual income between ‘31000 to 50000’ GBP.

The frequency distribution analysis indicated that 61% of respondents were single, while 39% were married, as indicated in table 4.2. This means that most of the respondents were single. Based on frequency distribution, it was also found that the education level of the respondents was analyzed using four categories of education level, namely; diploma, graduate, master, and doctorate. The results depicted that 37% of the respondents were diploma holders, 46% were graduates, 16% had master-level education, while only 2% had a doctorate. This suggests that most of the respondents were either graduate or diploma holders.

Frequency Distribution of the Demographic Characteristics of the respondents (N=200)

Multiple Regression Analysis

The hypotheses were tested using linear multiple regression analysis to determine which of the dependent variables had a significant positive effect on the customer loyalty of the five-star hotel brands. The results of the regression analysis are summarized in the following table 4.3. However, the complete SPSS output of the regression analysis is given in the appendix. Table 4.3

Multiple regression analysis showing the predictive values of dependent variables (Brand image, corporate identity, public relation, perceived quality, and trustworthiness) on customer loyalty (N=200)

Predictors: (Constant), Trustworthiness, Public Relation, Brand Image, Corporate Identity, Perceived Quality Dependent Variable: Customer Loyalty

The significance value (p-value) of ANOVA was found to be (0.000) as shown in the above

table, which was less than 0.05. This suggested that the model equation was significantly fitted

on the data. Moreover, the adjusted R-Square value was (0.897), which indicated that the model’s predictors explained 89.7% variation in customer loyalty.

Furthermore, the presence of the significant effect of the 5 predicting variables on customer loyalty was identified based on their sig. Values. The effect of a predicting variable is significant if its sig. Value is less than 0.05 or if its t-Statistics value is greater than 2. It was found that the variable ‘brand image’ had sig. Value (0.046), the variable ‘corporate identity had sig. Value (0.482), the variable ‘public relation’ had sig. Value (0.400), while the variable ‘perceived quality’ had sig. value (0.000), and the variable ‘trustworthiness’ had sig. value (0.652).

Hire an Expert Dissertation Chapter Writer

Orders completed by our expert writers are

  • Formally drafted in an academic style
  • Free Amendments and 100% Plagiarism Free – or your money back!
  • 100% Confidential and Timely Delivery!
  • Free anti-plagiarism report
  • Appreciated by thousands of clients. Check client reviews

Hire an Expert Dissertation Chapter Writer

Hypotheses Assessment

Based on the regression analysis, it was found that brand image and perceived quality have a significant positive effect on customer loyalty. In contrast, corporate identity, public relations, and trustworthiness have an insignificant effect on customer loyalty. Therefore the two hypotheses; H1 and H4 were accepted, however the three hypotheses; H2, H3, and H5 were rejected as indicated in table 4.4.

Hypothesis Assessment Summary Table (N=200)

The insignificant variables (corporate identity, public relation and trustworthiness) were excluded from equation 1. After excluding the insignificant variables from the model equation 1, the final equation becomes as follows;

Customer loyalty                 = α + 0.074 (Brand image) + 0.991 (Perceived quality) + €

The above equation suggests that a 1 unit increase in brand image is likely to result in 0.074 units increase customer loyalty. In comparison, 1 unit increase in perceived quality can result in 0.991 units increase in customer loyalty.

Cross Tabulation Analysis

To further explore the results, the demographic variables’ data were cross-tabulated against the respondents’ responses regarding customer loyalty using SPSS. In this regards the five demographic variables; gender, age group, annual income, marital status and education level were cross-tabulated against the five questions regarding customer loyalty to know the difference between the customer loyalty of five-star hotels of UK based on demographic differences. The results of the cross-tabulation analysis are given in the appendix. The results are graphically presented in bar charts too, which are also given in the appendix.

Cross Tabulation of Gender against Customer Loyalty

The gender was cross-tabulated against question 1 to 5 of the questionnaire to identify the gender differences between male and female respondents’ responses regarding customer loyalty of five-star hotels of the UK. The results indicated that out of 100 males, 57% were extremely agreed that they stay at one hotel, while out of 100 females, 80% were extremely agreed they stay at one hotel. This shows that in comparison with a male, females were more agreed that they stayed at one hotel and were found to be more loyal towards their respective hotel brands.

The cross-tabulation results further indicated that out of 100 males, 53% agreed that they always say positive things about their respective hotel brand to other people. In contrast, out of 100 females, 77% were extremely agreed. Based on the results, the females were found to be in more agreement than males that they always say positive things about their respective hotel brand to other people.

It was further found that out of 100 males, 53% were extremely agreed that they recommend their hotel brand to others, however, out of 100 females, 74% were extremely agreed to this statement. This result also suggested that females were more in agreement than males to recommend their hotel brand to others.

Moreover, it was found that out of 100 males, 54% were extremely agreed that they don’t seek alternative hotel brands, while out of 100 females, 79% were extremely agreed to this statement. This result also suggested that females were more agreed than males that they don’t seek alternative hotel brands, and so were found to be more loyal than males.

Furthermore, it was identified that out of 100 male respondents 56% were extremely agreed that they would continue to go to the same hotel irrespective of the prices, however out of 100 females 79% were extremely agreed. Based on this result, it was clear that females were more agreed than males that they would continue to go to the same hotel irrespective of the prices, so females were found to be more loyal than males.

After cross tabulating ‘gender’ against the response of the 5 questions regarding customer loyalty the females were found to be more loyal customers of the five-star hotel brands than males as they were found to be more in agreement than the man that they stay at one hotel, always say positive things about their hotel brand to other people, recommend their hotel brand to others, don’t seek alternative hotel brands and would continue to go to the same hotel irrespective of the prices.

Cross Tabulation of Age Group against Customer Loyalty

Afterward, the second demographic variable, ‘age groups’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify the difference between the customer loyalty of customers of different age groups. The results indicated that out of 78 respondents between 20 to 35 years of age, 61.5% were extremely agreed that they stayed at one hotel. While out of 113 respondents who were between 36 to 60 years of age, 72.6% were extremely agreed that they always stay at one hotel. However, out of 9 respondents who were above 60 years of age, 77.8% agreed that they always stay at one hotel. This indicated that customers of 36-60 and above 60 age groups were more loyal to their hotel brands as they were keener to stay at a respective hotel brand.

Content removed…

Cross Tabulation of Annual Income against Customer Loyalty

The third demographic variable, ‘annual income’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective annual income levels. The results indicated that out of 26 respondents who had annual income up to 30000 GBP, 84.6% were extremely agreed that they always stay at one hotel. However, out of 54 respondents who had annual income from 31000 to 50000 GBP, 98.1% agreed that they always stay at one hotel. Although out of 105 respondents had annual income from 50000 to 100000 GBP, 49.5% were extremely agreed that they always stay at one hotel. While out of 10 respondents who had annual income from 50000 to 1000000 GBP, 66.7% agreed that they always stay at one hotel. This indicated that customers of annual income levels from 31000 to 50000 GBP were more loyal to their hotel brands than the customers having other annual income levels.

Cross Tabulation of Marital Status against Customer Loyalty

Furthermore, the fourth demographic variable the ‘marital status’ was cross-tabulated against questions 1 to 5 of the questionnaire to understand the difference between married and unmarried respondents regarding customer loyalty of five-star hotels of the UK. The cross-tabulation analysis results indicated that out of 122 single respondents, 59.8% were extremely agreed that they stay at one hotel. However, out of 78 married respondents, around 82% of respondents agreed that they stay at one hotel. Thus, the married customers were more loyal to their hotel brands than unmarried customers because, in comparison, married customers prefer to stay at one hotel brand.

To proceed with the cross-tabulation results, out of 122 single respondents, 55.7% were extremely agreed upon always saying positive things about their hotel brands to other people. On the other hand, out of 78 married respondents, 79.5% were extremely agreed. Hence, upon evaluating the results, it can be said that married customers have more customer loyalty as they are in more agreement than singles. They always give positive feedback regarding their respective hotel brand to other people.

Cross Tabulation of Education Level against Customer Loyalty

Subsequently, the fifth demographic variable, ‘education level’ was cross-tabulated against questions 1 to 5 of the questionnaire to identify which of the customers were most loyal based on their respective education levels. The results indicated that out of 50 respondents who were diploma holders, 67.6% were extremely agreed that they always stay at one hotel. While out of 64 respondents who were graduates, 69.6% were extremely agreed that they always stay at one hotel. Although out of 22 respondents who were masters, 68.8% were extremely agreed that they always stay at one hotel. However, out of 2 respondents with doctorates, 50% were extremely agreed to always stay at one hotel. This indicated that customers who were graduates were more loyal than the customers with diplomas, masters, or doctorates.

Moreover, 66.2% of the diploma holders were extremely agreed that they always say positive things about their hotel brand to other people. In comparison, 64.1% of the respondents who were graduates were extremely agreed. However, 65.5% of the respondents who had masters were extremely agreed, and 50% of the respondents who had doctorates agreed with the statement. Based on this result customers having masters were the most loyal customers of their respective five-star hotel brands.

Need a Dissertation Chapter On a Similar Topic?

In this subsection, the findings of this study are compared and contrasted with the literature to identify which of the past research supports the present research findings. This present study based on regression analysis suggested that brand image can have a significant positive effect on the customer loyalty of five-star hotels in the UK. This finding was supported by the research of Heung et al. (1996), who also suggested that the hotel’s brand image can play a vital role in preserving a high ratio of customer loyalty.

Moreover, this present study also suggested that perceived quality was the second factor that was found to have a significant positive effect on customer loyalty. The perceived quality was evaluated based on; service quality, comfort, staff courtesy, customer satisfaction, and service quality expectations. In this regard, Tat and Raymond (2000) research supports the findings of this study. The staff service quality was found to affect customer loyalty and the level of satisfaction. Teas (1994) had also found service quality to affect customer loyalty. However, Teas also found that staff empathy (staff courtesy) towards customers can also affect customer loyalty. The research of Rowley and Dawes (1999) also supports the finding of this present study. The users’ expectations about the quality and nature of the services affect customer loyalty. A study by Oberoi and Hales (1990) was found to agree with the present study’s findings, as they had found the quality of staff service to affect customer loyalty.

Summary of the Findings

  • The brand image was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in brand image.
  • The corporate identity was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in corporate identity.
  • Public relations was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in public relations.
  • Perceived quality was found to have a significant positive effect on customer loyalty. Therefore customer loyalty is likely to increase with the increase in perceived quality.
  • Trustworthiness was found to have an insignificant effect on customer loyalty. Therefore customer loyalty is not likely to increase with the increase in trustworthiness.
  • The female customers were found to be more loyal customers of the five-star hotel brands than male customers.
  • The customers of age from 36 to 60 years were more loyal to their hotel brands than the customers of age from 20 to 35 and above 60.
  • The customers who had annual income from 31000 to 50000 were more loyal customers of their respective hotel brands than those who had an annual income level of less than 31000 or more than 50000.
  • The married respondents had more customer loyalty than unmarried customers, towards five-star hotel brands of the UK.

The customers who had bachelor degrees and the customers who had master degrees were more loyal to the customers who had a diploma or doctorate.

Bryman, A., Bell, E., 2015. Business Research Methods. Oxford University Press.

Daum, P., 2013. International Synergy Management: A Strategic Approach for Raising Efficiencies in the Cross-border Interaction Process. Anchor Academic Publishing (aap_verlag).

Dümke, R., 2002. Corporate Reputation and its Importance for Business Success: A European

Perspective and its Implication for Public Relations Consultancies. diplom.de.

Guetterman, T.C., 2015. Descriptions of Sampling Practices Within Five Approaches to Qualitative Research in Education and the Health Sciences. Forum Qualitative Sozialforschung /

Forum: Qualitative Social Research 16.

Haq, M., 2014. A Comparative Analysis of Qualitative and Quantitative Research Methods and a Justification for Adopting Mixed Methods in Social Research (PDF Download Available).

ResearchGate 1–22. doi:http://dx.doi.org/10.13140/RG.2.1.1945.8640

Kelley, ., Clark, B., Brown, V., Sitzia, J., 2003. Good practice in the conduct and reporting of survey research. Int J Qual Health Care 15, 261–266. doi:10.1093/intqhc/mzg031

Lewis, S., 2015. Qualitative Inquiry and Research Design: Choosing Among Five Approaches.

Health Promotion Practice 16, 473–475. doi:10.1177/1524839915580941

Saunders, M., 2003. Research Methods for Business Students. Pearson Education India.

Saunders, M.N.K., Tosey, P., 2015. Handbook of Research Methods on Human Resource

Development. Edward Elgar Publishing.

DMCA / Removal Request

If you are the original writer of this Dissertation Chapter and no longer wish to have it published on the www.ResearchProspect.com then please:

Request The Removal Of This Dissertation Chapter

Frequently Asked Questions

How to write the results chapter of a dissertation.

To write the Results chapter of a dissertation:

  • Present findings objectively.
  • Use tables, graphs, or charts for clarity.
  • Refer to research questions/hypotheses.
  • Provide sufficient details.
  • Avoid interpretation; save that for the Discussion chapter.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Search Menu
  • Sign in through your institution
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Qualitative Research (2nd edn)

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Qualitative Research (2nd edn)

31 Interpretation In Qualitative Research: What, Why, How

Allen Trent, College of Education, University of Wyoming

Jeasik Cho, Department of Educational Studies, University of Wyoming

  • Published: 02 September 2020
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter addresses a wide range of concepts related to interpretation in qualitative research, examines the meaning and importance of interpretation in qualitative inquiry, and explores the ways methodology, data, and the self/researcher as instrument interact and impact interpretive processes. Additionally, the chapter presents a series of strategies for qualitative researchers engaged in the process of interpretation and closes by presenting a framework for qualitative researchers designed to inform their interpretations. The framework includes attention to the key qualitative research concepts transparency, reflexivity, analysis, validity, evidence, and literature. Four questions frame the chapter: What is interpretation, and why are interpretive strategies important in qualitative research? How do methodology, data, and the researcher/self impact interpretation in qualitative research? How do qualitative researchers engage in the process of interpretation? And, in what ways can a framework for interpretation strategies support qualitative researchers across multiple methodologies and paradigms?

“ All human knowledge takes the form of interpretation.” In this seemingly simple statement, the late German philosopher Walter Benjamin asserted that all knowledge is mediated and constructed. In doing so, he situates himself as an interpretivist, one who believes that human subjectivity, individuals’ characteristics, feelings, opinions, and experiential backgrounds impact observations, analysis of these observations, and resultant knowledge/truth constructions. Hammersley ( 2013 ) noted,

People—unlike atoms … actively interpret or make sense of their environment and of themselves; the ways in which they do this are shaped by the particular cultures in which they live; and these distinctive cultural orientations will strongly influence not only what they believe but also what they do. (p. 26)

Contrast this perspective with positivist claims that knowledge is based exclusively on external facts, objectively observed and recorded. Interpretivists, then, acknowledge that if positivistic notions of knowledge and truth are inadequate to explain social phenomena, then positivist, hard science approaches to research (i.e., the scientific method and its variants) are also inadequate and can even have a detrimental impact. According to Polyani (1967), “The ideal of exact science would turn out to be fundamentally misleading and possibly a source of devastating fallacies” (as cited in Packer, 2018 , p. 71). So, although the literature often contrasts quantitative and qualitative research as largely a difference in kinds of data employed (numerical vs. linguistic), instead, the primary differentiation is in the foundational, paradigmatic assumptions about truth, knowledge, and objectivity.

This chapter is about interpretation and the strategies that qualitative researchers use to interpret a wide variety of “texts.” Knowledge, we assert, is constructed, both individually (constructivism) and socially (constructionism). We accept this as our starting point. Our aim here is to share our perspective on a broad set of concepts associated with the interpretive, or meaning-making, process. Although it may happen at different times and in different ways, interpretation is part of almost all qualitative research.

Qualitative research is an umbrella term that encompasses a wide array of paradigmatic views, goals, and methods. Still, there are key unifying elements that include a generally constructionist epistemological standpoint, attention to primarily linguistic data, and generally accepted protocols or syntax for conducting research. Typically, qualitative researchers begin with a starting point—a curiosity, a problem in need of solutions, a research question, and/or a desire to better understand a situation from the “native” perspectives of the individuals who inhabit that context. This is what anthropologists call the emic , or insider’s, perspective. Olivier de Sardan ( 2015 ) wrote, “It evokes the meaning that social facts have for the actors concerned. It is opposed to the term etic , which, at times, designates more external or ‘objective’ data, and, at others, the researcher’s interpretive analysis” (p. 65).

From this starting point, researchers determine the appropriate kinds of data to collect, engage in fieldwork as participant observers to gather these data, organize the data, look for patterns, and attempt to understand the emic perspectives while integrating their own emergent interpretations. Researchers construct meaning from data by synthesizing research “findings,” “assertions,” or “theories” that can be shared so that others may also gain insights from the conducted inquiry. This interpretive process has a long history; hermeneutics, the theory of interpretation, blossomed in the 17th century in the form of biblical exegesis (Packer, 2018 ).

Although there are commonalities that cut across most forms of qualitative research, this is not to say that there is an accepted, linear, standardized approach. To be sure, there are an infinite number of variations and nuances in the qualitative research process. For example, some forms of inquiry begin with a firm research question; others start without even a clear focus for study. Grounded theorists begin data analysis and interpretation very early in the research process, whereas some case study researchers, for example, may collect data in the field for a period of time before seriously considering the data and its implications. Some ethnographers may be a part of the context (e.g., observing in classrooms), but they may assume more observer-like roles, as opposed to actively participating in the context. Alternatively, action researchers, in studying issues related to their own practice, are necessarily situated toward the participant end of the participant–observer continuum.

Our focus here is on one integrated part of the qualitative research process, interpretation, the hermeneutic process of collective and individual “meaning making.” Like Willig ( 2017 ), we believe “interpretation is at the heart of qualitative research because qualitative research is concerned with meaning and the process of meaning-making … qualitative data … needs to be given meaning by the researcher” (p. 276). As we discuss throughout this chapter, researchers take a variety of approaches to interpretation in qualitative work. Four general questions guide our explorations:

What is interpretation, and why are interpretive strategies important in qualitative research?

How do methodology, data, and the researcher/self impact interpretation in qualitative research?

How do qualitative researchers engage in the process of interpretation?

In what ways can a framework for interpretation strategies support qualitative researchers across multiple methodological and paradigmatic views?

We address each of these guiding questions in our attempt to explicate our interpretation of “interpretation” and, as educational researchers, we include examples from our own work to illustrate some key concepts.

What Is Interpretation, and Why Are Interpretive Strategies Important in Qualitative Research?

Qualitative researchers and those writing about qualitative methods often intertwine the terms analysis and interpretation . For example, Hubbard and Power ( 2003 ) described data analysis as “bringing order, structure, and meaning to the data” (p. 88). To us, this description combines analysis with interpretation. Although there is nothing wrong with this construction, our understanding aligns more closely with Mills’s ( 2018 ) claim that, “put simply, analysis involves summarizing what’s in the data, whereas interpretation involves making sense of—finding meaning in—that data” (p. 176). Hesse-Biber ( 2017 ) also separated out the essential process of interpretation. She described the steps in qualitative analysis and interpretation as data preparation, data exploration, and data reduction (all part of Mills’s “analysis” processes), followed by interpretation (pp. 307–328). Willig ( 2017 ) elaborated: analysis, she claims, is “sober and systematic,” whereas interpretation is associated with “creativity and the imagination … interpretation is seen as stimulating, it is interesting and it can be illuminating” (p. 276). For the purpose of this chapter, we will adhere to Mills’s distinction, understanding analysis as summarizing and organizing and interpretation as meaning making. Unavoidably, these closely related processes overlap and interact, but our focus will be primarily on the more complex of these endeavors, interpretation. Interpretation, in this sense, is in part translation, but translation is not an objective act. Instead, translation necessarily involves selectivity and the ascribing of meaning. Qualitative researchers “aim beneath manifest behavior to the meaning events have for those who experience them” (Eisner, 1991 , p. 35). The presentation of these insider/emic perspectives, coupled with researchers’ own interpretations, is a hallmark of qualitative research.

Qualitative researchers have long borrowed from extant models for fieldwork and interpretation. Approaches from anthropology and the arts have become especially prominent. For example, Eisner’s ( 1991 ) form of qualitative inquiry, educational criticism , draws heavily on accepted models of art criticism. T. Barrett ( 2011 ), an authority on art criticism, described interpretation as a complex set of processes based on a set of principles. We believe many of these principles apply as readily to qualitative research as they do to critique. The following principles, adapted from T. Barrett’s principles of interpretation (2011), inform our examination:

Qualitative phenomena have “aboutness” : All social phenomena have meaning, but meanings in this context can be multiple, even contradictory.

Interpretations are persuasive arguments : All interpretations are arguments, and qualitative researchers, like critics, strive to build strong arguments grounded in the information, or data, available.

  Some interpretations are better than others : Barrett noted that “some interpretations are better argued, better grounded with evidence, and therefore more reasonable, more certain, and more acceptable than others.” This contradicts the argument that “all interpretations are equal,” heard in the common refrain, “Well, that’s just your interpretation.”

There can be different, competing, and contradictory interpretations of the same phenomena : As noted at the beginning of this chapter, we acknowledge that subjectivity matters, and, unavoidably, it impacts one’s interpretations. As Barrett noted, “Interpretations are often based on a worldview.”

Interpretations are not (and cannot be) “right,” but instead, they can be more or less reasonable, convincing, and informative : There is never one “true” interpretation, but some interpretations are more compelling than others.

Interpretations can be judged by coherence, correspondence, and inclusiveness : Does the argument/interpretation make sense (coherence)? Does the interpretation fit the data (correspondence)? Have all data been attended to, including outlier data that do not necessarily support identified themes (inclusiveness)?

Interpretation is ultimately a communal endeavor : Initial interpretations may be incomplete, nearsighted, and/or narrow, but eventually these interpretations become richer, broader, and more inclusive. Feminist revisionist history projects are an exemplary case. Over time, the writing, art, and cultural contributions of countless women, previously ignored, diminished, or distorted, have come to be accepted as prominent contributions given serious consideration.

So, meaning is conferred; interpretations are socially constructed arguments; multiple interpretations are to be expected; and some interpretations are better than others. As we discuss later in this chapter, what makes an interpretation “better” often hinges on the purpose/goals of the research in question. Interpretations designed to generate theory, or generalizable rules, will be better for responding to research questions aligned with the aims of more traditional quantitative/positivist research, whereas interpretations designed to construct meanings through social interaction, to generate multiple perspectives, and to represent the context-specific perspectives of the research participants are better for researchers constructing thick, contextually rich descriptions, stories, or narratives. The former relies on more atomistic interpretive strategies, whereas the latter adheres to a more holistic approach (Willis, 2007 ). Both approaches to analysis/interpretation are addressed in more detail later in this chapter.

At this point, readers might ask, Why does interpretation matter, anyway? Our response to this question involves the distinctive nature of interpretation and the ability of the interpretive process to put unique fingerprints on an otherwise relatively static set of data. Once interview data are collected and transcribed (and we realize that even the process of transcription is, in part, interpretive), documents are collected, and observations are recorded, qualitative researchers could just, in good faith and with fidelity, represent the data in as straightforward ways as possible, allowing readers to “see for themselves” by sharing as much actual data (e.g., the transcribed words of the research participants) as possible. This approach, however, includes analysis, what we have defined as summarizing and organizing data for presentation, but it falls short of what we reference and define as interpretation—attempting to explain the meaning of others’ words and actions. According to Lichtman ( 2013 ),

While early efforts at qualitative research might have stopped at description, it is now more generally accepted that a qualitative researcher goes beyond pure description.… Many believe that it is the role of the researcher to bring understanding, interpretation, and meaning. (p. 17)

Because we are fond of the arts and arts-based approaches to qualitative research, an example from the late jazz drummer, Buddy Rich, seems fitting. Rich explains the importance of having the flexibility to interpret: “I don’t think any arranger should ever write a drum part for a drummer, because if a drummer can’t create his own interpretation of the chart, and he plays everything that’s written, he becomes mechanical; he has no freedom.” The same is true for qualitative researchers: without the freedom to interpret, the researcher merely regurgitates, attempting to share with readers/reviewers exactly what the research subjects shared with him or her. It is only through interpretation that the researcher, as collaborator with unavoidable subjectivities, is able to construct unique, contextualized meaning. Interpretation, then, in this sense, is knowledge construction.

In closing this section, we will illustrate the analysis-versus-interpretation distinction with the following transcript excerpt. In this study, the authors (Trent & Zorko, 2006 ) were studying student teaching from the perspective of K–12 students. This quote comes from a high school student in a focus group interview. She is describing a student teacher she had:

The right-hand column contains codes or labels applied to parts of the transcript text. Coding will be discussed in more depth later in this chapter, but for now, note that the codes are mostly summarizing the main ideas of the text, sometimes using the exact words of the research participant. This type of coding is a part of what we have called analysis—organizing and summarizing the data. It is a way of beginning to say “what is” there. As noted, though, most qualitative researchers go deeper. They want to know more than what is; they also ask, What does it mean? This is a question of interpretation.

Specific to the transcript excerpt, researchers might next begin to cluster the early codes into like groups. For example, the teacher “felt targeted,” “assumed kids were going to behave inappropriately,” and appeared to be “overwhelmed.” A researcher might cluster this group of codes in a category called “teacher feelings and perceptions” and may then cluster the codes “could not control class” and “students off task” into a category called “classroom management.” The researcher then, in taking a fresh look at these categories and the included codes, may begin to conclude that what is going on in this situation is that the student teacher does not have sufficient training in classroom management models and strategies and may also be lacking the skills she needs to build relationships with her students. These then would be interpretations, persuasive arguments connected to the study’s data. In this specific example, the researchers might proceed to write a memo about these emerging interpretations. In this memo, they might more clearly define their early categories and may also look through other data to see if there are other codes or categories that align with or overlap this initial analysis. They may write further about their emergent interpretations and, in doing so, may inform future data collection in ways that will allow them to either support or refute their early interpretations. These researchers will also likely find that the processes of analysis and interpretation are inextricably intertwined. Good interpretations very often depend on thorough and thoughtful analyses.

How Do Methodology, Data, and the Researcher/Self Impact Interpretation in Qualitative Research?

Methodological conventions guide interpretation and the use of interpretive strategies. For example, in grounded theory and in similar methodological traditions, “formal analysis begins early in the study and is nearly completed by the end of data collection” (Bogdan & Biklen, 2007 , p. 73). Alternatively, for researchers from other traditions, for example, case study researchers, “formal analysis and theory development [interpretation] do not occur until after the data collection is near complete” (p. 73).

Researchers subscribing to methodologies that prescribe early data analysis and interpretation may employ methods like analytic induction or the constant comparison method. In using analytic induction, researchers develop a rough definition of the phenomena under study; collect data to compare to this rough definition; modify the definition as needed, based on cases that both fit and do not fit the definition; and, finally, establish a clear, universal definition (theory) of the phenomena (Robinson, 1951, cited in Bogdan & Biklen, 2007 , p. 73). Generally, those using a constant comparison approach begin data collection immediately; identify key issues, events, and activities related to the study that then become categories of focus; collect data that provide incidents of these categories; write about and describe the categories, accounting for specific incidents and seeking others; discover basic processes and relationships; and, finally, code and write about the categories as theory, “grounded” in the data (Glaser, 1965 ). Although processes like analytic induction and constant comparison can be listed as steps to follow, in actuality, these are more typically recursive processes in which the researcher repeatedly goes back and forth between the data and emerging analyses and interpretations.

In addition to methodological conventions that prescribe data analysis early (e.g., grounded theory) or later (e.g., case study) in the inquiry process, methodological approaches also impact the general approach to analysis and interpretation. Ellingson ( 2011 ) situated qualitative research methodologies on a continuum spanning “science”-like approaches on one end juxtaposed with “art”-like approaches on the other.

Researchers pursuing a more science-oriented approach seek valid, reliable, generalizable knowledge; believe in neutral, objective researchers; and ultimately claim single, authoritative interpretations. Researchers adhering to these science-focused, postpositivistic approaches may count frequencies, emphasize the validity of the employed coding system, and point to intercoder reliability and random sampling as criteria that bolster the research credibility. Researchers at or near the science end of the continuum might employ analysis and interpretation strategies that include “paired comparisons,” “pile sorts,” “word counts,” identifying “key words in context,” and “triad tests” (Bernard, Wutich, & Ryan, 2017 , pp. 112, 381, 113, 170). These researchers may ultimately seek to develop taxonomies or other authoritative final products that organize and explain the collected data.

For example, in a study we conducted about preservice teachers’ experiences learning to teach second-language learners, the researchers collected larger data sets and used a statistical analysis package to analyze survey data, and the resultant findings included descriptive statistics. These survey results were supported with open-ended, qualitative data. For example, one of the study’s findings was that “a strong majority of candidates (96%) agreed that an immersion approach alone will not guarantee academic or linguistic success for second language learners.” In narrative explanations, one preservice teacher, representative of many others, remarked, “There has to be extra instructional efforts to help their students learn English … they won’t learn English by merely sitting in the classrooms” (Cho, Rios, Trent, & Mayfield, 2012 , p. 75).

Methodologies on the art side of Ellingson’s ( 2011 ) continuum, alternatively, “value humanistic, openly subjective knowledge, such as that embodied in stories, poetry, photography, and painting” (p. 599). Analysis and interpretation in these (often more contemporary) methodological approaches do not strive for “social scientific truth,” but instead are formulated to “enable us to learn about ourselves, each other, and the world through encountering the unique lens of a person’s (or a group’s) passionate rendering of a reality into a moving, aesthetic expression of meaning” (p. 599). For these “artistic/interpretivists, truths are multiple, fluctuating and ambiguous” (p. 599). Methodologies taking more subjective approaches to analysis and interpretation include autoethnography, testimonio, performance studies, feminist theorists/researchers, and others from related critical methodological forms of qualitative practice. More specifically arts-based approaches include poetic inquiry, fiction-based research, music as method, and dance and movement as inquiry (Leavy, 2017 ). Interpretation in these approaches is inherent. For example, “ interpretive poetry is understood as a method of merging the participant’s words with the researcher’s perspective” (Leavy, 2017 , p. 82).

As an example, one of us engaged in an artistic inquiry with a group of students in an art class for elementary teachers. We called it “Dreams as Data” and, among the project aims, we wanted to gather participants’ “dreams for education in the future” and display these dreams in an accessible, interactive, artistic display (see Trent, 2002 ). The intent was not to statistically analyze the dreams/data; instead, it was more universal. We wanted, as Ellingson ( 2011 , p. 599) noted, to use participant responses in ways that “enable us to learn about ourselves, each other, and the world.” The decision was made to leave responses intact and to share the whole/raw data set in the artistic display in ways that allowed the viewers to holistically analyze and interpret for themselves. Additionally, the researcher (Trent, 2002 ) collaborated with his students to construct their own contextually situated interpretations of the data. The following text is an excerpt from one participant’s response:

Almost a century ago, John Dewey eloquently wrote about the need to imagine and create the education that ALL children deserve, not just the richest, the Whitest, or the easiest to teach. At the dawn of this new century, on some mornings, I wake up fearful that we are further away from this ideal than ever.… Collective action, in a critical, hopeful, joyful, anti-racist and pro-justice spirit, is foremost in my mind as I reflect on and act in my daily work.… Although I realize the constraints on teachers and schools in the current political arena, I do believe in the power of teachers to stand next to, encourage, and believe in the students they teach—in short, to change lives. (Trent, 2002 , p. 49)

In sum, researchers whom Ellingson ( 2011 ) characterized as being on the science end of the continuum typically use more detailed or atomistic strategies to analyze and interpret qualitative data, whereas those toward the artistic end most often employ more holistic strategies. Both general approaches to qualitative data analysis and interpretation, atomistic and holistic, will be addressed later in this chapter.

As noted, qualitative researchers attend to data in a wide variety of ways depending on paradigmatic and epistemological beliefs, methodological conventions, and the purpose/aims of the research. These factors impact the kinds of data collected and the ways these data are ultimately analyzed and interpreted. For example, life history or testimonio researchers conduct extensive individual interviews, ethnographers record detailed observational notes, critical theorists may examine documents from pop culture, and ethnomethodologists may collect videotapes of interaction for analysis and interpretation.

In addition to the wide range of data types that are collected by qualitative researchers (and most qualitative researchers collect multiple forms of data), qualitative researchers, again influenced by the factors noted earlier, employ a variety of approaches to analyzing and interpreting data. As mentioned earlier in this chapter, some advocate for a detailed/atomistic, fine-grained approach to data (see, e.g., Bernard et al., 2017 ); others prefer a more broad-based, holistic, “eyeballing” of the data. According to Willis ( 2007 ), “Eyeballers reject the more structured approaches to analysis that break down the data into small units and, from the perspective of the eyeballers, destroy the wholeness and some of the meaningfulness of the data” (p. 298).

Regardless, we assert, as illustrated in Figure 31.1 , that as the process evolves, data collection becomes less prominent later in the process, as interpretation and making sense/meaning of the data becomes more prominent. It is through this emphasis on interpretation that qualitative researchers put their individual imprints on the data, allowing for the emergence of multiple, rich perspectives. This space for interpretation allows researchers the freedom Buddy Rich alluded to in his quote about interpreting musical charts. Without this freedom, Rich noted that the process would simply be “mechanical.” Furthermore, allowing space for multiple interpretations nourishes the perspectives of many others in the community. Writer and theorist Meg Wheatley explained, “Everyone in a complex system has a slightly different interpretation. The more interpretations we gather, the easier it becomes to gain a sense of the whole.” In qualitative research, “there is no ‘getting it right’ because there could be many ‘rights’ ” (as cited in Lichtman, 2013 ).

Increasing Role of Interpretation in Data Analysis

In addition to the roles methodology and data play in the interpretive process, perhaps the most important is the role of the self/the researcher in the interpretive process. According to Lichtman ( 2013 ), “Data are collected, information is gathered, settings are viewed, and realities are constructed through his or her eyes and ears … the qualitative researcher interprets and makes sense of the data” (p. 21). Eisner ( 1991 ) supported the notion of the researcher “self as instrument,” noting that expert researchers know not simply what to attend to, but also what to neglect. He describes the researcher’s role in the interpretive process as combining sensibility , the ability to observe and ascertain nuances, with schema , a deep understanding or cognitive framework of the phenomena under study.

J. Barrett ( 2007 ) described self/researcher roles as “transformations” (p. 418) at multiple points throughout the inquiry process: early in the process, researchers create representations through data generation, conducting observations and interviews and collecting documents and artifacts. Then,

transformation occurs when the “raw” data generated in the field are shaped into data records by the researcher. These data records are produced through organizing and reconstructing the researcher’s notes and transcribing audio and video recordings in the form of permanent records that serve as the “evidentiary warrants” of the generated data. The researcher strives to capture aspects of the phenomenal world with fidelity by selecting salient aspects to incorporate into the data record. (J. Barrett, 2007 , p. 418)

Transformation continues when the researcher codes, categorizes, and explores patterns in the data (the process we call analysis).

Transformations also involve interpreting what the data mean and relating these interpretations to other sources of insight about the phenomena, including findings from related research, conceptual literature, and common experience.… Data analysis and interpretation are often intertwined and rely upon the researcher’s logic, artistry, imagination, clarity, and knowledge of the field under study. (J. Barrett, 2007 , p. 418)

We mentioned the often-blended roles of participation and observation earlier in this chapter. The role(s) of the self/researcher are often described as points along a participant–observer continuum (see, e.g., Bogdan & Biklen, 2007 ). On the far observer end of this continuum, the researcher situates as detached, tries to be inconspicuous (so as not to impact/disrupt the phenomena under study), and approaches the studied context as if viewing it from behind a one-way mirror. On the opposite, participant end, the researcher is completely immersed and involved in the context. It would be difficult for an outsider to distinguish between researcher and subjects. For example, “some feminist researchers and postmodernists take a political stance and have an agenda that places the researcher in an activist posture. These researchers often become quite involved with the individuals they study and try to improve their human condition” (Lichtman, 2013 , p. 17).

We assert that most researchers fall somewhere between these poles. We believe that complete detachment is both impossible and misguided. In doing so, we, along with many others, acknowledge (and honor) the role of subjectivity, the researcher’s beliefs, opinions, biases, and predispositions. Positivist researchers seeking objective data and accounts either ignore the impact of subjectivity or attempt to drastically diminish/eliminate its impact. Even qualitative researchers have developed methods to avoid researcher subjectivity affecting research data collection, analysis, and interpretation. For example, foundational phenomenologist Husserl ( 1913/1962 ) developed the concept of bracketing , what Lichtman describes as “trying to identify your views on the topic and then putting them aside” (2013, p. 22). Like Slotnick and Janesick ( 2011 ), we ultimately claim “it is impossible to bracket yourself” (p. 1358). Instead, we take a balanced approach, like Eisner, understanding that subjectivity allows researchers to produce the rich, idiosyncratic, insightful, and yet data-based interpretations and accounts of lived experience that accomplish the primary purposes of qualitative inquiry. Eisner ( 1991 ) wrote, “Rather than regarding uniformity and standardization as the summum bonum, educational criticism [Eisner’s form of qualitative research] views unique insight as the higher good” (p. 35). That said, we also claim that, just because we acknowledge and value the role of researcher subjectivity, researchers are still obligated to ground their findings in reasonable interpretations of the data. Eisner ( 1991 ) explained:

This appreciation for personal insight as a source of meaning does not provide a license for freedom. Educational critics must provide evidence and reasons. But they reject the assumption that unique interpretation is a conceptual liability in understanding, and they see the insights secured from multiple views as more attractive than the comforts provided by a single right one. (p. 35)

Connected to this participant–observer continuum is the way the researcher positions him- or herself in relation to the “subjects” of the study. Traditionally, researchers, including early qualitative researchers, anthropologists, and ethnographers, referenced those studied as subjects . More recently, qualitative researchers better understand that research should be a reciprocal process in which both researcher and the foci of the research should derive meaningful benefit. Researchers aligned with this thinking frequently use the term participants to describe those groups and individuals included in a study. Going a step further, some researchers view research participants as experts on the studied topic and as equal collaborators in the meaning-making process. In these instances, researchers often use the terms co-researchers or co-investigators .

The qualitative researcher, then, plays significant roles throughout the inquiry process. These roles include transforming data, collaborating with research participants or co-researchers, determining appropriate points to situate along the participant–observer continuum, and ascribing personal insights, meanings, and interpretations that are both unique and justified with data exemplars. Performing these roles unavoidably impacts and changes the researcher. Slotnick and Janesick ( 2011 ) noted, “Since, in qualitative research the individual is the research instrument through which all data are passed, interpreted, and reported, the scholar’s role is constantly evolving as self evolves” (p. 1358).

As we note later, key in all this is for researchers to be transparent about the topics discussed in the preceding section: What methodological conventions have been employed and why? How have data been treated throughout the inquiry to arrive at assertions and findings that may or may not be transferable to other idiosyncratic contexts? And, finally, in what ways has the researcher/self been situated in and impacted the inquiry? Unavoidably, we assert, the self lies at the critical intersection of data and theory, and, as such, two legs of this stool, data and researcher, interact to create the third, theory.

How Do Qualitative Researchers Engage in the Process of Interpretation?

Theorists seem to have a propensity to dichotomize concepts, pulling them apart and placing binary opposites on the far ends of conceptual continuums. Qualitative research theorists are no different, and we have already mentioned some of these continua in this chapter. For example, in the previous section, we discussed the participant–observer continuum. Earlier, we referenced both Willis’s ( 2007 ) conceptualization of atomistic versus holistic approaches to qualitative analysis and interpretation and Ellingson’s ( 2011 ) science–art continuum. Each of these latter two conceptualizations inform how qualitative researchers engage in the process of interpretation.

Willis ( 2007 ) shared that the purpose of a qualitative project might be explained as “what we expect to gain from research” (p. 288). The purpose, or what we expect to gain, then guides and informs the approaches researchers might take to interpretation. Some researchers, typically positivist/postpositivist, conduct studies that aim to test theories about how the world works and/or how people behave. These researchers attempt to discover general laws, truths, or relationships that can be generalized. Others, less confident in the ability of research to attain a single, generalizable law or truth, might seek “local theory.” These researchers still seek truths, but “instead of generalizable laws or rules, they search for truths about the local context … to understand what is really happening and then to communicate the essence of this to others” (Willis, 2007 , p. 291). In both these purposes, researchers employ atomistic strategies in an inductive process in which researchers “break the data down into small units and then build broader and broader generalizations as the data analysis proceeds” (p. 317). The earlier mentioned processes of analytic induction, constant comparison, and grounded theory fit within this conceptualization of atomistic approaches to interpretation. For example, a line-by-line coding of a transcript might begin an atomistic approach to data analysis.

Alternatively, other researchers pursue distinctly different aims. Researchers with an objective description purpose focus on accurately describing the people and context under study. These researchers adhere to standards and practices designed to achieve objectivity, and their approach to interpretation falls within the binary atomistic/holistic distinction.

The purpose of hermeneutic approaches to research is to “understand the perspectives of humans. And because understanding is situational, hermeneutic research tends to look at the details of the context in which the study occurred. The result is generally rich data reports that include multiple perspectives” (Willis, 2007 , p. 293).

Still other researchers see their purpose as the creation of stories or narratives that utilize “a social process that constructs meaning through interaction … it is an effort to represent in detail the perspectives of participants … whereas description produces one truth about the topic of study, storytelling may generate multiple perspectives, interpretations, and analyses by the researcher and participants” (Willis, 2007 , p. 295).

In these latter purposes (hermeneutic, storytelling, narrative production), researchers typically employ more holistic strategies. According to Willis ( 2007 ), “Holistic approaches tend to leave the data intact and to emphasize that meaning must be derived for a contextual reading of the data rather than the extraction of data segments for detailed analysis” (p. 297). This was the case with the Dreams as Data project mentioned earlier.

We understand the propensity to dichotomize, situate concepts as binary opposites, and create neat continua between these polar descriptors. These sorts of reduction and deconstruction support our understandings and, hopefully, enable us to eventually reconstruct these ideas in meaningful ways. Still, in reality, we realize most of us will, and should, work in the middle of these conceptualizations in fluid ways that allow us to pursue strategies, processes, and theories most appropriate for the research task at hand. As noted, Ellingson ( 2011 ) set up another conceptual continuum, but, like ours, her advice was to “straddle multiple points across the field of qualitative methods” (p. 595). She explained, “I make the case for qualitative methods to be conceptualized as a continuum anchored by art and science, with vast middle spaces that embody infinite possibilities for blending artistic, expository, and social scientific ways of analysis and representation” (p. 595).

We explained at the beginning of this chapter that we view analysis as organizing and summarizing qualitative data and interpretation as constructing meaning. In this sense, analysis allows us to describe the phenomena under study. It enables us to succinctly answer what and how questions and ensures that our descriptions are grounded in the data collected. Descriptions, however, rarely respond to questions of why . Why questions are the domain of interpretation, and, as noted throughout this text, interpretation is complex. Gubrium and Holstein ( 2000 ) noted, “Traditionally, qualitative inquiry has concerned itself with what and how questions … qualitative researchers typically approach why questions cautiously, explanation is tricky business” (p. 502). Eisner ( 1991 ) described this distinctive nature of interpretation: “It means that inquirers try to account for [interpretation] what they have given account of ” (p. 35).

Our focus here is on interpretation, but interpretation requires analysis, because without clear understandings of the data and its characteristics, derived through systematic examination and organization (e.g., coding, memoing, categorizing), “interpretations” resulting from inquiry will likely be incomplete, uninformed, and inconsistent with the constructed perspectives of the study participants. Fortunately for qualitative researchers, we have many sources that lead us through analytic processes. We earlier mentioned the accepted processes of analytic induction and the constant comparison method. These detailed processes (see, e.g., Bogdan & Biklen, 2007 ) combine the inextricably linked activities of analysis and interpretation, with analysis more typically appearing as earlier steps in the process and meaning construction—interpretation—happening later.

A wide variety of resources support researchers engaged in the processes of analysis and interpretation. Saldaña ( 2011 ), for example, provided a detailed description of coding types and processes. He showed researchers how to use process coding (uses gerunds, “-ing” words to capture action), in vivo coding (uses the actual words of the research participants/ subjects), descriptive coding (uses nouns to summarize the data topics), versus coding (uses “vs” to identify conflicts and power issues), and values coding (identifies participants’ values, attitudes, and/or beliefs). To exemplify some of these coding strategies, we include an excerpt from a transcript of a meeting of a school improvement committee. In this study, the collaborators were focused on building “school community.” This excerpt illustrates the application of a variety of codes described by Saldaña to this text:

To connect and elaborate the ideas developed in coding, Saldaña ( 2011 ) suggested researchers categorize the applied codes, write memos to deepen understandings and illuminate additional questions, and identify emergent themes. To begin the categorization process, Saldaña recommended all codes be “classified into similar clusters … once the codes have been classified, a category label is applied to them” (p. 97). So, in continuing with the study of school community example coded here, the researcher might create a cluster/category called “Value of Collaboration” and in this category might include the codes “relationships,” “building community,” and “effective strategies.”

Having coded and categorized a study’s various data forms, a typical next step for researchers is to write memos or analytic memos . Writing analytic memos allows the researcher(s) to

set in words your interpretation of the data … an analytic memo further articulates your … thinking processes on what things may mean … as the study proceeds, however, initial and substantive analytic memos can be revisited and revised for eventual integration into the report itself. (Saldaña, 2011 , p. 98)

In the study of student teaching from K–12 students’ perspectives (Trent & Zorko, 2006 ), we noticed throughout our analysis a series of focus group interview quotes coded “names.” The following quote from a high school student is representative of many others:

I think that, ah, they [student teachers] should like know your face and your name because, uh, I don’t like it if they don’t and they’ll just like … cause they’ll blow you off a lot easier if they don’t know, like our new principal is here … he is, like, he always, like, tries to make sure to say hi even to the, like, not popular people if you can call it that, you know, and I mean, yah, and the people that don’t usually socialize a lot, I mean he makes an effort to know them and know their name like so they will cooperate better with him.

Although we did not ask the focus groups a specific question about whether student teachers knew the K–12 students’ names, the topic came up in every focus group interview. We coded the above excerpt and the others “knowing names,” and these data were grouped with others under the category “relationships.” In an initial analytic memo about this, the researchers wrote,

STUDENT TEACHING STUDY—MEMO #3 “Knowing Names as Relationship Building” Most groups made unsolicited mentions of student teachers knowing, or not knowing, their names. We haven’t asked students about this, but it must be important to them because it always seems to come up. Students expected student teachers to know their names. When they did, students noticed and seemed pleased. When they didn’t, students seemed disappointed, even annoyed. An elementary student told us that early in the semester, “she knew our names … cause when we rose [sic] our hands, she didn’t have to come and look at our name tags … it made me feel very happy.” A high schooler, expressing displeasure that his student teacher didn’t know students’ names, told us, “They should like know your name because it shows they care about you as a person. I mean, we know their names, so they should take the time to learn ours too.” Another high school student said that even after 3 months, she wasn’t sure the student teacher knew her name. Another student echoed, “Same here.” Each of these students asserted that this (knowing students’ names) had impacted their relationship with the student teacher. This high school student focus group stressed that a good relationship, built early, directly impacts classroom interaction and student learning. A student explained it like this: “If you get to know each other, you can have fun with them … they seem to understand you more, you’re more relaxed, and learning seems easier.”

As noted in these brief examples, coding, categorizing, and writing memos about a study’s data are all accepted processes for data analysis and allow researchers to begin constructing new understandings and forming interpretations of the studied phenomena. We find the qualitative research literature to be particularly strong in offering support and guidance for researchers engaged in these analytic practices. In addition to those already noted in this chapter, we have found the following resources provide practical, yet theoretically grounded approaches to qualitative data analysis. For more detailed, procedural, or atomistic approaches to data analysis, we direct researchers to Miles and Huberman’s classic 1994 text, Qualitative Data Analysis , and Bernard et al.’s 2017 book Analyzing Qualitative Data: Systematic Approaches. For analysis and interpretation strategies falling somewhere between the atomistic and holistic poles, we suggest Hesse-Biber and Leavy’s ( 2011 ) chapter, “Analysis and Interpretation of Qualitative Data,” in their book, The Practice of Qualitative Research (second edition); Lichtman’s chapter, “Making Meaning From Your Data,” in her 2013 book Qualitative Research in Education: A User’s Guide (third edition); and “Processing Fieldnotes: Coding and Memoing,” a chapter in Emerson, Fretz, and Shaw’s ( 1995 ) book, Writing Ethnographic Fieldwork . Each of these sources succinctly describes the processes of data preparation, data reduction, coding and categorizing data, and writing memos about emergent ideas and findings. For more holistic approaches, we have found Denzin and Lincoln’s ( 2007 ) Collecting and Interpreting Qualitative Materials and Ellis and Bochner’s ( 2000 ) chapter “Autoethnography, Personal Narrative, Reflexivity” to both be very informative. Finally, Leavy’s 2017 book, Method Meets Art: Arts-Based Research Practice , provides support and guidance to researchers engaged in arts-based research.

Even after reviewing the multiple resources for treating data included here, qualitative researchers might still be wondering, But exactly how do we interpret? In the remainder of this section and in the concluding section of this chapter, we more concretely provide responses to this question and, in closing, we propose a framework for researchers to utilize as they engage in the complex, ambiguous, and yet exciting process of constructing meanings and new understandings from qualitative sources.

These meanings and understandings are often presented as theory, but theories in this sense should be viewed more as “guides to perception” as opposed to “devices that lead to the tight control or precise prediction of events” (Eisner, 1991 , p. 95). Perhaps Erickson’s ( 1986 ) concept of assertions is a more appropriate aim for qualitative researchers. He claimed that assertions are declarative statements; they include a summary of the new understandings, and they are supported by evidence/data. These assertions are open to revision and are revised when disconfirming evidence requires modification. Assertions, theories, or other explanations resulting from interpretation in research are typically presented as “findings” in written research reports. Belgrave and Smith ( 2002 ) emphasized the importance of these interpretations (as opposed to descriptions): “The core of the report is not the events reported by the respondent, but rather the subjective meaning of the reported events for the respondent” (p. 248).

Mills ( 2018 ) viewed interpretation as responding to the question, So what? He provided researchers a series of concrete strategies for both analysis and interpretation. Specific to interpretation, Mills (pp. 204–207) suggested a variety of techniques, including the following:

“ Extend the analysis ”: In doing so, researchers ask additional questions about the research. The data appear to say X , but could it be otherwise? In what ways do the data support emergent finding X ? And, in what ways do they not?

“ Connect findings with personal experience ”: Using this technique, researchers share interpretations based on their intimate knowledge of the context, the observed actions of the individuals in the studied context, and the data points that support emerging interpretations, as well as their awareness of discrepant events or outlier data. In a sense, the researcher is saying, “Based on my experiences in conducting this study, this is what I make of it all.”

“ Seek the advice of ‘critical’ friends ”: In doing so, researchers utilize trusted colleagues, fellow researchers, experts in the field of study, and others to offer insights, alternative interpretations, and the application of their own unique lenses to a researcher’s initial findings. We especially like this strategy because we acknowledge that, too often, qualitative interpretation is a “solo” affair.

“ Contextualize findings in the literature ”: This allows researchers to compare their interpretations to those of others writing about and studying the same/similar phenomena. The results of this contextualization may be that the current study’s findings correspond with the findings of other researchers. The results might, alternatively, differ from the findings of other researchers. In either instance, the researcher can highlight his or her unique contributions to our understanding of the topic under study.

“ Turn to theory ”: Mills defined theory as “an analytical and interpretive framework that helps the researcher make sense of ‘what is going on’ in the social setting being studied.” In turning to theory, researchers search for increasing levels of abstraction and move beyond purely descriptive accounts. Connecting to extant or generating new theory enables researchers to link their work to the broader contemporary issues in the field.

Other theorists offer additional advice for researchers engaged in the act of interpretation. Richardson ( 1995 ) reminded us to account for the power dynamics in the researcher–researched relationship and notes that, in doing so, we can allow for oppressed and marginalized voices to be heard in context. Bogdan and Biklen ( 2007 ) suggested that researchers engaged in interpretation revisit foundational writing about qualitative research, read studies related to the current research, ask evaluative questions (e.g., Is what I’m seeing here good or bad?), ask about implications of particular findings/interpretations, think about the audience for interpretations, look for stories and incidents that illustrate a specific finding/interpretation, and attempt to summarize key interpretations in a succinct paragraph. All these suggestions can be pertinent in certain situations and with particular methodological approaches. In the next and closing section of this chapter, we present a framework for interpretive strategies we believe will support, guide, and be applicable to qualitative researchers across multiple methodologies and paradigms.

In What Ways Can a Framework for Interpretation Strategies Support Qualitative Researchers across Multiple Methodological and Paradigmatic Views?

The process of qualitative research is often compared to a journey, one without a detailed itinerary and ending, but with general direction and aims and yet an open-endedness that adds excitement and thrives on curiosity. Qualitative researchers are travelers. They travel physically to field sites; they travel mentally through various epistemological, theoretical, and methodological grounds; they travel through a series of problem-finding, access, data collection, and data analysis processes; and, finally—the topic of this chapter—they travel through the process of making meaning of all this physical and cognitive travel via interpretation.

Although travel is an appropriate metaphor to describe the journey of qualitative researchers, we will also use “travel” to symbolize a framework for qualitative research interpretation strategies. By design, this framework applies across multiple paradigmatic, epistemological, and methodological traditions. The application of this framework is not formulaic or highly prescriptive; it is also not an anything-goes approach. It falls, and is applicable, between these poles, giving concrete (suggested) direction to qualitative researchers wanting to make the most of the interpretations that result from their research and yet allowing the necessary flexibility for researchers to employ the methods, theories, and approaches they deem most appropriate to the research problem(s) under study.

TRAVEL, a Comprehensive Approach to Qualitative Interpretation

In using the word TRAVEL as a mnemonic device, our aim is to highlight six essential concepts we argue all qualitative researchers should attend to in the interpretive process: transparency, reflexivity, analysis, validity, evidence, and literature. The importance of each is addressed here.

Transparency , as a research concept seems, well, transparent. But, too often, we read qualitative research reports and are left with many questions: How were research participants and the topic of study selected/excluded? How were the data collected, when, and for how long? Who analyzed and interpreted these data? A single researcher? Multiple? What interpretive strategies were employed? Are there data points that substantiate these interpretations/findings? What analytic procedures were used to organize the data prior to making the presented interpretations? In being transparent about data collection, analysis, and interpretation processes, researchers allow reviewers/readers insight into the research endeavor, and this transparency leads to credibility for both researcher and researcher’s claims. Altheide and Johnson ( 2011 ) explained,

There is great diversity of qualitative research.… While these approaches differ, they also share an ethical obligation to make public their claims, to show the reader, audience, or consumer why they should be trusted as faithful accounts of some phenomenon. (p. 584)

This includes, they noted, articulating

what the different sources of data were, how they were interwoven, and … how subsequent interpretations and conclusions are more or less closely tied to the various data … the main concern is that the connection be apparent, and to the extent possible, transparent. (p. 590)

In the Dreams as Data art and research project noted earlier, transparency was addressed in multiple ways. Readers of the project write-up were informed that interpretations resulting from the study, framed as themes , were a result of collaborative analysis that included insights from both students and instructor. Viewers of the art installation/data display had the rare opportunity to see all participant responses. In other words, viewers had access to the entire raw data set (see Trent, 2002 ). More frequently, we encounter only research “findings” already distilled, analyzed, and interpreted in research accounts, often by a single researcher. Allowing research consumers access to the data to interpret for themselves in the Dreams project was an intentional attempt at transparency.

Reflexivity , the second of our concepts for interpretive researcher consideration, has garnered a great deal of attention in qualitative research literature. Some have called this increased attention the reflexive turn (see, e.g., Denzin & Lincoln, 2004 ).

Although you can find many meanings for the term reflexivity, it is usually associated with a critical reflection on the practice and process of research and the role of the researcher. It concerns itself with the impact of the researcher on the system and the system on the researcher. It acknowledges the mutual relationships between the researcher and who and what is studied … by acknowledging the role of the self in qualitative research, the researcher is able to sort through biases and think about how they affect various aspects of the research, especially interpretation of meanings. (Lichtman, 2013 , p. 165)

As with transparency, attending to reflexivity allows researchers to attach credibility to presented findings. Providing a reflexive account of researcher subjectivity and the interactions of this subjectivity within the research process is a way for researchers to communicate openly with their audience. Instead of trying to exhume inherent bias from the process, qualitative researchers share with readers the value of having a specific, idiosyncratic positionality. As a result, situated, contextualized interpretations are viewed as an asset, as opposed to a liability.

LaBanca ( 2011 ), acknowledging the often solitary nature of qualitative research, called for researchers to engage others in the reflexive process. Like many other researchers, LaBanca utilized a researcher journal to chronicle reflexive thoughts, explorations, and understandings, but he took it a step farther. Realizing the value of others’ input, LaBanca posts his reflexive journal entries on a blog (what he calls an online reflexivity blog ) and invites critical friends, other researchers, and interested members of the community to audit his reflexive moves, providing insights, questions, and critique that inform his research and study interpretations.

We agree this is a novel approach worth considering. We, too, understand that multiple interpreters will undoubtedly produce multiple interpretations, a richness of qualitative research. So, we suggest researchers consider bringing others in before the production of the report. This could be fruitful in multiple stages of the inquiry process, but especially in the complex, idiosyncratic processes of reflexivity and interpretation. We are both educators and educational researchers. Historically, each of these roles has tended to be constructed as an isolated endeavor, the solitary teacher, the solo researcher/fieldworker. As noted earlier and in the analysis section that follows, introducing collaborative processes to what has often been a solitary activity offers much promise for generating rich interpretations that benefit from multiple perspectives.

Being consciously reflexive throughout our practice as researchers has benefitted us in many ways. In a study of teacher education curricula designed to prepare preservice teachers to support second-language learners, we realized hard truths that caused us to reflect on and adapt our own practices as teacher educators. Reflexivity can inform a researcher at all parts of the inquiry, even in early stages. For example, one of us was beginning a study of instructional practices in an elementary school. The communicated methods of the study indicated that the researcher would be largely an observer. Early fieldwork revealed that the researcher became much more involved as a participant than anticipated. Deep reflection and writing about the classroom interactions allowed the researcher to realize that the initial purpose of the research was not being accomplished, and the researcher believed he was having a negative impact on the classroom culture. Reflexivity in this instance prompted the researcher to leave the field and abandon the project as it was just beginning. Researchers should plan to openly engage in reflexive activities, including writing about their ongoing reflections and subjectivities. Including excerpts of this writing in research account supports our earlier recommendation of transparency.

Early in this chapter, for the purposes of discussion and examination, we defined analysis as “summarizing and organizing” data in a qualitative study and interpretation as “meaning making.” Although our focus has been on interpretation as the primary topic, the importance of good analysis cannot be underestimated, because without it, resultant interpretations are likely incomplete and potentially uninformed. Comprehensive analysis puts researchers in a position to be deeply familiar with collected data and to organize these data into forms that lead to rich, unique interpretations, and yet interpretations that are clearly connected to data exemplars. Although we find it advantageous to examine analysis and interpretation as different but related practices, in reality, the lines blur as qualitative researchers engage in these recursive processes.

We earlier noted our affinity for a variety of approaches to analysis (see, e.g., Hesse-Biber & Leavy, 2011 ; Lichtman, 2013 ; or Saldaña, 2011 ). Emerson et al. ( 1995 ) presented a grounded approach to qualitative data analysis: In early stages, researchers engage in a close, line-by-line reading of data/collected text and accompany this reading with open coding , a process of categorizing and labeling the inquiry data. Next, researchers write initial memos to describe and organize the data under analysis. These analytic phases allow the researcher(s) to prepare, organize, summarize, and understand the data, in preparation for the more interpretive processes of focused coding and the writing up of interpretations and themes in the form of integrative memos .

Similarly, Mills ( 2018 ) provided guidance on the process of analysis for qualitative action researchers. His suggestions for organizing and summarizing data include coding (labeling data and looking for patterns); identifying themes by considering the big picture while looking for recurrent phrases, descriptions, or topics; asking key questions about the study data (who, what, where, when, why, and how); developing concept maps (graphic organizers that show initial organization and relationships in the data); and stating what’s missing by articulating what data are not present (pp. 179–189).

Many theorists, like Emerson et al. ( 1995 ) and Mills ( 2018 ) noted here, provide guidance for individual researchers engaged in individual data collection, analysis, and interpretation; others, however, invite us to consider the benefits of collaboratively engaging in these processes through the use of collaborative research and analysis teams. Paulus, Woodside, and Ziegler ( 2008 ) wrote about their experiences in collaborative qualitative research: “Collaborative research often refers to collaboration among the researcher and the participants. Few studies investigate the collaborative process among researchers themselves” (p. 226).

Paulus et al. ( 2008 ) claimed that the collaborative process “challenged and transformed our assumptions about qualitative research” (p. 226). Engaging in reflexivity, analysis, and interpretation as a collaborative enabled these researchers to reframe their views about the research process, finding that the process was much more recursive, as opposed to following a linear progression. They also found that cooperatively analyzing and interpreting data yielded “collaboratively constructed meanings” as opposed to “individual discoveries.” And finally, instead of the traditional “individual products” resulting from solo research, collaborative interpretation allowed researchers to participate in an “ongoing conversation” (p. 226).

These researchers explained that engaging in collaborative analysis and interpretation of qualitative data challenged their previously held assumptions. They noted,

through collaboration, procedures are likely to be transparent to the group and can, therefore, be made public. Data analysis benefits from an iterative, dialogic, and collaborative process because thinking is made explicit in a way that is difficult to replicate as a single researcher. (Paulus et al., 2008 , p. 236)

They shared that, during the collaborative process, “we constantly checked our interpretation against the text, the context, prior interpretations, and each other’s interpretations” (p. 234).

We, too, have engaged in analysis similar to these described processes, including working on research teams. We encourage other researchers to find processes that fit with the methodology and data of a particular study, use the techniques and strategies most appropriate, and then cite the utilized authority to justify the selected path. We urge traditionally solo researchers to consider trying a collaborative approach. Generally, we suggest researchers be familiar with a wide repertoire of practices. In doing so, they will be in better positions to select and use strategies most appropriate for their studies and data. Succinctly preparing, organizing, categorizing, and summarizing data sets the researcher(s) up to construct meaningful interpretations in the forms of assertions, findings, themes, and theories.

Researchers want their findings to be sound, backed by evidence, and justifiable and to accurately represent the phenomena under study. In short, researchers seek validity for their work. We assert that qualitative researchers should attend to validity concepts as a part of their interpretive practices. We have previously written and theorized about validity, and, in doing so, we have highlighted and labeled what we consider two distinctly different approaches, transactional and transformational (Cho & Trent, 2006 ). We define transactional validity in qualitative research as an interactive process occurring among the researcher, the researched, and the collected data, one that is aimed at achieving a relatively higher level of accuracy. Techniques, methods, and/or strategies are employed during the conduct of the inquiry. These techniques, such as member checking and triangulation, are seen as a medium with which to ensure an accurate reflection of reality (or, at least, participants’ constructions of reality). Lincoln and Guba’s ( 1985 ) widely known notion of trustworthiness in “naturalistic inquiry” is grounded in this approach. In seeking trustworthiness, researchers attend to research credibility, transferability, dependability, and confirmability. Validity approaches described by Maxwell ( 1992 ) as “descriptive” and “interpretive” also proceed in the usage of transactional processes.

For example, in the write-up of a study on the facilitation of teacher research, one of us (Trent, 2012 ) wrote about the use of transactional processes:

“Member checking is asking the members of the population being studied for their reaction to the findings” (Sagor, 2000 , p. 136). Interpretations and findings of this research, in draft form, were shared with teachers (for member checking) on multiple occasions throughout the study. Additionally, teachers reviewed and provided feedback on the final draft of this article. (p. 44)

This member checking led to changes in some resultant interpretations (called findings in this particular study) and to adaptations of others that shaped these findings in ways that made them both richer and more contextualized.

Alternatively, in transformational approaches, validity is not so much something that can be achieved solely by employing certain techniques. Transformationalists assert that because traditional or positivist inquiry is no longer seen as an absolute means to truth in the realm of human science, alternative notions of validity should be considered to achieve social justice, deeper understandings, broader visions, and other legitimate aims of qualitative research. In this sense, it is the ameliorative aspects of the research that achieve (or do not achieve) its validity. Validity is determined by the resultant actions prompted by the research endeavor.

Lather ( 1993 ), Richardson ( 1997 ), and others (e.g., Lenzo, 1995 ; Scheurich, 1996 ) proposed a transgressive approach to validity that emphasized a higher degree of self-reflexivity. For example, Lather proposed a “catalytic validity” described as “the degree to which the research empowers and emancipates the research subjects” (Scheurich, 1996 , p. 4). Beverley ( 2000 , p. 556) proposed testimonio as a qualitative research strategy. These first-person narratives find their validity in their ability to raise consciousness and thus provoke political action to remedy problems of oppressed peoples (e.g., poverty, marginality, exploitation).

We, too, have pursued research with transformational aims. In the earlier mentioned study of preservice teachers’ experiences learning to teach second-language learners (Cho et al., 2012 ), our aims were to empower faculty members, evolve the curriculum, and, ultimately, better serve preservice teachers so that they might better serve English-language learners in their classrooms. As program curricula and activities have changed as a result, we claim a degree of transformational validity for this research.

Important, then, for qualitative researchers throughout the inquiry, but especially when engaged in the process of interpretation, is to determine the type(s) of validity applicable to the study. What are the aims of the study? Providing an “accurate” account of studied phenomena? Empowering participants to take action for themselves and others? The determination of this purpose will, in turn, inform researchers’ analysis and interpretation of data. Understanding and attending to the appropriate validity criteria will bolster researcher claims to meaningful findings and assertions.

Regardless of purpose or chosen validity considerations, qualitative research depends on evidence . Researchers in different qualitative methodologies rely on different types of evidence to support their claims. Qualitative researchers typically utilize a variety of forms of evidence including texts (written notes, transcripts, images, etc.), audio and video recordings, cultural artifacts, documents related to the inquiry, journal entries, and field notes taken during observations of social contexts and interactions. Schwandt ( 2001 ) wrote,

Evidence is essential to justification, and justification takes the form of an argument about the merit(s) of a given claim. It is generally accepted that no evidence is conclusive or unassailable (and hence, no argument is foolproof). Thus, evidence must often be judged for its credibility, and that typically means examining its source and the procedures by which it was produced [thus the need for transparency discussed earlier]. (p. 82)

Altheide and Johnson ( 2011 ) drew a distinction between evidence and facts:

Qualitative researchers distinguish evidence from facts. Evidence and facts are similar but not identical. We can often agree on facts, e.g., there is a rock, it is harder than cotton candy. Evidence involves an assertion that some facts are relevant to an argument or claim about a relationship. Since a position in an argument is likely tied to an ideological or even epistemological position, evidence is not completely bound by facts, but it is more problematic and subject to disagreement. (p. 586)

Inquirers should make every attempt to link evidence to claims (or findings, interpretations, assertions, conclusions, etc.). There are many strategies for making these connections. Induction involves accumulating multiple data points to infer a general conclusion. Confirmation entails directly linking evidence to resultant interpretations. Testability/falsifiability means illustrating that evidence does not necessarily contradict the claim/interpretation and so increases the credibility of the claim (Schwandt, 2001 ). In the study about learning to teach second-language learners, for example, a study finding (Cho et al., 2012 ) was that “as a moral claim , candidates increasingly [in higher levels of the teacher education program] feel more responsible and committed to … [English language learners]” (p. 77). We supported this finding with a series of data points that included the following preservice teacher response: “It is as much the responsibility of the teacher to help teach second-language learners the English language as it is our responsibility to teach traditional English speakers to read or correctly perform math functions.” Claims supported by evidence allow readers to see for themselves and to both examine researcher assertions in tandem with evidence and form further interpretations of their own.

Some postmodernists reject the notion that qualitative interpretations are arguments based on evidence. Instead, they argue that qualitative accounts are not intended to faithfully represent that experience, but instead are designed to evoke some feelings or reactions in the reader of the account (Schwandt, 2001 ). We argue that, even in these instances where transformational validity concerns take priority over transactional processes, evidence still matters. Did the assertions accomplish the evocative aims? What evidence/arguments were used to evoke these reactions? Does the presented claim correspond with the study’s evidence? Is the account inclusive? In other words, does it attend to all evidence or selectively compartmentalize some data while capitalizing on other evidentiary forms?

Researchers, we argue, should be both transparent and reflexive about these questions and, regardless of research methodology or purpose, should share with readers of the account their evidentiary moves and aims. Altheide and Johnson ( 2011 ) called this an evidentiary narrative and explain:

Ultimately, evidence is bound up with our identity in a situation.… An “evidentiary narrative” emerges from a reconsideration of how knowledge and belief systems in everyday life are tied to epistemic communities that provide perspectives, scenarios, and scripts that reflect symbolic and social moral orders. An “evidentiary narrative” symbolically joins an actor, an audience, a point of view (definition of a situation), assumptions, and a claim about a relationship between two or more phenomena. If any of these factors are not part of the context of meaning for a claim, it will not be honored, and thus, not seen as evidence. (p. 686)

In sum, readers/consumers of a research account deserve to know how evidence was treated and viewed in an inquiry. They want and should be aware of accounts that aim to evoke versus represent, and then they can apply their own criteria (including the potential transferability to their situated context). Renowned ethnographer and qualitative research theorist Harry Wolcott ( 1990 ) urged researchers to “let readers ‘see’ for themselves” by providing more detail rather than less and by sharing primary data/evidence to support interpretations. In the end, readers do not expect perfection. Writer Eric Liu ( 2010 ) explained, “We don’t expect flawless interpretation. We expect good faith. We demand honesty.”

Last, in this journey through concepts we assert are pertinent to researchers engaged in interpretive processes, we include attention to the literature . In discussing literature, qualitative researchers typically mean publications about the prior research conducted on topics aligned with or related to a study. Most often, this research/literature is reviewed and compiled by researchers in a section of the research report titled “Literature Review.” It is here we find others’ studies, methods, and theories related to our topics of study, and it is here we hope the assertions and theories that result from our studies will someday reside.

We acknowledge the value of being familiar with research related to topics of study. This familiarity can inform multiple phases of the inquiry process. Understanding the extant knowledge base can inform research questions and topic selection, data collection and analysis plans, and the interpretive process. In what ways do the interpretations from this study correspond with other research conducted on this topic? Do findings/interpretations corroborate, expand, or contradict other researchers’ interpretations of similar phenomena? In any of these scenarios (correspondence, expansion, contradiction), new findings and interpretations from a study add to and deepen the knowledge base, or literature, on a topic of investigation.

For example, in our literature review for the study of student teaching, we quickly determined that the knowledge base and extant theories related to the student teaching experience were immense, but also quickly realized that few, if any, studies had examined student teaching from the perspective of the K–12 students who had the student teachers. This focus on the literature related to our topic of student teaching prompted us to embark on a study that would fill a gap in this literature: Most of the knowledge base focused on the experiences and learning of the student teachers themselves. Our study, then, by focusing on the K–12 students’ perspectives, added literature/theories/assertions to a previously untapped area. The “literature” in this area (at least we would like to think) is now more robust as a result.

In another example, a research team (Trent et al., 2003 ) focused on institutional diversity efforts, mined the literature, found an appropriate existing (a priori) set of theories/assertions, and then used the existing theoretical framework from the literature as a framework to analyze data, in this case, a variety of institutional activities related to diversity.

Conducting a literature review to explore extant theories on a topic of study can serve a variety of purposes. As evidenced in these examples, consulting the literature/extant theory can reveal gaps in the literature. A literature review might also lead researchers to existing theoretical frameworks that support analysis and interpretation of their data (as in the use of the a priori framework example). Finally, a review of current theories related to a topic of inquiry might confirm that much theory already exists, but that further study may add to, bolster, and/or elaborate on the current knowledge base.

Guidance for researchers conducting literature reviews is plentiful. Lichtman ( 2013 ) suggested researchers conduct a brief literature review, begin research, and then update and modify the literature review as the inquiry unfolds. She suggested reviewing a wide range of related materials (not just scholarly journals) and additionally suggested that researchers attend to literature on methodology, not just the topic of study. She also encouraged researchers to bracket and write down thoughts on the research topic as they review the literature, and, important for this chapter, that researchers “integrate your literature review throughout your writing rather than using a traditional approach of placing it in a separate chapter” (p. 173).

We agree that the power of a literature review to provide context for a study can be maximized when this information is not compartmentalized apart from a study’s findings. Integrating (or at least revisiting) reviewed literature juxtaposed alongside findings can illustrate how new interpretations add to an evolving story. Eisenhart ( 1998 ) expanded the traditional conception of the literature review and discussed the concept of an interpretive review . By taking this interpretive approach, Eisenhart claimed that reviews, alongside related interpretations/findings on a specific topic, have the potential to allow readers to see the studied phenomena in entirely new ways, through new lenses, revealing heretofore unconsidered perspectives. Reviews that offer surprising and enriching perspectives on meanings and circumstances “shake things up, break down boundaries, and cause things (or thinking) to expand” (p. 394). Coupling reviews of this sort with current interpretations will “give us stories that startle us with what we have failed to notice” (p. 395).

In reviews of research studies, it can certainly be important to evaluate the findings in light of established theories and methods [the sorts of things typically included in literature reviews]. However, it also seems important to ask how well the studies disrupt conventional assumptions and help us to reconfigure new, more inclusive, and more promising perspectives on human views and actions. From an interpretivist perspective, it would be most important to review how well methods and findings permit readers to grasp the sense of unfamiliar perspectives and actions. (Eisenhart, 1998 , p. 397)

Though our interpretation-related journey in this chapter nears an end, we are hopeful it is just the beginning of multiple new conversations among ourselves and in concert with other qualitative researchers. Our aims have been to circumscribe interpretation in qualitative research; emphasize the importance of interpretation in achieving the aims of the qualitative project; discuss the interactions of methodology, data, and the researcher/self as these concepts and theories intertwine with interpretive processes; describe some concrete ways that qualitative inquirers engage the process of interpretation; and, finally, provide a framework of interpretive strategies that may serve as a guide for ourselves and other researchers.

In closing, we note that the TRAVEL framework, construed as a journey to be undertaken by researchers engaged in interpretive processes, is not designed to be rigid or prescriptive, but instead is designed to be a flexible set of concepts that will inform researchers across multiple epistemological, methodological, and theoretical paradigms. We chose the concepts of transparency, reflexivity, analysis, validity, evidence, and literature (TRAVEL) because they are applicable to the infinite journeys undertaken by qualitative researchers who have come before and to those who will come after us. As we journeyed through our interpretations of interpretation, we have discovered new things about ourselves and our work. We hope readers also garner insights that enrich their interpretive excursions. Happy travels!

Altheide, D. , & Johnson, J. M. ( 2011 ). Reflections on interpretive adequacy in qualitative research. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Google Scholar

Google Preview

Barrett, J. ( 2007 ). The researcher as instrument: Learning to conduct qualitative research through analyzing and interpreting a choral rehearsal.   Music Education Research, 9, 417–433.

Barrett, T. ( 2011 ). Criticizing art: Understanding the contemporary (3rd ed.). New York, NY: McGraw–Hill.

Belgrave, L. L. , & Smith, K. J. ( 2002 ). Negotiated validity in collaborative ethnography. In N. M. Denzin & Y. S. Lincoln (Eds.), The qualitative inquiry reader (pp. 233–255). Thousand Oaks, CA: Sage.

Bernard, H. R. , Wutich, A. , & Ryan, G. W. ( 2017 ). Analyzing qualitative data: Systematic approaches (2nd ed.). Thousand Oaks, CA: Sage.

Beverly, J. ( 2000 ). Testimonio, subalternity, and narrative authority. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 555–566). Thousand Oaks, CA: Sage.

Bogdan, R. C. , & Biklen, S. K. ( 2007 ). Qualitative research for education: An introduction to theories and methods (5th ed.). Boston, MA: Allyn & Bacon.

Cho, J. , Rios, F. , Trent, A. , & Mayfield, K. ( 2012 ). Integrating language diversity into teacher education curricula in a rural context: Candidates’ developmental perspectives and understandings.   Teacher Education Quarterly, 39(2), 63–85.

Cho, J. , & Trent, A. ( 2006 ). Validity in qualitative research revisited.   QR—Qualitative Research Journal, 6, 319–340.

Denzin, N. M. , & Lincoln, Y. S . (Eds.). ( 2004 ). Handbook of qualitative research . Newbury Park, CA: Sage.

Denzin, N. M. , & Lincoln, Y. S. ( 2007 ). Collecting and interpreting qualitative materials . Thousand Oaks, CA: Sage.

Eisenhart, M. ( 1998 ). On the subject of interpretive reviews.   Review of Educational Research, 68, 391–393.

Eisner, E. ( 1991 ). The enlightened eye: Qualitative inquiry and the enhancement of educational practice . New York, NY: Macmillan.

Ellingson, L. L. ( 2011 ). Analysis and representation across the continuum. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Ellis, C. , & Bochner, A. P. ( 2000 ). Autoethnography, personal narrative, reflexivity: Researcher as subject. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 733–768). Thousand Oaks, CA: Sage.

Emerson, R. , Fretz, R. , & Shaw, L. ( 1995 ). Writing ethnographic fieldwork . Chicago, IL: University of Chicago Press.

Erickson, F. ( 1986 ). Qualitative methods in research in teaching and learning. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp 119–161). New York, NY: Macmillan.

Glaser, B. ( 1965 ). The constant comparative method of qualitative analysis.   Social Problems, 12, 436–445.

Gubrium, J. F. , & Holstein, J. A. ( 2000 ). Analyzing interpretive practice. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 487–508). Thousand Oaks, CA: Sage.

Hammersley, M. ( 2013 ). What is qualitative research? London, England: Bloomsbury Academic.

Hesse-Biber, S. N. ( 2017 ). The practice of qualitative research (3rd ed.). Thousand Oaks, CA: Sage.

Hesse-Biber, S. N. , & Leavy, P. ( 2011 ). The practice of qualitative research (2nd ed.). Thousand Oaks, CA: Sage.

Hubbard, R. S. , & Power, B. M. ( 2003 ). The art of classroom inquiry: A handbook for teacher researchers . Portsmouth, NH: Heinemann.

Husserl, E. ( 1913 /1962). Ideas: general introduction to pure phenomenology (W. R. Boyce Gibson, Trans.). London, England: Collier.

LaBanca, F. ( 2011 ). Online dynamic asynchronous audit strategy for reflexivity in the qualitative paradigm.   Qualitative Report, 16, 1160–1171.

Lather, P. ( 1993 ). Fertile obsession: Validity after poststructuralism.   Sociological Quarterly, 34, 673–693.

Leavy, P. ( 2017 ). Method meets art: Arts-based research practice (2nd ed.). New York, NY: Guilford Press.

Lenzo, K. ( 1995 ). Validity and self reflexivity meet poststructuralism: Scientific ethos and the transgressive self.   Educational Researcher, 24(4), 17–23, 45.

Lichtman, M. ( 2013 ). Qualitative research in education: A user’s guide (3rd ed.). Thousand Oaks, CA: Sage.

Lincoln, Y. S. , & Guba, E. G. ( 1985 ). Naturalistic inquiry . Beverly Hills, CA: Sage.

Liu, E. (2010). The real meaning of balls and strikes . Retrieved from http://www.huffingtonpost.com/eric-liu/the-real-meaning-of-balls_b_660915.html

Maxwell, J. ( 1992 ). Understanding and validity in qualitative research.   Harvard Educational Review, 62, 279–300.

Miles, M. B. , & Huberman, A. M. ( 1994 ). Qualitative data analysis . Thousand Oaks, CA: Sage.

Mills, G. E. ( 2018 ). Action research: A guide for the teacher researcher (6th ed.). New York, NY: Pearson.

Olivier de Sardan, J. P. ( 2015 ). Epistemology, fieldwork, and anthropology. New York, NY: Palgrave Macmillan.

Packer, M. J. ( 2018 ). The science of qualitative research (2nd ed.). Cambridge, England: Cambridge University Press.

Paulus, T. , Woodside, M. , & Ziegler, M. ( 2008 ). Extending the conversation: Qualitative research as dialogic collaborative process.   Qualitative Report, 13, 226–243.

Richardson, L. ( 1995 ). Writing stories: Co-authoring the “sea monster,” a writing story.   Qualitative Inquiry, 1, 189–203.

Richardson, L. ( 1997 ). Fields of play: Constructing an academic life . New Brunswick, NJ: Rutgers University Press.

Sagor, R. ( 2000 ). Guiding school improvement with action research . Alexandria, VA: ASCD.

Saldaña, J. ( 2011 ). Fundamentals of qualitative research . New York, NY: Oxford University Press.

Scheurich, J. ( 1996 ). The masks of validity: A deconstructive investigation.   Qualitative Studies in Education, 9, 49–60.

Schwandt, T. A. ( 2001 ). Dictionary of qualitative inquiry . Thousand Oaks, CA: Sage.

Slotnick, R. C. , & Janesick, V. J. ( 2011 ). Conversations on method: Deconstructing policy through the researcher reflective journal.   Qualitative Report, 16, 1352–1360.

Trent, A. ( 2002 ). Dreams as data: Art installation as heady research,   Teacher Education Quarterly, 29(4), 39–51.

Trent, A. ( 2012 ). Action research on action research: A facilitator’s account.   Action Learning and Action Research Journal, 18, 35–67.

Trent, A. , Rios, F. , Antell, J. , Berube, W. , Bialostok, S. , Cardona, D. , … Rush, T. ( 2003 ). Problems and possibilities in the pursuit of diversity: An institutional analysis.   Equity & Excellence, 36, 213–224.

Trent, A. , & Zorko, L. ( 2006 ). Listening to students: “New” perspectives on student teaching.   Teacher Education & Practice, 19, 55–70.

Willig, C. ( 2017 ). Interpretation in qualitative research. In C. Willig & W. Stainton-Rogers (Eds.), The Sage handbook of qualitative research in psychology (2nd ed., pp. 267–290). London, England: Sage.

Willis, J. W. ( 2007 ). Foundations of qualitative research: Interpretive and critical approaches . Thousand Oaks, CA: Sage.

Wolcott, H. ( 1990 ). On seeking-and rejecting-validity in qualitative research. In E. Eisner & A. Peshkin (Eds.), Qualitative inquiry in education: The continuing debate (pp. 121–152). New York, NY: Teachers College Press.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essays Samples >
  • Essay Types >
  • Research Paper Example

Data Analysis Research Papers Samples For Students

363 samples of this type

Regardless of how high you rate your writing abilities, it's always an appropriate idea to check out an expertly written Research Paper example, especially when you're handling a sophisticated Data Analysis topic. This is precisely the case when WowEssays.com collection of sample Research Papers on Data Analysis will prove useful. Whether you need to think up an original and meaningful Data Analysis Research Paper topic or survey the paper's structure or formatting peculiarities, our samples will provide you with the necessary material.

Another activity area of our write my paper company is providing practical writing support to students working on Data Analysis Research Papers. Research help, editing, proofreading, formatting, plagiarism check, or even crafting entirely original model Data Analysis papers upon your request – we can do that all! Place an order and buy a research paper now.

Extreme I/O Techniques Research Papers Examples

Free research paper on database use, introduction.

Database technology has formed an important aspect of data management at Google. There are many requirements that require data storage at Google and are the reason why there is a big data store for the company. It is important for the company to undertake data storage.

Use of database management system

Free research paper about general information.

Don't waste your time searching for a sample.

Get your research paper done by professional writers!

Just from $10/page

Good Research Paper On Past And Current Efforts To Deal With The Issue

Issue in information system operation management (isom) database security, bioinformatics research paper samples, introduction:, fingerprinting research paper, fingerprinting, free research paper on results and conclusion of the research process to problems in health care, results: appropriateness of the data collection methods for the study, database administrator (dba) research papers example, free research paper about data warehousing, introduction and definition of data warehouse, free benefits of direct marketing research paper sample, research paper on frequent shopper program, quality assurance plan, technical architecture for a frequent shopper program research paper examples, methods research paper examples, research paper on database design, example of research paper on elements and functions of an effective education system, fig.1 simplified diagram of a process model research paper examples, database and data warehousing design research paper examples, free research paper on quantitative data analysis and interpretation, in order to achieve the desired goals, the business requirement report will factor research paper example, business requirement plan, free research paper on capstone simulation round 2, m5 discussion blog research paper.

Part I. A "lesson plan" in which you teach your fellow group mates about qualitative research, this time focusing on qualitative analysis.

Lesson Tittle: QUALITATIVE DATA ANALYSIS.

Objective: By the end of this lesson the students will: - Have an appreciation of principles of qualitative data analysis. - Discriminate between various qualitative analysis methods. - Apply data collection methods to a certain research or professional interest. - Analyze and discuss qualitative analysis appropriateness for evaluation and research purposes.

Purpose: To introduce the students to analysis of the qualitative data.

Example of cybersecurity research paper.

According to , Cyber Security is the protection of electronic information communication systems against confidentiality, integrity and availability issues. This paper will answer two questions about cyber security.

Question 2: Vulnerable area: smart grid

Free research paper on drug development, drug development slides, example of data analysis in research paper, research paper on information technology act, telephone consumer act (tcpa) 1991, data warehouse vs data mart research paper examples.

Data warehouse is the database for the whole corporate organization that is used for data analysis and reporting. On the other hand, a data mart refers to the subset of the data warehouse and it is mainly designed for a specific business team or line.

The Integrated Healthcare Delivery System can utilize the data warehouse in various ways that are discussed below.

Plagiarism and how to avoid it research paper examples, overlooked aspects of database design in healthcare research paper examples, research paper on common pitfalls to database design, example of microsoft access database research paper, requirement of database for scheduling process, problem domain by using orm research paper example, it projects research paper, input controls research paper examples, example of criminal identification procedures in the 21st century dna analysis research paper, criminal identification procedures in the 21st century: dna analysis.

At present, forensic science is virtually unregulated—with the paradoxical result that clinical laboratories must meet higher standards to be allowed to diagnose strep throat than forensic labs must meet to put a defendant on death row.

—Eric S. Lander, molecular biologist, 1989

Steps in case study data analysis research paper sample, steps in case study data analysis, data analysis and interpretation process research paper example, database research paper, fundamentals of database characteristics and structure research paper example, database use for health care, multiuser sql database research paper examples, which multi-user database will be capable of handling the needs of centre for disease control (cdc), car dealership research paper example, scenario a – car dealership, example of data access control models research paper, access control models.

Access control models are the mechanisms that are used to regulate the access of users to a computer system or information systems. This paper will discuss three access models and discuss the environments in which they best operate in.

PICO Worksheet And Search Strategy Research Paper

1. Define your question using PICO: Patient/Problem, Intervention, Comparison, and Outcome.

Patient/Problem: Children and young people under 19 years old who have nocturnal enuresis (bedwetting). Sub group to include patients with Special needs (learning disabilities, emotional and ADHD)

Intervention: Parent’s choice bed wetting Alarm alone (body worn, bed, vibrating, wireless, voice recorded, multi-tone, bell and pad)

Exemplar Research Paper On Database Security To Write After

Sample research paper on  data storage and database management: centralized versus distributed, perfect model research paper on fundamentals of database development.

A database forms a significant constituent of the information system, particularly in business-oriented systems. As a consequence, the process of developing database system is a component of system development. The division of the development process into a collection of steps or phases is a core feature of software engineering. Each of the phases focuses on a single aspect of the development. Development life cycle is the process software, or a database system undergoes from planning to its implementation. It is imperative to check each phase or step for correctness before moving to the next phase (Bestavros, Lin & Son, 2012).

SDLC Waterfall model

A-level research paper on database controls for free use, free the history of data models from 1960 to the 1980s research paper sample, the history of data models, expertly written research paper on the purpose of the database. to follow.

Business Rules and Data Models.

Free Open Access Clinical Research Database For Animal Assisted Dementia Therapy: A Compilation Of Five Databases Research Paper: Top-Quality Sample To Follow

Storage management research paper sample, storage management- an introduction, example of research paper on database modeling and normalization, business rules and data models research papers example, business rules and data models, databases worksheet: free sample research paper to follow, databases worksheet., good research paper on database system and models.

In order to get the commission for each employ we first have to generate a database and its tables. CREATE TABLE Employee( EmpNumber int not null, EmpFirstName varchar(100) not null, EmpLastName varchar(100) not null, CommissionRate decimal(3,2) not null, YrlySalary int not null, DepartmentID int, JobID int, PRIMARY KEY (EmpNumber), FOREIGN KEY (DepartmentID) references Department(DepartmentID), FOREIGN KEY (JobID) references Job(JobID) ).

CREATE TABLE Job( JobID int not null, JobDescription varchar(400) not null, PRIMARY KEY (JobID) )

Relationship and interaction between xml and databases: research paper you might want to emulate, free research paper on plan for processing a potential crime scene, plan for processing a potential crime scene, research paper on rogers communications crm proposal, executive summary.

Organizations continually make changes with the aim of achieving operational excellence. Information systems are equally approached this way in order to achieve excellence. Information systems are used to achieve efficiency and increased production through managed information, data and processes. Currently information systems are used in placing of orders, tracking processes to the warehouse, labeling, shipping and delivery to the final user. The paper details a high level description of the current standing in the company. It will then propose a new CRM implementation system for Rogers Communications, Inc.. The literature includes infrastructural, operational, network and security considerations.

Problem statement

Example of normalization research paper, good example of field observation research paper, research paper on cerebral palsy treatment.

For this study, it was hypothesized that the reaches and walking endurance of children with spastic CP were strengthened and reinforced after a physical therapy treatment is given to the subjects.

Chapter V. Theoretical Frame Work /Conceptual Framework

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Table of Contents

Which social media platforms are most common, who uses each social media platform, find out more, social media fact sheet.

Many Americans use social media to connect with one another, engage with news content, share information and entertain themselves. Explore the patterns and trends shaping the social media landscape.

To better understand Americans’ social media use, Pew Research Center surveyed 5,733 U.S. adults from May 19 to Sept. 5, 2023. Ipsos conducted this National Public Opinion Reference Survey (NPORS) for the Center using address-based sampling and a multimode protocol that included both web and mail. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race and ethnicity, education and other categories.

Polls from 2000 to 2021 were conducted via phone. For more on this mode shift, read our Q&A.

Here are the questions used for this analysis , along with responses, and  its methodology ­­­.

A note on terminology: Our May-September 2023 survey was already in the field when Twitter changed its name to “X.” The terms  Twitter  and  X  are both used in this report to refer to the same platform.

example of data interpretation in research paper

YouTube and Facebook are the most-widely used online platforms. About half of U.S. adults say they use Instagram, and smaller shares use sites or apps such as TikTok, LinkedIn, Twitter (X) and BeReal.

Note: The vertical line indicates a change in mode. Polls from 2012-2021 were conducted via phone. In 2023, the poll was conducted via web and mail. For more details on this shift, please read our Q&A . Refer to the topline for more information on how question wording varied over the years. Pre-2018 data is not available for YouTube, Snapchat or WhatsApp; pre-2019 data is not available for Reddit; pre-2021 data is not available for TikTok; pre-2023 data is not available for BeReal. Respondents who did not give an answer are not shown.

Source: Surveys of U.S. adults conducted 2012-2023.

example of data interpretation in research paper

Usage of the major online platforms varies by factors such as age, gender and level of formal education.

% of U.S. adults who say they ever use __ by …

  • RACE & ETHNICITY
  • POLITICAL AFFILIATION

example of data interpretation in research paper

This fact sheet was compiled by Research Assistant  Olivia Sidoti , with help from Research Analyst  Risa Gelles-Watnick , Research Analyst  Michelle Faverio , Digital Producer  Sara Atske , Associate Information Graphics Designer Kaitlyn Radde and Temporary Researcher  Eugenie Park .

Follow these links for more in-depth analysis of the impact of social media on American life.

  • Americans’ Social Media Use  Jan. 31, 2024
  • Americans’ Use of Mobile Technology and Home Broadband  Jan. 31 2024
  • Q&A: How and why we’re changing the way we study tech adoption  Jan. 31, 2024

Find more reports and blog posts related to  internet and technology .

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

example of data interpretation in research paper

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

We are on the front end of an innovation that can help us better predict how to transform our customer interactions.

How Can I Help You? — Tuesday CX Thoughts

Jun 5, 2024

example of data interpretation in research paper

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 October 2023

The impact of founder personalities on startup success

  • Paul X. McCarthy 1 , 2 ,
  • Xian Gong 3 ,
  • Fabian Braesemann 4 , 5 ,
  • Fabian Stephany 4 , 5 ,
  • Marian-Andrei Rizoiu 3 &
  • Margaret L. Kern 6  

Scientific Reports volume  13 , Article number:  17200 ( 2023 ) Cite this article

60k Accesses

2 Citations

305 Altmetric

Metrics details

  • Human behaviour
  • Information technology

An Author Correction to this article was published on 07 May 2024

This article has been updated

Startup companies solve many of today’s most challenging problems, such as the decarbonisation of the economy or the development of novel life-saving vaccines. Startups are a vital source of innovation, yet the most innovative are also the least likely to survive. The probability of success of startups has been shown to relate to several firm-level factors such as industry, location and the economy of the day. Still, attention has increasingly considered internal factors relating to the firm’s founding team, including their previous experiences and failures, their centrality in a global network of other founders and investors, as well as the team’s size. The effects of founders’ personalities on the success of new ventures are, however, mainly unknown. Here, we show that founder personality traits are a significant feature of a firm’s ultimate success. We draw upon detailed data about the success of a large-scale global sample of startups (n = 21,187). We find that the Big Five personality traits of startup founders across 30 dimensions significantly differ from that of the population at large. Key personality facets that distinguish successful entrepreneurs include a preference for variety, novelty and starting new things (openness to adventure), like being the centre of attention (lower levels of modesty) and being exuberant (higher activity levels). We do not find one ’Founder-type’ personality; instead, six different personality types appear. Our results also demonstrate the benefits of larger, personality-diverse teams in startups, which show an increased likelihood of success. The findings emphasise the role of the diversity of personality types as a novel dimension of team diversity that influences performance and success.

Similar content being viewed by others

example of data interpretation in research paper

Predicting success in the worldwide start-up network

example of data interpretation in research paper

The personality traits of self-made and inherited millionaires

example of data interpretation in research paper

The nexus of top executives’ attributes, firm strategies, and outcomes: Large firms versus SMEs

Introduction.

The success of startups is vital to economic growth and renewal, with a small number of young, high-growth firms creating a disproportionately large share of all new jobs 1 , 2 . Startups create jobs and drive economic growth, and they are also an essential vehicle for solving some of society’s most pressing challenges.

As a poignant example, six centuries ago, the German city of Mainz was abuzz as the birthplace of the world’s first moveable-type press created by Johannes Gutenberg. However, in the early part of this century, it faced several economic challenges, including rising unemployment and a significant and growing municipal debt. Then in 2008, two Turkish immigrants formed the company BioNTech in Mainz with another university research colleague. Together they pioneered new mRNA-based technologies. In 2020, BioNTech partnered with US pharmaceutical giant Pfizer to create one of only a handful of vaccines worldwide for Covid-19, saving an estimated six million lives 3 . The economic benefit to Europe and, in particular, the German city where the vaccine was developed has been significant, with windfall tax receipts to the government clearing Mainz’s €1.3bn debt and enabling tax rates to be reduced, attracting other businesses to the region as well as inspiring a whole new generation of startups 4 .

While stories such as the success of BioNTech are often retold and remembered, their success is the exception rather than the rule. The overwhelming majority of startups ultimately fail. One study of 775 startups in Canada that successfully attracted external investment found only 35% were still operating seven years later 5 .

But what determines the success of these ‘lucky few’? When assessing the success factors of startups, especially in the early-stage unproven phase, venture capitalists and other investors offer valuable insights. Three different schools of thought characterise their perspectives: first, supply-side or product investors : those who prioritise investing in firms they consider to have novel and superior products and services, investing in companies with intellectual property such as patents and trademarks. Secondly, demand-side or market-based investors : those who prioritise investing in areas of highest market interest, such as in hot areas of technology like quantum computing or recurrent or emerging large-scale social and economic challenges such as the decarbonisation of the economy. Thirdly, talent investors : those who prioritise the foundation team above the startup’s initial products or what industry or problem it is looking to address.

Investors who adopt the third perspective and prioritise talent often recognise that a good team can overcome many challenges in the lead-up to product-market fit. And while the initial products of a startup may or may not work a successful and well-functioning team has the potential to pivot to new markets and new products, even if the initial ones prove untenable. Not surprisingly, an industry ‘autopsy’ into 101 tech startup failures found 23% were due to not having the right team—the number three cause of failure ahead of running out of cash or not having a product that meets the market need 6 .

Accordingly, early entrepreneurship research was focused on the personality of founders, but the focus shifted away in the mid-1980s onwards towards more environmental factors such as venture capital financing 7 , 8 , 9 , networks 10 , location 11 and due to a range of issues and challenges identified with the early entrepreneurship personality research 12 , 13 . At the turn of the 21st century, some scholars began exploring ways to combine context and personality and reconcile entrepreneurs’ individual traits with features of their environment. In her influential work ’The Sociology of Entrepreneurship’, Patricia H. Thornton 14 discusses two perspectives on entrepreneurship: the supply-side perspective (personality theory) and the demand-side perspective (environmental approach). The supply-side perspective focuses on the individual traits of entrepreneurs. In contrast, the demand-side perspective focuses on the context in which entrepreneurship occurs, with factors such as finance, industry and geography each playing their part. In the past two decades, there has been a revival of interest and research that explores how entrepreneurs’ personality relates to the success of their ventures. This new and growing body of research includes several reviews and meta-studies, which show that personality traits play an important role in both career success and entrepreneurship 15 , 16 , 17 , 18 , 19 , that there is heterogeneity in definitions and samples used in research on entrepreneurship 16 , 18 , and that founder personality plays an important role in overall startup outcomes 17 , 19 .

Motivated by the pivotal role of the personality of founders on startup success outlined in these recent contributions, we investigate two main research questions:

Which personality features characterise founders?

Do their personalities, particularly the diversity of personality types in founder teams, play a role in startup success?

We aim to understand whether certain founder personalities and their combinations relate to startup success, defined as whether their company has been acquired, acquired another company or listed on a public stock exchange. For the quantitative analysis, we draw on a previously published methodology 20 , which matches people to their ‘ideal’ jobs based on social media-inferred personality traits.

We find that personality traits matter for startup success. In addition to firm-level factors of location, industry and company age, we show that founders’ specific Big Five personality traits, such as adventurousness and openness, are significantly more widespread among successful startups. As we find that companies with multi-founder teams are more likely to succeed, we cluster founders in six different and distinct personality groups to underline the relevance of the complementarity in personality traits among founder teams. Startups with diverse and specific combinations of founder types (e. g., an adventurous ‘Leader’, a conscientious ‘Accomplisher’, and an extroverted ‘Developer’) have significantly higher odds of success.

We organise the rest of this paper as follows. In the Section " Results ", we introduce the data used and the methods applied to relate founders’ psychological traits with their startups’ success. We introduce the natural language processing method to derive individual and team personality characteristics and the clustering technique to identify personality groups. Then, we present the result for multi-variate regression analysis that allows us to relate firm success with external and personality features. Subsequently, the Section " Discussion " mentions limitations and opportunities for future research in this domain. In the Section " Methods ", we describe the data, the variables in use, and the clustering in greater detail. Robustness checks and additional analyses can be found in the Supplementary Information.

Our analysis relies on two datasets. We infer individual personality facets via a previously published methodology 20 from Twitter user profiles. Here, we restrict our analysis to founders with a Crunchbase profile. Crunchbase is the world’s largest directory on startups. It provides information about more than one million companies, primarily focused on funding and investors. A company’s public Crunchbase profile can be considered a digital business card of an early-stage venture. As such, the founding teams tend to provide information about themselves, including their educational background or a link to their Twitter account.

We infer the personality profiles of the founding teams of early-stage ventures from their publicly available Twitter profiles, using the methodology described by Kern et al. 20 . Then, we correlate this information to data from Crunchbase to determine whether particular combinations of personality traits correspond to the success of early-stage ventures. The final dataset used in the success prediction model contains n = 21,187 startup companies (for more details on the data see the Methods section and SI section  A.5 ).

Revisions of Crunchbase as a data source for investigations on a firm and industry level confirm the platform to be a useful and valuable source of data for startups research, as comparisons with other sources at micro-level, e.g., VentureXpert or PwC, also suggest that the platform’s coverage is very comprehensive, especially for start-ups located in the United States 21 . Moreover, aggregate statistics on funding rounds by country and year are quite similar to those produced with other established sources, going to validate the use of Crunchbase as a reliable source in terms of coverage of funded ventures. For instance, Crunchbase covers about the same number of investment rounds in the analogous sectors as collected by the National Venture Capital Association 22 . However, we acknowledge that the data source might suffer from registration latency (a certain delay between the foundation of the company and its actual registration on Crunchbase) and success bias in company status (the likeliness that failed companies decide to delete their profile from the database).

The definition of startup success

The success of startups is uncertain, dependent on many factors and can be measured in various ways. Due to the likelihood of failure in startups, some large-scale studies have looked at which features predict startup survival rates 23 , and others focus on fundraising from external investors at various stages 24 . Success for startups can be measured in multiple ways, such as the amount of external investment attracted, the number of new products shipped or the annual growth in revenue. But sometimes external investments are misguided, revenue growth can be short-lived, and new products may fail to find traction.

Success in a startup is typically staged and can appear in different forms and times. For example, a startup may be seen to be successful when it finds a clear solution to a widely recognised problem, such as developing a successful vaccine. On the other hand, it could be achieving some measure of commercial success, such as rapidly accelerating sales or becoming profitable or at least cash positive. Or it could be reaching an exit for foundation investors via a trade sale, acquisition or listing of its shares for sale on a public stock exchange via an Initial Public Offering (IPO).

For our study, we focused on the startup’s extrinsic success rather than the founders’ intrinsic success per se, as its more visible, objective and measurable. A frequently considered measure of success is the attraction of external investment by venture capitalists 25 . However, this is not in and of itself a good measure of clear, incontrovertible success, particularly for early-stage ventures. This is because it reflects investors’ expectations of a startup’s success potential rather than actual business success. Similarly, we considered other measures like revenue growth 26 , liquidity events 27 , 28 , 29 , profitability 30 and social impact 31 , all of which have benefits as they capture incremental success, but each also comes with operational measurement challenges.

Therefore, we apply the success definition initially introduced by Bonaventura et al. 32 , namely that a startup is acquired, acquires another company or has an initial public offering (IPO). We consider any of these major capital liquidation events as a clear threshold signal that the company has matured from an early-stage venture to becoming or is on its way to becoming a mature company with clear and often significant business growth prospects. Together these three major liquidity events capture the primary forms of exit for external investors (an acquisition or trade sale and an IPO). For companies with a longer autonomous growth runway, acquiring another company marks a similar milestone of scale, maturity and capability.

Using multifactor analysis and a binary classification prediction model of startup success, we looked at many variables together and their relative influence on the probability of the success of startups. We looked at seven categories of factors through three lenses of firm-level factors: (1) location, (2) industry, (3) age of the startup; founder-level factors: (4) number of founders, (5) gender of founders, (6) personality characteristics of founders and; lastly team-level factors: (7) founder-team personality combinations. The model performance and relative impacts on the probability of startup success of each of these categories of founders are illustrated in more detail in section  A.6 of the Supplementary Information (in particular Extended Data Fig.  19 and Extended Data Fig.  20 ). In total, we considered over three hundred variables (n = 323) and their relative significant associations with success.

The personality of founders

Besides product-market, industry, and firm-level factors (see SI section  A.1 ), research suggests that the personalities of founders play a crucial role in startup success 19 . Therefore, we examine the personality characteristics of individual startup founders and teams of founders in relationship to their firm’s success by applying the success definition used by Bonaventura et al. 32 .

Employing established methods 33 , 34 , 35 , we inferred the personality traits across 30 dimensions (Big Five facets) of a large global sample of startup founders. The startup founders cohort was created from a subset of founders from the global startup industry directory Crunchbase, who are also active on the social media platform Twitter.

To measure the personality of the founders, we used the Big Five, a popular model of personality which includes five core traits: Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Emotional stability. Each of these traits can be further broken down into thirty distinct facets. Studies have found that the Big Five predict meaningful life outcomes, such as physical and mental health, longevity, social relationships, health-related behaviours, antisocial behaviour, and social contribution, at levels on par with intelligence and socioeconomic status 36 Using machine learning to infer personality traits by analysing the use of language and activity on social media has been shown to be more accurate than predictions of coworkers, friends and family and similar in accuracy to the judgement of spouses 37 . Further, as other research has shown, we assume that personality traits remain stable in adulthood even through significant life events 38 , 39 , 40 . Personality traits have been shown to emerge continuously from those already evident in adolescence 41 and are not significantly influenced by external life events such as becoming divorced or unemployed 42 . This suggests that the direction of any measurable effect goes from founder personalities to startup success and not vice versa.

As a first investigation to what extent personality traits might relate to entrepreneurship, we use the personality characteristics of individuals to predict whether they were an entrepreneur or an employee. We trained and tested a machine-learning random forest classifier to distinguish and classify entrepreneurs from employees and vice-versa using inferred personality vectors alone. As a result, we found we could correctly predict entrepreneurs with 77% accuracy and employees with 88% accuracy (Fig.  1 A). Thus, based on personality information alone, we correctly predict all unseen new samples with 82.5% accuracy (See SI section  A.2 for more details on this analysis, the classification modelling and prediction accuracy).

We explored in greater detail which personality features are most prominent among entrepreneurs. We found that the subdomain or facet of Adventurousness within the Big Five Domain of Openness was significant and had the largest effect size. The facet of Modesty within the Big Five Domain of Agreeableness and Activity Level within the Big Five Domain of Extraversion was the subsequent most considerable effect (Fig.  1 B). Adventurousness in the Big Five framework is defined as the preference for variety, novelty and starting new things—which are consistent with the role of a startup founder whose role, especially in the early life of the company, is to explore things that do not scale easily 43 and is about developing and testing new products, services and business models with the market.

Once we derived and tested the Big Five personality features for each entrepreneur in our data set, we examined whether there is evidence indicating that startup founders naturally cluster according to their personality features using a Hopkins test (see Extended Data Figure  6 ). We discovered clear clustering tendencies in the data compared with other renowned reference data sets known to have clusters. Then, once we established the founder data clusters, we used agglomerative hierarchical clustering. This ‘bottom-up’ clustering technique initially treats each observation as an individual cluster. Then it merges them to create a hierarchy of possible cluster schemes with differing numbers of groups (See Extended Data Fig.  7 ). And lastly, we identified the optimum number of clusters based on the outcome of four different clustering performance measurements: Davies-Bouldin Index, Silhouette coefficients, Calinski-Harabas Index and Dunn Index (see Extended Data Figure  8 ). We find that the optimum number of clusters of startup founders based on their personality features is six (labelled #0 through to #5), as shown in Fig.  1 C.

To better understand the context of different founder types, we positioned each of the six types of founders within an occupation-personality matrix established from previous research 44 . This research showed that ‘each job has its own personality’ using a substantial sample of employees across various jobs. Utilising the methodology employed in this study, we assigned labels to the cluster names #0 to #5, which correspond to the identified occupation tribes that best describe the personality facets represented by the clusters (see Extended Data Fig.  9 for an overview of these tribes, as identified by McCarthy et al. 44 ).

Utilising this approach, we identify three ’purebred’ clusters: #0, #2 and #5, whose members are dominated by a single tribe (larger than 60% of all individuals in each cluster are characterised by one tribe). Thus, these clusters represent and share personality attributes of these previously identified occupation-personality tribes 44 , which have the following known distinctive personality attributes (see also Table  1 ):

Accomplishers (#0) —Organised & outgoing. confident, down-to-earth, content, accommodating, mild-tempered & self-assured.

Leaders (#2) —Adventurous, persistent, dispassionate, assertive, self-controlled, calm under pressure, philosophical, excitement-seeking & confident.

Fighters (#5) —Spontaneous and impulsive, tough, sceptical, and uncompromising.

We labelled these clusters with the tribe names, acknowledging that labels are somewhat arbitrary, based on our best interpretation of the data (See SI section  A.3 for more details).

For the remaining three clusters #1, #3 and #4, we can see they are ‘hybrids’, meaning that the founders within them come from a mix of different tribes, with no one tribe representing more than 50% of the members of that cluster. However, the tribes with the largest share were noted as #1 Experts/Engineers, #3 Fighters, and #4 Operators.

To label these three hybrid clusters, we examined the closest occupations to the median personality features of each cluster. We selected a name that reflected the common themes of these occupations, namely:

Experts/Engineers (#1) as the closest roles included Materials Engineers and Chemical Engineers. This is consistent with this cluster’s personality footprint, which is highest in openness in the facets of imagination and intellect.

Developers (#3) as the closest roles include Application Developers and related technology roles such as Business Systems Analysts and Product Managers.

Operators (#4) as the closest roles include service, maintenance and operations functions, including Bicycle Mechanic, Mechanic and Service Manager. This is also consistent with one of the key personality traits of high conscientiousness in the facet of orderliness and high agreeableness in the facet of humility for founders in this cluster.

figure 1

Founder-Level Factors of Startup Success. ( A ), Successful entrepreneurs differ from successful employees. They can be accurately distinguished using a classifier with personality information alone. ( B ), Successful entrepreneurs have different Big Five facet distributions, especially on adventurousness, modesty and activity level. ( C ), Founders come in six different types: Fighters, Operators, Accomplishers, Leaders, Engineers and Developers (FOALED) ( D ), Each founder Personality-Type has its distinct facet.

Together, these six different types of startup founders (Fig.  1 C) represent a framework we call the FOALED model of founder types—an acronym of Fighters, Operators, Accomplishers, Leaders, Engineers and D evelopers.

Each founder’s personality type has its distinct facet footprint (for more details, see Extended Data Figure  10 in SI section  A.3 ). Also, we observe a central core of correlated features that are high for all types of entrepreneurs, including intellect, adventurousness and activity level (Fig.  1 D).To test the robustness of the clustering of the personality facets, we compare the mean scores of the individual facets per cluster with a 20-fold resampling of the data and find that the clusters are, overall, largely robust against resampling (see Extended Data Figure  11 in SI section  A.3 for more details).

We also find that the clusters accord with the distribution of founders’ roles in their startups. For example, Accomplishers are often Chief Executive Officers, Chief Financial Officers, or Chief Operating Officers, while Fighters tend to be Chief Technical Officers, Chief Product Officers, or Chief Commercial Officers (see Extended Data Fig.  12 in SI section  A.4 for more details).

The ensemble theory of success

While founders’ individual personality traits, such as Adventurousness or Openness, show to be related to their firms’ success, we also hypothesise that the combination, or ensemble, of personality characteristics of a founding team impacts the chances of success. The logic behind this reasoning is complementarity, which is proposed by contemporary research on the functional roles of founder teams. Examples of these clear functional roles have evolved in established industries such as film and television, construction, and advertising 45 . When we subsequently explored the combinations of personality types among founders and their relationship to the probability of startup success, adjusted for a range of other factors in a multi-factorial analysis, we found significantly increased chances of success for mixed foundation teams:

Initially, we find that firms with multiple founders are more likely to succeed, as illustrated in Fig.  2 A, which shows firms with three or more founders are more than twice as likely to succeed than solo-founded startups. This finding is consistent with investors’ advice to founders and previous studies 46 . We also noted that some personality types of founders increase the probability of success more than others, as shown in SI section  A.6 (Extended Data Figures  16 and 17 ). Also, we note that gender differences play out in the distribution of personality facets: successful female founders and successful male founders show facet scores that are more similar to each other than are non-successful female founders to non-successful male founders (see Extended Data Figure  18 ).

figure 2

The Ensemble Theory of Team-Level Factors of Startup Success. ( A ) Having a larger founder team elevates the chances of success. This can be due to multiple reasons, e.g., a more extensive network or knowledge base but also personality diversity. ( B ) We show that joint personality combinations of founders are significantly related to higher chances of success. This is because it takes more than one founder to cover all beneficial personality traits that ‘breed’ success. ( C ) In our multifactor model, we show that firms with diverse and specific combinations of types of founders have significantly higher odds of success.

Access to more extensive networks and capital could explain the benefits of having more founders. Still, as we find here, it also offers a greater diversity of combined personalities, naturally providing a broader range of maximum traits. So, for example, one founder may be more open and adventurous, and another could be highly agreeable and trustworthy, thus, potentially complementing each other’s particular strengths associated with startup success.

The benefits of larger and more personality-diverse foundation teams can be seen in the apparent differences between successful and unsuccessful firms based on their combined Big Five personality team footprints, as illustrated in Fig.  2 B. Here, maximum values for each Big Five trait of a startup’s co-founders are mapped; stratified by successful and non-successful companies. Founder teams of successful startups tend to score higher on Openness, Conscientiousness, Extraversion, and Agreeableness.

When examining the combinations of founders with different personality types, we find that some ensembles of personalities were significantly correlated with greater chances of startup success—while controlling for other variables in the model—as shown in Fig.  2 C (for more details on the modelling, the predictive performance and the coefficient estimates of the final model, see Extended Data Figures  19 , 20 , and 21 in SI section  A.6 ).

Three combinations of trio-founder companies were more than twice as likely to succeed than other combinations, namely teams with (1) a Leader and two Developers , (2) an Operator and two Developers , and (3) an Expert/Engineer , Leader and Developer . To illustrate the potential mechanisms on how personality traits might influence the success of startups, we provide some examples of well-known, successful startup founders and their characteristic personality traits in Extended Data Figure  22 .

Startups are one of the key mechanisms for brilliant ideas to become solutions to some of the world’s most challenging economic and social problems. Examples include the Google search algorithm, disability technology startup Fingerwork’s touchscreen technology that became the basis of the Apple iPhone, or the Biontech mRNA technology that powered Pfizer’s COVID-19 vaccine.

We have shown that founders’ personalities and the combination of personalities in the founding team of a startup have a material and significant impact on its likelihood of success. We have also shown that successful startup founders’ personality traits are significantly different from those of successful employees—so much so that a simple predictor can be trained to distinguish between employees and entrepreneurs with more than 80% accuracy using personality trait data alone.

Just as occupation-personality maps derived from data can provide career guidance tools, so too can data on successful entrepreneurs’ personality traits help people decide whether becoming a founder may be a good choice for them.

We have learnt through this research that there is not one type of ideal ’entrepreneurial’ personality but six different types. Many successful startups have multiple co-founders with a combination of these different personality types.

To a large extent, founding a startup is a team sport; therefore, diversity and complementarity of personalities matter in the foundation team. It has an outsized impact on the company’s likelihood of success. While all startups are high risk, the risk becomes lower with more founders, particularly if they have distinct personality traits.

Our work demonstrates the benefits of personality diversity among the founding team of startups. Greater awareness of this novel form of diversity may help create more resilient startups capable of more significant innovation and impact.

The data-driven research approach presented here comes with certain methodological limitations. The principal data sources of this study—Crunchbase and Twitter—are extensive and comprehensive, but there are characterised by some known and likely sample biases.

Crunchbase is the principal public chronicle of venture capital funding. So, there is some likely sample bias toward: (1) Startup companies that are funded externally: self-funded or bootstrapped companies are less likely to be represented in Crunchbase; (2) technology companies, as that is Crunchbase’s roots; (3) multi-founder companies; (4) male founders: while the representation of female founders is now double that of the mid-2000s, women still represent less than 25% of the sample; (5) companies that succeed: companies that fail, especially those that fail early, are likely to be less represented in the data.

Samples were also limited to those founders who are active on Twitter, which adds additional selection biases. For example, Twitter users typically are younger, more educated and have a higher median income 47 . Another limitation of our approach is the potentially biased presentation of a person’s digital identity on social media, which is the basis for identifying personality traits. For example, recent research suggests that the language and emotional tone used by entrepreneurs in social media can be affected by events such as business failure 48 , which might complicate the personality trait inference.

In addition to sampling biases within the data, there are also significant historical biases in startup culture. For many aspects of the entrepreneurship ecosystem, women, for example, are at a disadvantage 49 . Male-founded companies have historically dominated most startup ecosystems worldwide, representing the majority of founders and the overwhelming majority of venture capital investors. As a result, startups with women have historically attracted significantly fewer funds 50 , in part due to the male bias among venture investors, although this is now changing, albeit slowly 51 .

The research presented here provides quantitative evidence for the relevance of personality types and the diversity of personalities in startups. At the same time, it brings up other questions on how personality traits are related to other factors associated with success, such as:

Will the recent growing focus on promoting and investing in female founders change the nature, composition and dynamics of startups and their personalities leading to a more diverse personality landscape in startups?

Will the growth of startups outside of the United States change what success looks like to investors and hence the role of different personality traits and their association to diverse success metrics?

Many of today’s most renowned entrepreneurs are either Baby Boomers (such as Gates, Branson, Bloomberg) or Generation Xers (such as Benioff, Cannon-Brookes, Musk). However, as we can see, personality is both a predictor and driver of success in entrepreneurship. Will generation-wide differences in personality and outlook affect startups and their success?

Moreover, the findings shown here have natural extensions and applications beyond startups, such as for new projects within large established companies. While not technically startups, many large enterprises and industries such as construction, engineering and the film industry rely on forming new project-based, cross-functional teams that are often new ventures and share many characteristics of startups.

There is also potential for extending this research in other settings in government, NGOs, and within the research community. In scientific research, for example, team diversity in terms of age, ethnicity and gender has been shown to be predictive of impact, and personality diversity may be another critical dimension 52 .

Another extension of the study could investigate the development of the language used by startup founders on social media over time. Such an extension could investigate whether the language (and inferred psychological characteristics) change as the entrepreneurs’ ventures go through major business events such as foundation, funding, or exit.

Overall, this study demonstrates, first, that startup founders have significantly different personalities than employees. Secondly, besides firm-level factors, which are known to influence firm success, we show that a range of founder-level factors, notably the character traits of its founders, significantly impact a startup’s likelihood of success. Lastly, we looked at team-level factors. We discovered in a multifactor analysis that personality-diverse teams have the most considerable impact on the probability of a startup’s success, underlining the importance of personality diversity as a relevant factor of team performance and success.

Data sources

Entrepreneurs dataset.

Data about the founders of startups were collected from Crunchbase (Table  2 ), an open reference platform for business information about private and public companies, primarily early-stage startups. It is one of the largest and most comprehensive data sets of its kind and has been used in over 100 peer-reviewed research articles about economic and managerial research.

Crunchbase contains data on over two million companies - mainly startup companies and the companies who partner with them, acquire them and invest in them, as well as profiles on well over one million individuals active in the entrepreneurial ecosystem worldwide from over 200 countries and spans. Crunchbase started in the technology startup space, and it now covers all sectors, specifically focusing on entrepreneurship, investment and high-growth companies.

While Crunchbase contains data on over one million individuals in the entrepreneurial ecosystem, some are not entrepreneurs or startup founders but play other roles, such as investors, lawyers or executives at companies that acquire startups. To create a subset of only entrepreneurs, we selected a subset of 32,732 who self-identify as founders and co-founders (by job title) and who are also publicly active on the social media platform Twitter. We also removed those who also are venture capitalists to distinguish between investors and founders.

We selected founders active on Twitter to be able to use natural language processing to infer their Big Five personality features using an open-vocabulary approach shown to be accurate in the previous research by analysing users’ unstructured text, such as Twitter posts in our case. For this project, as with previous research 20 , we employed a commercial service, IBM Watson Personality Insight, to infer personality facets. This service provides raw scores and percentile scores of Big Five Domains (Openness, Conscientiousness, Extraversion, Agreeableness and Emotional Stability) and the corresponding 30 subdomains or facets. In addition, the public content of Twitter posts was collected, and there are 32,732 profiles that each had enough Twitter posts (more than 150 words) to get relatively accurate personality scores (less than 12.7% Average Mean Absolute Error).

The entrepreneurs’ dataset is analysed in combination with other data about the companies they founded to explore questions about the nature and patterns of personality traits of entrepreneurs and the relationships between these patterns and company success.

For the multifactor analysis, we further filtered the data in several preparatory steps for the success prediction modelling (for more details, see SI section  A.5 ). In particular, we removed data points with missing values (Extended Data Fig.  13 ) and kept only companies in the data that were founded from 1990 onward to ensure consistency with previous research 32 (see Extended Data Fig.  14 ). After cleaning, filtering and pre-processing the data, we ended up with data from 25,214 founders who founded 21,187 startup companies to be used in the multifactor analysis. Of those, 3442 startups in the data were successful, 2362 in the first seven years after they were founded (see Extended Data Figure  15 for more details).

Entrepreneurs and employees dataset

To investigate whether startup founders show personality traits that are similar or different from the population at large (i. e. the entrepreneurs vs employees sub-analysis shown in Fig.  1 A and B), we filtered the entrepreneurs’ data further: we reduced the sample to those founders of companies, which attracted more than US$100k in investment to create a reference set of successful entrepreneurs (n \(=\) 4400).

To create a control group of employees who are not also entrepreneurs or very unlikely to be of have been entrepreneurs, we leveraged the fact that while some occupational titles like CEO, CTO and Public Speaker are commonly shared by founders and co-founders, some others such as Cashier , Zoologist and Detective very rarely co-occur seem to be founders or co-founders. To illustrate, many company founders also adopt regular occupation titles such as CEO or CTO. Many founders will be Founder and CEO or Co-founder and CTO. While founders are often CEOs or CTOs, the reverse is not necessarily true, as many CEOs are professional executives that were not involved in the establishment or ownership of the firm.

Using data from LinkedIn, we created an Entrepreneurial Occupation Index (EOI) based on the ratio of entrepreneurs for each of the 624 occupations used in a previous study of occupation-personality fit 44 . It was calculated based on the percentage of all people working in the occupation from LinkedIn compared to those who shared the title Founder or Co-founder (See SI section  A.2 for more details). A reference set of employees (n=6685) was then selected across the 112 different occupations with the lowest propensity for entrepreneurship (less than 0.5% EOI) from a large corpus of Twitter users with known occupations, which is also drawn from the previous occupational-personality fit study 44 .

These two data sets were used to test whether it may be possible to distinguish successful entrepreneurs from successful employees based on the different patterns of personality traits alone.

Hierarchical clustering

We applied several clustering techniques and tests to the personality vectors of the entrepreneurs’ data set to determine if there are natural clusters and, if so, how many are the optimum number.

Firstly, to determine if there is a natural typology to founder personalities, we applied the Hopkins statistic—a statistical test we used to answer whether the entrepreneurs’ dataset contains inherent clusters. It measures the clustering tendency based on the ratio of the sum of distances of real points within a sample of the entrepreneurs’ dataset to their nearest neighbours and the sum of distances of randomly selected artificial points from a simulated uniform distribution to their nearest neighbours in the real entrepreneurs’ dataset. The ratio measures the difference between the entrepreneurs’ data distribution and the simulated uniform distribution, which tests the randomness of the data. The range of Hopkins statistics is from 0 to 1. The scores are close to 0, 0.5 and 1, respectively, indicating whether the dataset is uniformly distributed, randomly distributed or highly clustered.

To cluster the founders by personality facets, we used Agglomerative Hierarchical Clustering (AHC)—a bottom-up approach that treats an individual data point as a singleton cluster and then iteratively merges pairs of clusters until all data points are included in the single big collection. Ward’s linkage method is used to choose the pair of groups for minimising the increase in the within-cluster variance after combining. AHC was widely applied to clustering analysis since a tree hierarchy output is more informative and interpretable than K-means. Dendrograms were used to visualise the hierarchy to provide the perspective of the optimal number of clusters. The heights of the dendrogram represent the distance between groups, with lower heights representing more similar groups of observations. A horizontal line through the dendrogram was drawn to distinguish the number of significantly different clusters with higher heights. However, as it is not possible to determine the optimum number of clusters from the dendrogram, we applied other clustering performance metrics to analyse the optimal number of groups.

A range of Clustering performance metrics were used to help determine the optimal number of clusters in the dataset after an apparent clustering tendency was confirmed. The following metrics were implemented to evaluate the differences between within-cluster and between-cluster distances comprehensively: Dunn Index, Calinski-Harabasz Index, Davies-Bouldin Index and Silhouette Index. The Dunn Index measures the ratio of the minimum inter-cluster separation and the maximum intra-cluster diameter. At the same time, the Calinski-Harabasz Index improves the measurement of the Dunn Index by calculating the ratio of the average sum of squared dispersion of inter-cluster and intra-cluster. The Davies-Bouldin Index simplifies the process by treating each cluster individually. It compares the sum of the average distance among intra-cluster data points to the cluster centre of two separate groups with the distance between their centre points. Finally, the Silhouette Index is the overall average of the silhouette coefficients for each sample. The coefficient measures the similarity of the data point to its cluster compared with the other groups. Higher scores of the Dunn, Calinski-Harabasz and Silhouette Index and a lower score of the Davies-Bouldin Index indicate better clustering configuration.

Classification modelling

Classification algorithms.

To obtain a comprehensive and robust conclusion in the analysis predicting whether a given set of personality traits corresponds to an entrepreneur or an employee, we explored the following classifiers: Naïve Bayes, Elastic Net regularisation, Support Vector Machine, Random Forest, Gradient Boosting and Stacked Ensemble. The Naïve Bayes classifier is a probabilistic algorithm based on Bayes’ theorem with assumptions of independent features and equiprobable classes. Compared with other more complex classifiers, it saves computing time for large datasets and performs better if the assumptions hold. However, in the real world, those assumptions are generally violated. Elastic Net regularisation combines the penalties of Lasso and Ridge to regularise the Logistic classifier. It eliminates the limitation of multicollinearity in the Lasso method and improves the limitation of feature selection in the Ridge method. Even though Elastic Net is as simple as the Naïve Bayes classifier, it is more time-consuming. The Support Vector Machine (SVM) aims to find the ideal line or hyperplane to separate successful entrepreneurs and employees in this study. The dividing line can be non-linear based on a non-linear kernel, such as the Radial Basis Function Kernel. Therefore, it performs well on high-dimensional data while the ’right’ kernel selection needs to be tuned. Random Forest (RF) and Gradient Boosting Trees (GBT) are ensembles of decision trees. All trees are trained independently and simultaneously in RF, while a new tree is trained each time and corrected by previously trained trees in GBT. RF is a more robust and straightforward model since it does not have many hyperparameters to tune. GBT optimises the objective function and learns a more accurate model since there is a successive learning and correction process. Stacked Ensemble combines all existing classifiers through a Logistic Regression. Better than bagging with only variance reduction and boosting with only bias reduction, the ensemble leverages the benefit of model diversity with both lower variance and bias. All the above classification algorithms distinguish successful entrepreneurs and employees based on the personality matrix.

Evaluation metrics

A range of evaluation metrics comprehensively explains the performance of a classification prediction. The most straightforward metric is accuracy, which measures the overall portion of correct predictions. It will mislead the performance of an imbalanced dataset. The F1 score is better than accuracy by combining precision and recall and considering the False Negatives and False Positives. Specificity measures the proportion of detecting the true negative rate that correctly identifies employees, while Positive Predictive Value (PPV) calculates the probability of accurately predicting successful entrepreneurs. Area Under the Receiver Operating Characteristic Curve (AUROC) determines the capability of the algorithm to distinguish between successful entrepreneurs and employees. A higher value means the classifier performs better on separating the classes.

Feature importance

To further understand and interpret the classifier, it is critical to identify variables with significant predictive power on the target. Feature importance of tree-based models measures Gini importance scores for all predictors, which evaluate the overall impact of the model after cutting off the specific feature. The measurements consider all interactions among features. However, it does not provide insights into the directions of impacts since the importance only indicates the ability to distinguish different classes.

Statistical analysis

T-test, Cohen’s D and two-sample Kolmogorov-Smirnov test are introduced to explore how the mean values and distributions of personality facets between entrepreneurs and employees differ. The T-test is applied to determine whether the mean of personality facets of two group samples are significantly different from one another or not. The facets with significant differences detected by the hypothesis testing are critical to separate the two groups. Cohen’s d is to measure the effect size of the results of the previous t-test, which is the ratio of the mean difference to the pooled standard deviation. A larger Cohen’s d score indicates that the mean difference is greater than the variability of the whole sample. Moreover, it is interesting to check whether the two groups’ personality facets’ probability distributions are from the same distribution through the two-sample Kolmogorov-Smirnov test. There is no assumption about the distributions, but the test is sensitive to deviations near the centre rather than the tail.

Privacy and ethics

The focus of this research is to provide high-level insights about groups of startups, founders and types of founder teams rather than on specific individuals or companies. While we used unit record data from the publicly available data of company profiles from Crunchbase , we removed all identifiers from the underlying data on individual companies and founders and generated aggregate results, which formed the basis for our analysis and conclusions.

Data availability

A dataset which includes only aggregated statistics about the success of startups and the factors that influence is released as part of this research. Underlying data for all figures and the code to reproduce them are available on GitHub: https://github.com/Braesemann/FounderPersonalities . Please contact Fabian Braesemann ( [email protected] ) in case you have any further questions.

Change history

07 may 2024.

A Correction to this paper has been published: https://doi.org/10.1038/s41598-024-61082-7

Henrekson, M. & Johansson, D. Gazelles as job creators: A survey and interpretation of the evidence. Small Bus. Econ. 35 , 227–244 (2010).

Article   Google Scholar  

Davila, A., Foster, G., He, X. & Shimizu, C. The rise and fall of startups: Creation and destruction of revenue and jobs by young companies. Aust. J. Manag. 40 , 6–35 (2015).

Which vaccine saved the most lives in 2021?: Covid-19. The Economist (Online) (2022). noteName - AstraZeneca; Pfizer Inc; BioNTech SE; Copyright - Copyright The Economist Newspaper NA, Inc. Jul 14, 2022; Last updated - 2022-11-29.

Oltermann, P. Pfizer/biontech tax windfall brings mainz an early christmas present (2021). noteName - Pfizer Inc; BioNTech SE; Copyright - Copyright Guardian News & Media Limited Dec 27, 2021; Last updated - 2021-12-28.

Grant, K. A., Croteau, M. & Aziz, O. The survival rate of startups funded by angel investors. I-INC WHITE PAPER SER.: MAR 2019 , 1–21 (2019).

Google Scholar  

Top 20 reasons start-ups fail - cb insights version (2019). noteCopyright - Copyright Newstex Oct 21, 2019; Last updated - 2022-10-25.

Hochberg, Y. V., Ljungqvist, A. & Lu, Y. Whom you know matters: Venture capital networks and investment performance. J. Financ. 62 , 251–301 (2007).

Fracassi, C., Garmaise, M. J., Kogan, S. & Natividad, G. Business microloans for us subprime borrowers. J. Financ. Quantitative Ana. 51 , 55–83 (2016).

Davila, A., Foster, G. & Gupta, M. Venture capital financing and the growth of startup firms. J. Bus. Ventur. 18 , 689–708 (2003).

Nann, S. et al. Comparing the structure of virtual entrepreneur networks with business effectiveness. Proc. Soc. Behav. Sci. 2 , 6483–6496 (2010).

Guzman, J. & Stern, S. Where is silicon valley?. Science 347 , 606–609 (2015).

Article   ADS   CAS   PubMed   Google Scholar  

Aldrich, H. E. & Wiedenmayer, G. From traits to rates: An ecological perspective on organizational foundings. 61–97 (2019).

Gartner, W. B. Who is an entrepreneur? is the wrong question. Am. J. Small Bus. 12 , 11–32 (1988).

Thornton, P. H. The sociology of entrepreneurship. Ann. Rev. Sociol. 25 , 19–46 (1999).

Eikelboom, M. E., Gelderman, C. & Semeijn, J. Sustainable innovation in public procurement: The decisive role of the individual. J. Public Procure. 18 , 190–201 (2018).

Kerr, S. P. et al. Personality traits of entrepreneurs: A review of recent literature. Found. Trends Entrep. 14 , 279–356 (2018).

Hamilton, B. H., Papageorge, N. W. & Pande, N. The right stuff? Personality and entrepreneurship. Quant. Econ. 10 , 643–691 (2019).

Salmony, F. U. & Kanbach, D. K. Personality trait differences across types of entrepreneurs: A systematic literature review. RMS 16 , 713–749 (2022).

Freiberg, B. & Matz, S. C. Founder personality and entrepreneurial outcomes: A large-scale field study of technology startups. Proc. Natl. Acad. Sci. 120 , e2215829120 (2023).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Kern, M. L., McCarthy, P. X., Chakrabarty, D. & Rizoiu, M.-A. Social media-predicted personality traits and values can help match people to their ideal jobs. Proc. Natl. Acad. Sci. 116 , 26459–26464 (2019).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Dalle, J.-M., Den Besten, M. & Menon, C. Using crunchbase for economic and managerial research. (2017).

Block, J. & Sandner, P. What is the effect of the financial crisis on venture capital financing? Empirical evidence from us internet start-ups. Ventur. Cap. 11 , 295–309 (2009).

Antretter, T., Blohm, I. & Grichnik, D. Predicting startup survival from digital traces: Towards a procedure for early stage investors (2018).

Dworak, D. Analysis of founder background as a predictor for start-up success in achieving successive fundraising rounds. (2022).

Hsu, D. H. Venture capitalists and cooperative start-up commercialization strategy. Manage. Sci. 52 , 204–219 (2006).

Blank, S. Why the lean start-up changes everything (2018).

Kaplan, S. N. & Lerner, J. It ain’t broke: The past, present, and future of venture capital. J. Appl. Corp. Financ. 22 , 36–47 (2010).

Hallen, B. L. & Eisenhardt, K. M. Catalyzing strategies and efficient tie formation: How entrepreneurial firms obtain investment ties. Acad. Manag. J. 55 , 35–70 (2012).

Gompers, P. A. & Lerner, J. The Venture Capital Cycle (MIT Press, 2004).

Shane, S. & Venkataraman, S. The promise of entrepreneurship as a field of research. Acad. Manag. Rev. 25 , 217–226 (2000).

Zahra, S. A. & Wright, M. Understanding the social role of entrepreneurship. J. Manage. Stud. 53 , 610–629 (2016).

Bonaventura, M. et al. Predicting success in the worldwide start-up network. Sci. Rep. 10 , 1–6 (2020).

Schwartz, H. A. et al. Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE 8 , e73791 (2013).

Plank, B. & Hovy, D. Personality traits on twitter-or-how to get 1,500 personality tests in a week. In Proceedings of the 6th workshop on computational approaches to subjectivity, sentiment and social media analysis , pp 92–98 (2015).

Arnoux, P.-H. et al. 25 tweets to know you: A new model to predict personality with social media. In booktitleEleventh international AAAI conference on web and social media (2017).

Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A. & Goldberg, L. R. The power of personality: The comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspect. Psychol. Sci. 2 , 313–345 (2007).

Article   PubMed   PubMed Central   Google Scholar  

Youyou, W., Kosinski, M. & Stillwell, D. Computer-based personality judgments are more accurate than those made by humans. Proc. Natl. Acad. Sci. 112 , 1036–1040 (2015).

Soldz, S. & Vaillant, G. E. The big five personality traits and the life course: A 45-year longitudinal study. J. Res. Pers. 33 , 208–232 (1999).

Damian, R. I., Spengler, M., Sutu, A. & Roberts, B. W. Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years. J. Pers. Soc. Psychol. 117 , 674 (2019).

Article   PubMed   Google Scholar  

Rantanen, J., Metsäpelto, R.-L., Feldt, T., Pulkkinen, L. & Kokko, K. Long-term stability in the big five personality traits in adulthood. Scand. J. Psychol. 48 , 511–518 (2007).

Roberts, B. W., Caspi, A. & Moffitt, T. E. The kids are alright: Growth and stability in personality development from adolescence to adulthood. J. Pers. Soc. Psychol. 81 , 670 (2001).

Article   CAS   PubMed   Google Scholar  

Cobb-Clark, D. A. & Schurer, S. The stability of big-five personality traits. Econ. Lett. 115 , 11–15 (2012).

Graham, P. Do Things that Don’t Scale (Paul Graham, 2013).

McCarthy, P. X., Kern, M. L., Gong, X., Parker, M. & Rizoiu, M.-A. Occupation-personality fit is associated with higher employee engagement and happiness. (2022).

Pratt, A. C. Advertising and creativity, a governance approach: A case study of creative agencies in London. Environ. Plan A 38 , 1883–1899 (2006).

Klotz, A. C., Hmieleski, K. M., Bradley, B. H. & Busenitz, L. W. New venture teams: A review of the literature and roadmap for future research. J. Manag. 40 , 226–255 (2014).

Duggan, M., Ellison, N. B., Lampe, C., Lenhart, A. & Madden, M. Demographics of key social networking platforms. Pew Res. Center 9 (2015).

Fisch, C. & Block, J. H. How does entrepreneurial failure change an entrepreneur’s digital identity? Evidence from twitter data. J. Bus. Ventur. 36 , 106015 (2021).

Brush, C., Edelman, L. F., Manolova, T. & Welter, F. A gendered look at entrepreneurship ecosystems. Small Bus. Econ. 53 , 393–408 (2019).

Kanze, D., Huang, L., Conley, M. A. & Higgins, E. T. We ask men to win and women not to lose: Closing the gender gap in startup funding. Acad. Manag. J. 61 , 586–614 (2018).

Fan, J. S. Startup biases. UC Davis Law Review (2022).

AlShebli, B. K., Rahwan, T. & Woon, W. L. The preeminence of ethnic diversity in scientific collaboration. Nat. Commun. 9 , 1–10 (2018).

Article   CAS   Google Scholar  

Żbikowski, K. & Antosiuk, P. A machine learning, bias-free approach for predicting business success using crunchbase data. Inf. Process. Manag. 58 , 102555 (2021).

Corea, F., Bertinetti, G. & Cervellati, E. M. Hacking the venture industry: An early-stage startups investment framework for data-driven investors. Mach. Learn. Appl. 5 , 100062 (2021).

Chapman, G. & Hottenrott, H. Founder personality and start-up subsidies. Founder Personality and Start-up Subsidies (2021).

Antoncic, B., Bratkovicregar, T., Singh, G. & DeNoble, A. F. The big five personality-entrepreneurship relationship: Evidence from slovenia. J. Small Bus. Manage. 53 , 819–841 (2015).

Download references

Acknowledgements

We thank Gary Brewer from BuiltWith ; Leni Mayo from Influx , Rachel Slattery from TeamSlatts and Daniel Petre from AirTree Ventures for their ongoing generosity and insights about startups, founders and venture investments. We also thank Tim Li from Crunchbase for advice and liaison regarding data on startups and Richard Slatter for advice and referrals in Twitter .

Author information

Authors and affiliations.

The Data Science Institute, University of Technology Sydney, Sydney, NSW, Australia

Paul X. McCarthy

School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia

Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia

Xian Gong & Marian-Andrei Rizoiu

Oxford Internet Institute, University of Oxford, Oxford, UK

Fabian Braesemann & Fabian Stephany

DWG Datenwissenschaftliche Gesellschaft Berlin, Berlin, Germany

Melbourne Graduate School of Education, The University of Melbourne, Parkville, VIC, Australia

Margaret L. Kern

You can also search for this author in PubMed   Google Scholar

Contributions

All authors designed research; All authors analysed data and undertook investigation; F.B. and F.S. led multi-factor analysis; P.M., X.G. and M.A.R. led the founder/employee prediction; M.L.K. led personality insights; X.G. collected and tabulated the data; X.G., F.B., and F.S. created figures; X.G. created final art, and all authors wrote the paper.

Corresponding author

Correspondence to Fabian Braesemann .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this Article was revised: The Data Availability section in the original version of this Article was incomplete, the link to the GitHub repository was omitted. Full information regarding the corrections made can be found in the correction for this Article.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

McCarthy, P.X., Gong, X., Braesemann, F. et al. The impact of founder personalities on startup success. Sci Rep 13 , 17200 (2023). https://doi.org/10.1038/s41598-023-41980-y

Download citation

Received : 15 February 2023

Accepted : 04 September 2023

Published : 17 October 2023

DOI : https://doi.org/10.1038/s41598-023-41980-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

example of data interpretation in research paper

COMMENTS

  1. PDF CHAPTER 4: ANALYSIS AND INTERPRETATION OF RESULTS

    To complete this study properly, it is necessary to analyse the data collected in order to test the hypothesis and answer the research questions. As already indicated in the preceding chapter, data is interpreted in a descriptive form. This chapter comprises the analysis, presentation and interpretation of the findings resulting from this study.

  2. Data Interpretation: Definition and Steps with Examples

    Data interpretation is the process of reviewing data and arriving at relevant conclusions using various analytical research methods. Data analysis assists researchers in categorizing, manipulating data, and summarizing data to answer critical questions. LEARN ABOUT: Level of Analysis.

  3. Data Interpretation

    The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to ...

  4. (PDF) CHAPTER FOUR DATA ANALYSIS, INTERRETATION AND ...

    4.1 Introduction. This chapter deals with data anal ys is, interpretation and discussion of the key finding obtained. thought the study. The social- demographic data is present ed and analyzed ...

  5. PDF Interpretation of research results

    Research evidence in usually published in scientific papers and in this lecture we shall look at the basic statistical ideas used in the presentation and interpretation of evidence in such papers. For example, this is the summary of a paper from a nursing journal: Evaluation of an Electrolyte Replacement Protocol in an adult Intensive Care Unit: A

  6. The Data Puzzle: The Nature of Interpretation in Quantitative Research

    tive data analysis. Argument: Drawing upon a broad literature on interpretation, the paper shows how the interpretive processes for quantitative "data" has significant similarities to in-terpretation in other settings. For example, both qualitative textual analysis and quantitative statistical analysis rely upon contextual and tropological ...

  7. (PDF) Effective Data Interpretation

    Effective Data Interpretation. Jürgen Mün ch. Abstract. Data interpretation is an essential element of mature software project. management and empirical software en gineering. A s far as project ...

  8. (PDF) An Overview of Statistical Data Analysis

    [email protected]. August 21, 2019. Abstract. The use of statistical software in academia and enterprises has been evolving over the last. years. More often than not, students, professors ...

  9. PDF Analysis and Interpretation: Descriptive Statistics

    Analysis and Operation. After collecting data in the operation phase, we want to draw conclusions. The analysis and operation phase aims to interpret the collected experimental data. This phase has three main steps. Descriptive statistics. Data set reduction. Hypothesis testing. Analysis and Operation Overview. Conclusions Experiment data.

  10. Interpreting a Qualitative Research Paper

    Qualitative research involves the studied use of a variety of methods - case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts. [4] Interpreting a qualitative research paper is an analysis of the quality of the material. It allows you to understand the reliability of ...

  11. Descriptive Data Analysis

    56Air Medical Journal 28:2. Descriptive Data Analysis. Basics of ResearchPart 13Cheryl Bagley Thompson, PhD, RN. Statistical Analysis Plan. The most important part of any research project is the planning process. This statement is as true for data analysis as for any of the other steps in the research process.

  12. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  13. PDF Chapter 4 Analysis and Interpretation of Research Results

    The measuring instrument was discussed and an indication was given of the method of statistical analysis. Chapter 4 investigates the inherent meaning of the research data obtained from the empirical study. Learnership perspectives, as the focal point of this study, have to be evaluated against critical elements, such as organisational culture ...

  14. Types of Data Analysis: A Guide

    Descriptive analysis is the very first analysis performed in the data analysis process. It generates simple summaries about samples and measurements. It involves common, descriptive statistics like measures of central tendency, variability, frequency and position. Descriptive Analysis Example. Take the Covid-19 statistics page on Google, for ...

  15. Chapter 4

    Moreover, the frequency distribution analysis suggested three age groups; '20-35', '36-60' and 'Above 60'. 39% of the respondents belonged to the '20-35' age group, while 56.5% of the respondents belonged to the '36-60' age group and the remaining 4.5% belonged to the age group of 'Above 60'. Furthermore, the annual ...

  16. (PDF) An analysis of data paper templates and guidelines: Types of

    Methods A content analysis of 15 data paper templates/guidelines from 24 data journals indexed by the Web of Science was performed. ... We examine a sample of 4041 data papers of different domains ...

  17. Research Methodology, Data Analysis and Interpretation

    research methodology, data analysis and interpretation.docx - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free. The document discusses research methodology. It begins by explaining that this research is exploratory in nature and that the research design provides the conceptual framework. It then discusses different research designs like ...

  18. Interpretation In Qualitative Research: What, Why, How

    Abstract. This chapter addresses a wide range of concepts related to interpretation in qualitative research, examines the meaning and importance of interpretation in qualitative inquiry, and explores the ways methodology, data, and the self/researcher as instrument interact and impact interpretive processes.

  19. ChatGPT

    Early access to new features. Access to GPT-4, GPT-4o, GPT-3.5. Up to 5x more messages for GPT-4o. Access to advanced data analysis, file uploads, vision, and web browsing

  20. Data Analysis Research Paper Examples That Really Inspire

    Free Research Paper On Quantitative Data Analysis and Interpretation. In Chapter 19, "Processes of Quantitative Data Analysis and Interpretation," the steps taken in analyzing quantitative data are described. In the preanalysis phase, the raw data is checked, software is selected for analysis, and data is entered and verified into a computer.

  21. Social Media Fact Sheet

    How we did this. To better understand Americans' social media use, Pew Research Center surveyed 5,733 U.S. adults from May 19 to Sept. 5, 2023. Ipsos conducted this National Public Opinion Reference Survey (NPORS) for the Center using address-based sampling and a multimode protocol that included both web and mail.

  22. Qualitative data analysis: A practical example

    Advances in technology have provided new approaches for data collection methods and analysis for researchers. Data collection is no longer limited to paper-and-pencil format, and numerous methods ...

  23. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  24. The impact of founder personalities on startup success

    The data-driven research approach presented here comes with certain methodological limitations. ... Statistical analysis. T-test, Cohen's D and two-sample Kolmogorov-Smirnov test are introduced ...

  25. (PDF) Interpretation and display of research results

    Interpretation and display of research results. ABSTRACT. It important to properly collect, code, clean and edit the data before interpreting and displaying. the research results. Computers play a ...

  26. (PDF) Practical Data Analysis: An Example

    18 2 Practical Data Analysis: An Example. Fig. 2.1 A histogram for the distribution of the value of attribute age using 8 bins. Fig. 2.2 A histogram for the distribution of the value of attribute ...

  27. B2B Content Marketing Trends 2024 [Research]

    Many B2B marketers surveyed predict AI will dominate the discussions of content marketing trends in 2024. As one respondent says: "AI will continue to be the shiny thing through 2024 until marketers realize the dedication required to develop prompts, go through the iterative process, and fact-check output.

  28. PDF Chapter 6: Data Analysis and Interpretation 6.1. Introduction

    The results of qualitative data analysis guide subsequent data collection, and analysis is thus a less-distinct final stage of the research process than quantitative analysis, where data analysis